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Abstract—Despite the considerable amount of research work on the ap- “Filter-design approach” and the “Filter-bank approach” [10],
plication of Gabor filters in pattern classification, their design and selection [3]
have been mostly done on a trial and error basis. Existing techniques are
either only suitable for a small number of filters or less problem-oriented. In the “filter-design approach” the filter parameters are chosen
A systematic and general evolutionary Gabor filter optimization (EGFO) by Considering the data available, that is, the parameters are ap-
approach that yields a more optimal, problem-specific, set of filters is pro- . . .
posed in this study. The EGFO approach unifies filter design with filter se- propriate for the problem at hand only. In one of the pioneering
lection by integrating Genetic Algorithms (GAs) with an incremental clus-  Studies on the design of Gabor filters conducted by Bovik et al.
tering approach. Specifically, filter design is performed using GAs, a global [11], the peak detection technique was used. In this approach,

optimization approach that encodes the parameters of the Gabor filters in .
. o . the center frequency of each filter corresponds to a peak of the
a chromosome and uses genetic operators to optimize them. Filter selec-

tion is performed by grouping together filters having similar characteris- POWer spectrum of the inputimage. Slightly different from [11],
tics (i.e., similar parameters) using incremental clustering in the parameter Qkombi-Diba et al. [12] implemented a multi-iteration peak de-
space. Each group of filters is represented by a single filter whose parame- tection method for a texture segmentation problem. Dunn et
ters correspond to the average parameters of the filters in the group. This . . . .
step eliminates redundant filters, leading to a compact, optimized set of fil- al. [13] investigated an exhaustive search to find the center fre-
ters. The average filters are evaluated using an application-oriented fitness quency. The search was guided by a “filter-quality measure-
criterion based on Support Vector Machines (SVMs). To demonstrate the ment” (i.e., Rician statistical model) that was determined by the
effectiveness of the proposed framework, we have considered the challeng- .
. . ) . . sample mean and sample variance of the values of an averaged
ing problem of vehicle detection from gray-scale images. Our experimental ) ) :
results illustrate that the set of Gabor filters, specifically optimized for the Windowed Fourier transform. This work was based on a bi-
problem of vehicle detection, yield better performance than using tradi- partite (two-texture) image segmentation problem and required
tional filter banks. heuristics to find a proper bandwidth. The “filter-quality mea-
surement” was the image-segmentation error and the filter with
the lowest error was selected. Due to the exhaustive search, this

method is quite time-consuming. A more computationally effi-
Motivated by biological findings on the similarity of 2-D Ga-Cient method was described in [10], [3], using a segmentation-

bor filters and receptive fields of neurons in the visual cortéX'©" CLCLE L [.13]' The efficiency was gained gsmg a
[1], there has been increased interest in deploying Gabor ﬁltgpgthod to calculate the filter output power for all Gabor filters at
in various computer vision applications. An important propgertaln center frequencies simultaneously. It is worth mention-

erty of Gabor filters that has contributed to this is that they hall that this method does not increase the efficiency of designing

optimal joint localization both in the spatial and frequency dé& single filter.

mains [1]. Gabor filters have been successfully applied to var-In the “filter-bank approach” the filter parameters are chosen
ious image analysis applications including edge detection [2},a data independent way. Then, a subset of filters is selected
image coding[1], texture analysis [3][4][5], handwritten numbebr a particular application. Turner [14] useéd filtersd fre-
recognition [6], face recognition [7], vehicle detection [8], anduenciesx 4 orientationsx 2 phase pairs) in a texture discrim-
image retrieval [9]. Despite the considerable amount of reseainhtion problem. Based on the observation that a constant band-
work on the application of Gabor filters to computer vision prolwidth on the logarithmic scale assures the width of the filters to
lems, their design is mostly performed on a trial and error bhe inversely proportional to their radial frequencies, Jain et al.
sis. A filter design method is needed for selecting filter pararf#] chose the filter parameters such that the radial frequencies
eters to maximize the discriminating power of the filters. Prewivere one octave apart. To reduce the computational burden, a
ous efforts in designing Gabor filters follow two directions: thgreedy filter selection method was employed using a selection

