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Abstract— Due to the availability of easy-to-use and powerful 

image editing tools, the authentication of digital images cannot be 

taken for granted and it gives rise to non-intrusive forgery 

detection problem because all imaging devices do not embed 

watermark. We investigated the detection of copy-move and 

splicing, the two harmful types of image forgery, using textural 

properties of images. Tampering distorts the texture micro-

patterns in an image and texture descriptors can be employed to 

detect tampering. We did comparative study to examine the 

effect of two state-of-the-art best texture descriptors: Multiscale 

Local Binary Pattern (Multi-LBP) and Multiscale Weber Law 

Descriptor (Multi-WLD). Multiscale texture descriptors 

extracted from the chrominance components of an image are 

passed to Support Vector Machine (SVM) to identify it as 

authentic or forged. The performance comparison reveals that 

Multi-WLD performs better than Multi-LBP in detecting copy-

move and splicing forgeries.  Multi-WLD also outperforms state-

of-the-art passive forgery detection techniques.  

Keywords - Image forgery detection; Copy-move forgery; 

Splicing forgery; Weber local descriptor; Local binary pattern; 

Multiscale methods 

I.  INTRODUCTION  

Nowadays, we are living in a technically advanced world, 
where capturing pictorial information of any event in the form 
of digital images has become very simple. Currently, digital 
images play significant role in our everyday life, where they 
are being used as means for capturing pictorial information and 
are being employed in various domains such as medical 
diagnosis, daily newspapers, magazines, and as an evidence at 
court or for insurance claims [1]. Because of the widespread 
applications of digital images, very powerful and easy-to-use 
image editing tools like Photoshop are available. Using these 
tools even a novice can alter the digital contents of a digital 
image without leaving any visible traces, which can be noticed 
by human eyes. The digital contents are often altered with 
illicit designs in mind by hiding or adding important 
information to an image. Therefore, the authenticity of digital 
images cannot be taken for granted, it needs verification and is 
an object for research. Copy-move forgery (CMF) is the most 
common type of image forgery; in this case one region is 
copied from one place and pasted to another place of the same 
image in order to conceal important information. Sometimes, 
the copied region is modified by pre-processing operations like 
scaling, rotation, adding noise, etc. to make it matching with 

the surrounding region so that the tempering is not visible. In 
another similar kind of forgery, a part is copied from one image 
and is pasted to a different image. This type of forgery is called 
image splicing. 

Authenticating digital images is a very serious issue and so 
far the researchers developed many methods, which can mainly 
be classified into (1) intrusive (active) and (2) non-intrusive 
(blind or passive) techniques [2]. Further, intrusive methods 
can be divided into two classes based on (1) embedding a 
watermark and (2) incorporating digital signature in an image. 
In each of these techniques, a piece of information is integrated 
into digital images as an aid for authenticating digital contents 
and security rights. Once the digital contents of an image are 
changed, the incorporated information is also modified. The 
authenticity of an image is validated by ensuring that the 
embedded information is unaltered. Though these methods are 
robust, their domain of application is restricted because all 
digital cameras are not equipped with the feature of embedding 
digital signature. In addition, these methods need pre-
processing for creating labeled images. These limitations and 
constraints of active methods motivated the research to propose 
non-intrusive methods for authenticating digital images. This 
class of methods do not take into consideration any kind of 
embedded information (such as watermarks or signatures) to 
validate the authenticity of a digital image. Instead, these 
methods draw their conclusions about the originality of the 
digital content of images using its structural changes, which 
take place due to tempering. 

One kind of structural changes that takes place in the digital 
content due to tampering is the distortion in textural 
microstructures. Texture descriptors can be employed to 
encode this change [3]. Multi-WLD and multi-LBP are two 
state-of-the-art texture descriptors that are being used for 
texture description in various applications. In this paper, we 
present the findings of our comparative study of multi-WLD 
and multi-LBP descriptors for non-intrusive image forgery 
detection. The forgery can be either copy-move or spliced. 
Multi-WLD and multi-LBP features are extracted from the 
chrominance components of a color image. Feature subset 
selection is applied to reduce the dimension of the feature 
space and to select the most discriminatory features. SVM is 
used to identify whether an image is authentic or forged. We 
performed experiments on CASIA TIDE V1.0 dataset, which is 
a public domain benchmark database for image forgery 
detection.  The performance comparison shows that multi-
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Fig. 1. A block diagram of the forgery detection System. 