I. INTRODUCTION



criterion based on the error between the original image and théfThe EGFO approach is suitable for optimizing any number
one reconstructed by adding together a subset of the filtered whfilters for a given application. It encapsulates the main char-
ages. To reduce the redundancy in the Gabor feature represeteristics of both of the previous two approaches. The search
tation, Manjunath et al. [9] proposed a design method to enssgmace of our method is much larger than that of the filter-bank
that the half-peak magnitude support of the filter responsesaipproaches, providing a higher likelihood of getting close to the
the frequency domain touch each other. For fast image brovegtimal solution as in the case of filter design approaches. More-
ing, they implemented an “adaptive filter selection algorithmgver, we represent filter optimization as a closed-loop learning
where spectrum difference information was used to select filtgnoblem. The search for an optimal solution is guided by the
with better performance. In the context of handwritten nunperformance of a SVM classifier on features extracted from the
ber recognition, Hamamoto et al. [6] optimized the filters bgesponses of the Gabor filters.
checking the error rate for all possible combinations of filter pa- The rest of the paper is organized as follows: In Section I,
rameters and then choosing those minimizing the error rateswe define the Gabor filter optimization problem. Section lll
Although good performance has been reported in the IiteIpr_es.ents our e\(olytionary ngor filter optimizati.on approach in
ture, certain limitations still exist. “Filter-design approachesdeta”' Th.e statlst_|cal Gabo_r filter featurg extraction methgd a”?'
{he learning engine used in our experiments are described in

for example, divide the design process into two stages: pre-filter

and post-filter. Several pre-filter design approaches have bgeer? tion IV. The proposed framework is tested in Section VI

investigated, however, an explicit methodology for selecting N the challenging problem of vehicle detection. The analysis

appropriate post-filter step for a given pre-filter step has not beoefnOur experimental results is given in Section VI Finally, Sec-

suggested. Moreover the selection of the bandwidth pararrt'll(e)-n V;III s;.mm'arlzefs tf}e main reiults of the paper and presents
ter is done mostly heuristically. The design stage in the “ilePOSSIP'E Irections for future work.
bank approach” is mostly problem-independent. Different pat- Il. PROBLEM STATEMENT
tern classification problems, however, might require selecting o ) ) i

. . e begin with a brief review of Gabor filters. One can re-
an optimum set of features and, consequently, an optimum se

of Gabor filters. We would not expect, for example, that a set fc%r to Dau_gman s seminal paper [_1] for more dgtaﬂs. The gen-
eral functional of the two-dimensional Gabor filter family can

Gabor filters optimized for a vehicle classification application ) )
. . ._be represented as a Gaussian function modulated by a complex
(compact car v.s. truck) would work well in a vehicle detection ) . N ) ) )

- . . . ... .sinusoidal signal. Specifically, a two dimensional Gabor filter
application (vehicle v.s. non-vehicle), since more detailed in- be f lated

L o . can be formulated as:

formation is required in the former case than in the later. Mar%x’y)
researchers have realized that this is a serious problem and have
suggested filter selection schemes to deal with it, however, fil- A
ters are selected from an original small pool of filters that might

not be suitable for the problem at hand (e.g., Hamamoto et al. { T = xcosf + ysind
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[6] performed filter selection using a pool of 100 predefined fil-
ters). The main issue here is that we are not certain whether O\cvhereaz ando, are the scaling parameters of the filter and

not the optimum set of filters are included in the predefined poéaeltermine the effective size of the neighborhood of a pixel in

of filters. which the weighted summation takes plag@. € [0, 7)) speci-

A systematic and general evolutionary filter optimization afies the orientation of the Gabor filterd/ is the radial frequency
proach that yields a more optimal, problem-specific, set of filteo§ the sinusoid. A filter will respond stronger to a bar or an edge
is proposed in this paper. We believe that filter design and selegth a normal parallel to the orientatighof the sinusoid.
tion are not two independent problems and should not be treated he Fourier transform of the Gabor function in Eqg. 1 is given
separately. In this study, GAs have been integrated with an b
cremen.tal clust_eri_ng falgorithm in the parameter space to ena_lble G(u,v) = exp[—l( (u— ;/V)z 4 Lz)] @3)
Gabor filter optimization. GAs allow searching the space of fil- Ty Ty
ter parameters efficiently while clustering removes filters havingheres,, = %mrx, oy = %way. The Fourier domain represen-

a high degree of redundancy. The final set of filters is both comation in Eq. 3 specifies the amount by which the filter modifies
pact and optimized. To customize the filters for a given problemach frequency component of the input image.

an application-oriented fitness criterion is used based on SuppoiGabor filter optimization corresponds to selecting the proper
Vector Machines (SVMs). values for each of the four parameters in the parameter set

y = —xsinf + ycosb



mosome). A randomly generated set of such strings forms the
initial population from which the GA starts its search. Three ba-
sic genetic operators guide this search: selection, crossover and
mutation.

B. Encoding and decoding

@ (b)

© (d) o, [ o | W | ¢

Using a binary encoding scheme, each Gabor filter is repre-
sented byM bits that encode its four parameters. To design
filters, we use a chromosome of lengthV bits. Each of the
four parameters i is encoded using = M /4 bits as illus-
trated in Fig. 2.

Filter #1 Filter #2 Filter #3 | woereeee

n bits nbits nbits n bits

. ) . . Filter # 2
Fig. 1. The Gabor filter with different paramet& = {0, W,o0,,0y}

in frequency domain(the Fourier transform of the Gabor functions with
different parameters) . (&, = {0°,0.0961,0.0204,0.01219}, (b) Fig. 2. Encoding scheme
@, = {0°,0.3129,0.06,0.359}, (c) ®, = {90°,0.3129,0.06,0.359},

(d) ®. = {90°,0.3921,0.0503, 0.3066} , o
It is worth mentioning that:

« The encoding scheme is quite flexible, and allows us to en-

® = {0, W,0,,0,}. Gabor filters act as local bandpass filters:0ode any number of filters by simply varying the length of the
Fig. 1 shows four Gabor filters with different parameter setting§romosome;

in frequency domain. The light areas of the power spectrumThe numbers of bits associated with each parameter need not
indicate frequencies and wave orientations. It is obvious froi@ be the same, we can make the search for a particular param-
Fig.1 that different parameter settings will lead to quite diffeeter finer of coarser by simply adding or removing bits for this
ent filter responses, an important issue in pattern classificatRarameter;

problems. Each filter is fully determined by choosing the four If we need to fix certain parameter(s) using prior knowledge,
parameters i®. Therefore, choosing a filter for a particular apwe can remove the parameter(s) from the chromosome. In this
plication involves optimizing these four parameters. Assumif@se, the GA will optimize the remaining parameters;

that NV filters are needed in an applicationy parameters need Each of the parameters i has its own constraints and

to be optimized. Solving this high dimensional multivariate opanges. The encoding/deconding scheme was designed to en-
timization problem is very difficult in general. In contrast teure that the generated filters satisfy these requirements.
previous filter design methods, a global optimization approachThe orientation parametérshould satisfyf € [0, 7). If Dy

using GAs is investigated here to deal with this problem. denotes the decimal number corresponding to the chunk of bits

associated witld (see Fig.2) then the value 6fis computed by
IIl. EVOLUTIONARY GABOR FILTER OPTIMIZATION

In this section, we describe the proposed evolutionary Gabor 0 = Do xm/2". (4)

filter optimization approach. which always satisfies the range requirement.