WLD achieves high detection rate for image forgery than 
multi-LBP.  

The overall organization of the paper is as follows. Section 
II presents an overview of some related methods while Section 
III discusses the details of the image forgery detection 
technique. The experimental results with discussion have been 
given in Section IV and finally, Section V concludes the paper. 

II. REALATED WORK 

Non-intrusive image forgery detection research is focused 

on developing technologies to decide about the suspicious 

image if it is authentic or tampered. This research area 

emerged during the past few years and many techniques for 

digital image forgery detection have been introduced.  

Huang et al. [4] proposed an image forgery detection 

technique for CMF using improved DCT. In this method, first 

an image is partitioned into square blocks, and then DCT is 

calculated. Later lexicographical order is used to sort the DCT 

coefficients and different blocks are compared using the sorted 

DCT coefficients. This technique is effective against additive 

Gaussian noise, JPEG compression and blurring distortion. 

Another method proposed by Cao et al. [5] is also based on 

improved DCT for locating the duplicated parts of a digital 

image. This method uses circular blocks for computing the 

DCT coefficients.  

Muhammad et al. [6] introduced an image forgery 

detection method for CMF using noise pattern. In this method, 

first input image is denoised and then the denoised image is 

subtracted from the input image to estimate the noise pattern. 

The image is segmented and the noise histograms of different 

segments are used to detect the forged regions. The forgery 

detection method by Peng et al. [7] exploited sensor pattern 

noise. They used four statistical features (entropy, variance, 

average energy gradient and signal-to-noise ratio, and) of the 

noise for forgery detection.  

 He et al. [8] introduced a copy-move forgery detection 

method that relies on approximate run length (ARL). This 

method first computes edge-gradient array and then ARL 

along edge-gradient orientations. The forgery detection 

method proposed by Zhao et al. [9] uses chrominance 

components and RLRN (run-length run-number). In this 

method, first the transformation is applied to convert RGB 

image into YCbCr color system. RLRN is then employed for 

extracting features from chrominance components. SVM is 

used to identify whether the image is authentic or tampered. 

This method performs better on JPEG images than on TIFF 

images.  

Muhammad et al. [10] used undecimated wavelet 

transform (UWT) for their image forgery detection method. 

Coefficients of low-frequency and high-frequency sub-bands 



from UWT decompositions of overlapping blocks are used to 

compare blocks. This technique is robust against rotation and 

scaling (upto certain level) and JPEG compression.  

Scale invariant feature transform (SIFT) was also 

employed for image forgery detection [11, 12, 13]. The 

methods based on SIFT are robust against scaling and rotation 

post-processing.  

A splicing detection method was proposed by Shi et al. 

[14]. This method employs 1D and 2D statistical features and 

transition probability features determined from Markov chain 

computed in DCT domain. This method achieved an accuracy 

of 84.86% on CASIA v2.0 database [15]. Later, this method 

was improved by He et al. [16]; they combined transition 

probability features computed in DWT and DCT domains. 

Using SVM with recursive feature elimination (RFE), this 

method achieved an accuracy of 89.76% on CASIA v2.0 

database. Two good surveys can be found in [2, 17]. 

Many non-intrusive forgery detection techniques have 

been introduced, but still the challenge is to develop more 

robust fully automatic methods to reduce false-positive rate.    

III. FORGERY DETECTION SYSTEM 

The forgery detection system is shown in the block diagram of 
Figure 1. There are two phases for the development of the 
system: training phase and testing phase. In the testing phase 
the system is modeled using training data and then it is tested 
using test data. The system involves 4 main components: 
preprocessing, feature extraction, feature subset selection and 
classification. In the following paragraphs, we give the detail of 
each of these components. 