W is the radial frequency of the Gabor filter, which is appli-

cation dependent. Using some prior knowledge, we can limit

GAs are a class of optimization procedures inspired by the range of into [Wynin, Winas]. Then the decoding formula
natural selection mechanisms[15]. GAs operate iteratively ofisgyiven by

population of structures, each of which represents a candidate
solution to the problem, encoded as a string of symbols (chro- W = Wiin + Wiaz — Winin) * Dy /27 (5)

A. A brief review of GAs



whereDyy is the decimal number corresponding to the chunk of The optimized filters are evaluated using the fitness function

bits associated withl’. In this study, we have uséd’,,;, = 0 defined in Section IlI-E.

andW,,42 = 0.5. In our implementation, clustering is carried out in the pa-
o, ando, are essentially the effective sizes of the Gaussiaameter domain. Representing the parameters of a Gabor fil-

functions and are within the range,,in, omas]- The upper ter with {6, W™, o2, o7} and the centroids of the clusters with

limit ¢,,4, is determined by the mask width [16]. A rela- {6",W* 0., 0!} with i € [I N], whereN is the number of

tion betweerv,,,,, and the mask size» can be obtained by im- currently existing clusters, we assign the filter to thiedluster

posing thatw subtends most of the energy of the Gaussian. Asnly if all of the following conditions are satisfied:

adequate choice i8,,,. < w/5, which subtends 98.76% of the

energy of the Gaussian filter. The lower limit can be derived us- g _ 1. Threg < 0" < 00 + L Threg )

ing theSampling Theorenif the pixel width is taken as our unit 2

step, we cannot reconstruct completely a signal containing fre-

guencies higher than 0.5pixél from its samples, which means 1 o

that any frequency component at| > w. = 27(0.5) = 7 Wt — 5% Threw < W" < W'+ 5% Threw  (9)

is distorted. Theu,. is determined by the pixelization, not by

the signal. To avoid aliasing, the best we can do is to keep o 1

most of the energy of the Gaussian function within the interval 0y — 5 X Thres <oy S0+ 5 x Thre,  (10)

[—7, w]. Applying the “98.86% of the energy” criterion, we find

Omin > 0.796. To meet the range constraifi,:,, omaz|), OUr o T

decoding scheme follows: Ty = 92 x Thres < 0 <oy + 5% Threq (11)

To = Omin + (Cmaz — Tmin) * Do, /2" (6) Otherwise, the filter is assigned to a new cluster. The above
conditions are quite strict to make sure that filters falling in the
same cluster are very similar to each other. We can always re-

Oy = Omin + (Tmaz — Omin) * Do, /2" (7) lax the criterion by increasing the predefined thresholds. The

_ _ following thresholds were used in our experiments:
for ay.' D,, and D, are agam the 'demma'l numbers corre- ® = {0,W,0,,0,} areThrey = 1/ K, Threw = (Wnas —
sponding to the chunk of bits associated with and o, cor- Winin)/K, andThre,. — Thre, — Thre, — (o B

respondingly. omin)/K. Depending on different applications and desired
C. Filter Selection trade-off between model compactness and accursiogan be

. L _ set to different values.
During parameter optimization, some of the Gabor filters en-

coded in a chromosome might end up being very similar {9 Selection, Mutation and Crossover

each other or even identical. These filters will result in simi-

lar/identical responses, therefore, introducing great redundancutation is a very low probability operator and just flips a
and increasing time requirements. To eliminate redundant gpecific bit. It plays the role of restoring lost genetic material.
ters, we perform filter selection, implemented through filtépur Selection strategy was cross generational. Assuming a pop-
clustering in the parameter space. An incremental clustering #ation of size N, the offspring double the size of the population
gorithm [17] has been adopted in this paper for its simplicity. And we select the best N individuals from the combined parent-
high level description of the clustering algorithm is given belov?SPring population. Uniform crossover is used here.

1. Assign the first Gabor filter to a cluster. ] )

2. Compute the distance of the next Gabor filter from the ce%—' Fitness evaluation

troid of each cluster. Each individual’s fitness will determine whether or not it will

3. Find the smallest distance. survive in subsequent generations. The fitness value used here
4. If the distance is less than a threshold, assign the filter itothe performance of a SVM classifier on a validation set us-
the corresponding cluster; otherwise, assign the filter to a newg features extracted from the responses of the selected Gabor
cluster. filters. In this way, the Gabor filter optimization design is imple-

5. Repeat step 2-4 for each of the remaining filters. mented as a closed-loop learning scheme, which is more pow-
6. Represent the filters in each cluster by a single filter whos€&ful, more problem-specific, and less heuristic than in previous
parameters correspond to the cluster’s centroid. approaches.