A. Convertiom from RGB to YCbCr system  

Image tampering is done generally in RGB space and an 
attempt is made to hide the traces of forgery. For detecting 
copy-move or splicing forgery, the chrominance spaces (CSs) 

seem to be more effective. As such, first a digital image is 
transformed from RGB system to YCbCr system using the 
following transformation: 

 Y  =    0.299 R + 0.587 G + 0.114 B      

 Cr =    0.701 R -  0.587 G  - 0.114 B      

 Cb = - 0.299 R -  0.587 G + 0.886 B.   

A digital image in RGB space and its corresponding YCbCr 
components are shown in Figure 2. 

While tampering, the traces of forgery are made invisible. 
The human visual system is  more sensitive to luminance 
component than chrominance components. It follows that the 
traces of forgery are left in chrominance components. As such, 
the chrominance components are suitable for extracting 
features that are sensitive to tampering traces [9].  

B. Feature Extraction 

To model the change that occurs in a digital image due to 
forgery is an essential step of a forgery detection system. Our 
assumption about this change is that it is distortion in texture 
micro-patterns and we use texture descriptors to model it. We 
employed two stat-of-art texture descriptors: multi-WLD and 
multi-LBP. In the following subsections, we give an overview 
of these descriptors.  

1) Multiscale WLD (Multi-WLD) 

WLD is one of the robust local texture features and is 

based on Weber's law [18]. It has many useful characteristics 

like edge detection and robustness to noise and illumination 

change.  

WLD descriptor is determined using two important 

components: (1) differential excitation (DE) and (2) gradient 

orientation (GO). DE quantifies the relative intensity variation 

of each pixel using Weber’s Law. The DE(pc) for a pixel pc  is 

calculated using the following equation:  
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where pi is the ith pixel in the neighbourhood of the pixel pc 

and n is the number of its neighbouring pixels. Here, arctan 

function is used to control too quick changes which might be 

due to noise. For the whole image, DE is claculetd using the 

filters f00 and f01 shown in Figure 3. 

GO component of WLD is representated by Φ. For pixel 

pc, Φ (pc) is calculated using the following equation: 
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where p5 and p1 are upper and lower neighbours of pc and p7 

and p3 are left and right neighbours of pc. It can be calculted 

using the filters f11 and f10 shown in Figure 3. The range of Φ 

is [-π/2, π/2] and it is mapped to Φ’ so that its range is [0, 2π]. 

Then using quantization, it is mapped to T dominant 

orientations. 

Fig. 2. RGB color image with its chrominance 

components. 

B) Luminance component (Y) 

 

     A) RGB color tampered image 

C) Chrominance component (Cb) 

 

D) Chrominance component (Cr) 
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Fig. 4. Computing multi-WLD Histograms. 

 After computing DE and GO components, WLD 

histogram is claculated by binning the DE values according to 

dominant orientations. This histogram is refered to as WLD 

descriptor and it involves three parameters (T, M, S), where  

T, M, and S are, respectively, the numbers of dominant 

directions, differential excitation segments, and bins in sub-

histogram segments,  the detail can be found in [18].  

 

 

 

 

 
 

 

Simple WLD descriptor uses 3x3 square neighbourhood 

of the central pixel and cannot capture texture micro-structures 

existing with different scales. To encode the texure 

microstructures with different granularities, multiscale WLD 

descriptor is computed with symmetric square neighbourhoods 

(P, R) having P neighboring pixels and side (scale) of R 

pixels. For fogery detection, we employed three 

neighbourhoods with P = 8, 16, 24 and R = 1, 2, 3. The multi-

WLD histogram is computed by fusing (using concatenation) 

the histograms calculated with these three neighborhoods, as 

shown in Figure 4. 

2) Multiscale LBP (Multi-LBP) 

LBP is a widely used local texture feature. It has very useful 

propetries like low computational cost and invarience to 

monotonic illumination changes and has been successfully 

applied for various applications. The LBP of a pixel  pc  with 

circular neighbourhood (P, R), where P is the number of 

neighbour pixels on the circle of radius R around pc, is 

represented by LBPP,R and claculated using the equation [19]: 
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After computing LBP codes of all pixels, LBP histogram is 

calculated with 2P bins. This histogram is referred to as LBP 

descriptor and used to represent an image.  

Like multi-WLD, for capturing the texture micro-patterns 

of different granularities, multi-LBP descriptor is computed 

using three neighborhoods: (8, 1), (12, 1.5), (16, 2), for detail 

see Figure 5. 