for o, and



IV. FEATURE EXTRACTION AND CLASSIFICATION while position information is discarded. This is particularly use-

Designing an optimal set of Gabor filters is the first step ifll.'l| to compensate for errors in the extraction of the subimages.

building a pattern classification algorithm. Then, we need to exUppoSe we are using = 6 filters. Applying the filter bank on

tract features using the responses of the selected filters and tRafN ©f thed subwindows, yields a feature vector of size 162,

a classifier using those features. To demonstrate the propod8¢Nnd the following form:

filter design approach, redundant statistical Gabor features and
SVMs are utilized.

[M11U11/€11, H12012KR12 * + - M69U69f‘i69] (13)

B. SVM classifier

A. Gabor Filter Features L e
SVMsare primarily two-class classifiers that have been shown

Given an inputimagé(z,y), Gabor feature extraction is per-o pe an attractive and more systematic approach to learning lin-
formed by convolving/ (z, y) with a set of Gabor filters: ear or non-linear decision boundaries [19] [20]. Given a set of
points, which belong to either one of the two clas&#Mfinds
r(z,y) = // 1(&mg(z — &y — n)dEdn 12)  the hyperplane leaving the largest possible fraction of points of
th§ same class on the same side, while maximizing the distance

Although the raw responses of the Gabor filters could be used . . .
of either class from the hyperplane. This is equivalent to per-

directly as features, some kind of post-processing is usually ?8 . . S .
) rming structural risk minimization to achieve good general-
plied (e.g., Gabor-energy features, thresholded Gabor features

. ization [19] [20]. Givenl examples from two classes
and moments based on Gabor features [18]). In this study, we [19](20] P
use moments derived from Gabor filter outputs on subwindows (1, y1)(z2,y2)...(z1, u1), = € RY,y; € {—1,4+1}  (14)

defined on subimages extracted from the whole input image. . ) S ) )
finding the optimal hyper-plane implies solving a constrained

optimization problem using quadratic programming. The opti-
mization criterion is the width of the margin between the classes.
The discriminating hyperplane is defined as:

!
f@) = viaik(z,x:) +b (15)
i=1

wherek(z, x;) is a kernel function and the sign ffx) indicates

@ () © the membership of. Constructing the optimal hyperplane is
Fig. 3. (a) feature extraction patches; (b) Gabor filter bank wiscales and equale_nt to flndlng all the_ nonzerg. Any data pointz; qu-
orientations; (c) Gabor filter bank withscales and orientations; responding to a nonzer; is a support vector of the optimal
hyperplane.
First, each subimage is scaled to a fixed size&Df< 32. Kernel functions, which satisfy the Mercer’s condition, can

Then, itis divided into 9 overlappints x 16 subwindows. Each € expressed as a dot product in some space [19]. By using dif-
subimage consists of 36x 8 patches as shown in Figure 3(a)ferent kernelsSVMsimplement a variety of learning machines
patches 1,2,5,and 6 comprise the fiét< 16 subwindow, 2,3,6 (e.g., a sigmoidal kernel corresponds to a two-layer sigmoidal
and 7 the second, 5, 6, 9. and 10 the fourth, and so forth. The @agural network while a Gaussian kernel corresponds to a radial
bor filters are then applied on each subwindow separately. THSIS functionRBF) neural network). The Gaussian radial basis
motivation for extracting -possibly redundant - Gabor featur&§el, which is used in this study, is given by
from several overlapping subwindows is to compensate for the | 2 —a; ||?
error due to the subwindow extraction step (e.g. subimages con- F(w,w:) = exp(= 262 )
taining partially extracted objects or background informationur experiments with different kernels have shown that the

making feature extraction more robust. Gaussian kernel outperforms the others in the context of our ap-
The magnitudes of the Gabor filter responses are collecigiitation.

from each subwindow and represented by three moments: the

meany;;, the standard deviation;;, and the skewness;; V. VEHICLE DETECTION USING OPTIMIZEDGABOR FILTERS
wherei corresponds to théth filter andj corresponds to the In this section, we consider the problem of vehicle detec-
j-th subwindow. Using moments implies that only the statision from gray-scale images. The first step in vehicle detec-
tical properties of a group of pixels is taken into consideratiotipn is usually hypothesizing the vehicle locations in an image.