There are three variants of LBP operator: (1) rotation 

invariant LBP denoted by ir

RPLBP ,
, (2) uniform LBP denoted by 

2

,

u

RPLBP , and (3) rotation invariant and uniform LBP denoted by 

2

,

ur

RP
iLBP [19].  

The rotation invariant LBP ir

RPLBP ,
 is calculated using the 

following equation [19]:  

 , ,min ( , ) 0,1,..., 1ir

P R P RLBP RBS LBP i i P    

where RBS(x, i) is a circular right bit shift operator that 

circularly right shifts i times bits of P bit number x. In case of P 

= 8, the number of distinct rotation invariant LBP codes is 36, 

and so ir

RPLBP ,
descriptor is a histogram with 36 bins. 

An LBP is termed as uniform LBP if there are at most two 

bitwise transitions from 0 to 1 or 1 to 0 in the binary code [19], 

e.g. 11111111, 11111000 and 00111100 are uniform LBP 

codes. In case of 2

,

u

RPLBP , histogram is calculated by putting 

distinct uniform LBP codes into corresponding bins and all 

non-uniform LBP codes in the same bin. When P = 8, the 

number of distinct uniform LBP codes is 58 and so 
2

,

u

RPLBP descriptor is a histogram with 59 bins.  

In case of 2

,

ur

RP
iLBP , the histogram has only P+2 bins. For 

each variant of LBP, multi-LBP is computed to examine its 

effect on image forgery detection. 

C. Feature Subset Selection 
The presence of redundant features not only increases the 

computational overhead but also reduces the accuracy by 
misleading the classifier. For reducing the dimension of the 
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Fig. 3. Filters used in simple WLD calculation. 

 



Fig. 8. The performance results for fergry 

detection with multi-WLD and Cb, Cr & FLF. 

 

Fig. 6. ROC curves for splicing detection with multi-

WLD. 
Fig. 7. ROC curves for copy-move forgery detection 

with multi-WLD. 

feature space in each case, we employ Local Leaning Based 
(LLB) feature subset selection technique [20]. 

D. Classification 

Image forgery detection is a two-class problem and in most 
of the applications, SVM, a two class classifier, has been 
shown to perform better than other classifiers [23]. As such, we 
employ SVM. Using the training data, SVM calculates the 
optimal hyper-plane that has maximum margin and ensures 
better generalization. Margin is defined as the sum of distances 
of the closest data points belonging the two classes to the 
optimal hyper-plane. SVM is basically a linear classifier but on 
the other hand most of the two-class problems are non-linear. 
To tackle this situation, kernel trick is used; employing a kernel 
function, the original space is mapped to a higher dimensional 
space where the problem becomes linear. Different kernel 
functions are in common use for different classification 
problems. For our experiments, we employed polynomial 
kernel. 

IV. RESULTS AND DISCUSSION  

Here, first we give a brief description of the database that was 

used for performance evaluation and then the detail of 

evaluation policy. Finally results are presented and discussed. 

A. Dataset 

For evaluation, we used CASIA TIDE V1.0 dataset [15], 
which is a public domain benchmark database developed for 
research on image forgery detection, in particular copy-move 
and splicing forgery detection, and was released in January 
2010. This database contains two datasets: (1) 800 authentic 
images and (2) 921 tampered images. Each image in the 
database is in JPEG format and its resolution is 384×256 
pixels. There are eight categories of authentic images. For 
creating tampered images, authentic images from each category 
were arbitrarily selected and cut-and-paste process was 
employed for forgery. Also geometric transformations like 
scaling, rotation etc. were used to modify copied regions in 
some cases before pasting. Adobe Photoshop was employed for 
generating tampered images. Out of 921 forged images, 459 
are forged with copy-move forgery and the rest are spliced. 

B. Evaluation Policy  

For performance evaluation, we employed 10-fold cross 

validation. LIBSVM was utilized for SVM implementation 

[22]. SVM with polynomial kernel has four parameters: C, g, 

cf and r, where last three parameters are due to polynomial 

kernel. Grid search was used to find the optimal parameter 

values, which are: C = 2-3, g = 2-3, cf = 10 and r = 2.  