(16)



Then, verification is applied to test the hypotheses. Both steps
are equally important and challenging. Approaches to generate
the hypothetical locations of vehicles in images include using

motion, symmetry, shadows, and vertical/horizontal edges. Our
emphasis here is on improving the performance of the verifica-
tion step by optimizing the Gabor filters.

A. Vehicle Data

The images used in our experiments were collected in Dear-
born, Michigan in two different sessions, one in the Summer

The training set contains subimages of rear vehicle views and
cle accurately. Moreover, we believe that some variability in the
Results
procedure. Specifically, we sample the training dataset ran\We have performed a number of experiments and compar-
mer 2001 data set. (see Table I). Then, we tested a Gabor filter bank Wititales
were as follows: population siz&00, number of generations:

non-vehicles, which were extracted manually from the Fall 2001
DEERE
extraction of the subimages can actually improve performance.
domly three times$et] Set2and Set3 by keeping 280 of the isons to demonstrate the proposed Gabor filter optimization ap-
and 6 orientations which yielded features vectors of 8.
Vl. EXPERIMENTAL RESULTS 100, crossover rated.66 and mutation rate0.03. In all the ex-

data set. A total of 1051 vehicle and 1051 non-vehicle subim-
NEERR
Each subimage in the training and test sets was scaled to a size
vehicle subimages and 280 of the non-vehicle subimages pspach in the context of vehicle detection. First, a Gabor filter
The error rate in this case was 9.09% which is slightly better
For comparison purposes, we also report the detection erpariments, the GA converged in less than 100 generations. Each

of 2001 and one in the Fall of 2001. To ensure a good vari-
ages were extracted manually(see Figure 4). In [21], the subim-
ages were aligned by warping the bumpers to approximately the
of 32 x 32 and preprocessed to account for different Iighting Fig. 6. 15 Gabor filters for the vehicle detection problem with= 2
conditions and contrast using the method suggested in [22].
training. 300 subimages (150 vehicle subimages and 150 ngank with3 scales and orientations was tested using SVMs for
vehicle subimages) are used for validation during the filter opgilassification. Using the feature extraction method described in
S— _ o
" E B +i .1 than before.
N - -9 wy ' Second, we used the EGFO approach to customize a group of
filters, up to24, for the vehicle detection problem. We limited
rates using two different Gabor filter banks without optimizgparameter inb = {0, W, o,,, 0, } was encoded usingbits. The
tion: one with4 scales and orientations Fig.3(b), the othertotal length of the chromosome wa&4(4 x 4 x 24), which cor-

ety of data in each session, the images were captured at dif- - . . -
same position. However we have not attempted to align the data
To evaluate the performance of the proposed approach, me
mization design. For testing, we used a fixed set of 231 vehi&éction IV-A, the size of each Gabor feature vector w@sin
Fig. 4. Examples of vehicle and nonvehicle images used for training. the number of filters t84 to make the comparison with the tradi-
with 3 scales and orientations Fig.3(c). These filter banks wereesponds to a huge search space @¥?). The threshold factor

ferent times of different days and on five different highwayé:.ig- 5. 19 optimized Gabor filters for the vehicle detection problem with= 3

since alignment requires detecting certain features on the vehi-

error ratesER) are recorded using a three-fold cross-validation

and non-vehicle subimages which were extracted from the Sufis experiment. The average error rate was found to be 10.38%,
tional filter bank design methods fair. The GA parameters used

designed by following the method proposed in [9]. K for the clustering was set ®in our experiments. The aver-



age error rate in this case was 6.36%, and the average numbeoaf parameter fron® = {6, W, 0., 0,}, and has been divided
customized filters wa$9.3. The optimizedl9 filters generated into 10 bins to compute the histogram. Theaxis corresponds
for dataSet3are shown in Fig.5. The individual results from theéo the average number of Gabor filters whose parameters are
three data sets are shown in Table I. Fig. 7(a) shows the averagthin a given interval. For example, Fig. 8.a shows the aver-
detection error rates for all methods. age distribution of), where the width of each bin i°, given

We also ran the filter optimization method without clustering € [0 180°). The bar associated with the first bin indicates
on the same data sets, using the same parameters. The avdtegéhere werd filters (average number over the three training
error rate was 6.19%, slightly better than that yielded by thtgata sets) in the optimized Gabor filter set, whose orientation pa-
method with clustering. Obviously, clustering has the advantagemeter satisfies? € [0 18°). The only difference for the rest
of producing a more compact set of filters (i.9,v.s. 24). parameters is the bin size, for instance, ttteliin in Fig. 8(b)

To get an idea regarding the effectiveness of the clusteriogrresponds to the intervfli — 1) « STEPy i« STE Py ),
subcomponent, we performed more experiments using differevttereSTE Py = (Wiae — Winin/10).
threshold settings for the factér = 2. The average error rate

was 8.23%, and the average number of customized filter was 4
. . . 35 45
14.7. The15 filters generated for dataet3are shown in Fig.6. s .
25 u s e |
TABLE | 2 28 —
15 — 2
VEHICLE DETECTION ERROR RATES USING DIFFERENT FILTERSTHE 1 H 1'i %:ﬂﬁ
05
NUMBERS IN THE PARENTHESES INDICATE THE NUMBER OF OPTIMIZED o} 1, O-Z‘
18 36 54 72 90 108 126 144 162 180 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 0.5
FILTERS
() (b)
3x5 4%x6 EGFO

Data Setl| 10.82%| 9.09% | 6.93%(21)
Data Set2| 11.69%| 11.26%| 7.79%(18)
Data Set3| 8.66% | 6.93% | 4.33%(19)
Average | 10.38%| 9.09% | 6.36%(19.3)

o6 =N @ & a o

f —
'
%_ il

1.04 1.28 1.52 1.76 2 224 2.48 2.72 2.96 3.2 1.04 1.28 1.52 1.76 2 224 2.48 2.72 2.96 3.2

(© (d)

0.12; Fig. 8. Distributions of the Gabor filter parameters for vehicle Detectiorg;(a)
0.117] LYW (c)ox; (d) oy
0.08 |
0.06 1 Several interesting comments can be made based on the ex-
perimental results presented in Section VI, the filters shown in
0.04 8 Fig. 5, and the parameter distributions shown in Fig. 8:
0.021 | « The Gabor filters customized using the proposed approach
0 yielded better results in vehicle detection. The most important
3x5 4x6 NC K=3 K=2 reason for this improvement is probably that the Gabor filters

were designed specifically for the pattern classification prob-

Fig. 7. Vehicle detection error rat8.x 5: the Gabor filter bank with 3 scales | t hand (i th d thod i licati
and 5 orientations4 x 6: 4 scales and 6 orientations; NC: EGFO methodems at hand (i.e., the proposed method is more application-

without clustering; K=3: EGFO method with K=3; and K=2: EGFO withSpecific than existing filter design methods).
K=2. « The orientation parameters of the filters optimized by the GA

were tuned to appreciate the implicit information available in ve-
hicle data. Specifically, a Gabor filter is essentially a bar, edge,
or grating detector, and will respond most strongly if the filter's
To get a better idea about the filter parameters chosen by thigentation is consistent with the orientation of specific features
EGFO approach, we computed a histogram for each of the faan image (i.e., bar, edge, etc.). We can see that horizontal,
rameters(Fig. 8), showing the average distribution of its valués°®, and135° structures appear more often in a rear view of a
over the three data sets. In each graph,atfexis corresponds vehicle image, which explains why most of the filter orientations

VIl. DISCUSSION



chosen were close 9, 45°, and135° (see Fig. 8(a)). REFERENCES
« The radial frequency parametefd’§ of the filters found by [1] J. Daugman, “Complete discrete 2-d gabor transforms by neural network
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