We employed two widely used performance measures: 

accuracy and area under ROC curve (AUC). Accuracy (Acc) 

is the percent ratio of correctly classified images to the total 

number of images and is calculated using the following 

equation.  

Acc = 100(TP + TN) / (TP + TN + FN + FP) 

where TP, FN, FP and TN are, respectively, the numbers of 

true positive, false negatives, false poistives and true 

negatives.  

The AUC is a better measurement and it takes value 

between 0 and 1. Standard deviation, which is represented by 

the symbol std, demonstrates how much variation exists from 

the average (mean, or expected value).  



We tested the forgery detection system with and without 

LLB feature subset selection technique and compared the 

results. We found that LLB not only reduced the number of 

features but also improved the detection accuracy. We 

reported here only the results with LLB feature subset 

selection.  

We considered three experiment cases: splicing detection, 

copy-move detection and full database i.e. forgery detection 

of splicing and copy-move together. 

We tested the performance of features extracted from Cb 

and Cr components separately and also by fusing the features 

extracted from these components i.e. with feature level fusion 

(FLF).  

C. Detection Performance with Multi-WLD 

In this section, we present the forgery detection results for 
splicing, copy-move and combined splicing + copy-move 
forgeries using multi-WLD.  

Multi-WLD has three parameters (T, M, S). Based on our 
experiments, we found that the parameter values (T = 4, M = 4, 
S = 20) gives the best result, so we used these values for all 
experiments whose results are reported in this section. 

1) Results on Splicing Detection 

The detection results with individual chrominance component 

and feature level fusion are shown in Tabel I. The 

chrominance component Cr and FLF gave better accuracy 

(94.29%) than Cb. Almost similar, results are obtained in 

terms of AUC; Cr resulted in AUC = 0.94 ± 0.02 which is 

slighly better than FLF but signifcantly better than Cb.  Figure 

6 shows ROC curves coresponding to chrominance 

components and FLF for splicing detection. 

Table I. Detection performance for splicing detection with 

multi-WLD. 

Channel Acc (%) ± std AUC ± std # Features 

Cr 94.29 ± 2.50 0.94 ± 0.02 473 

Cb 90.60 ± 3.82 0.91 ± 0.04 467 

FLF 94.29 ± 1.84  0.938 ± 0.024 1330 

Table II. Detection performance for copy-move forgery 

detection with multi-WLD. 

Channel Acc(%) ± std AUC ± std # Features 

Cr 90.83 ± 2.09 0.89 ± 0.03 411 

Cb 87.22 ± 3.19 0.85 ± 0.04 432 

FLF 90.97 ± 2.72 0.90 ± 0.05 455 

 

2) Results on Copy-move Forgery Detection 

The detection performance results for copy-move forgery with 

individual chrominance component and their fusion are shown 

in Table II. FLF gives the best accuracy of 90.97% and AUC 

of 0.90. Figure 7 shows ROC curves for copy-move forgery 

detection with two chriminance compnents and FLF. 

3) Results on Full Dataset (i.e. Splicing +Copy-move) 

For this experiment case, we combined the images forged with 

splicing and copy-move into one dataset to test the effect of 

the forgery detection system on splicign and copy-move 

together. Figure 8 gives the detection performance results for 

combined dataset in comparsion with individual forgery type. 

Figure 9 shows the correspong ROC curves. For combined 

dataset, the best accuracy (94.19%) is obtained with FLF. The 

performance with Cr has been decreased, which is probably 

Fig. 9. ROC Curves for different forgery types with 

multi-WLD and FLF. 

 

Fig. 11. ROC curves with multi-LBP  and Cr compnent 
for copy-move forgery detection. 

 

 

Fig. 10. ROC curves for splicing detection with multi-

LBP and Cr component. 



due to the presence of copy-move forged images in the 

combined dataset.   

D.  Detection Performance with Multi-LBP 

In this subsection, we present the detection results with multi-

LBP. We tested the forgery detection system with three 

variants (LBP
ri, LBP

u2and LBP
riu2) 

of LBP to examine their 

effect on forgery detection performance. First we give the 

results on individual forgery type and then on combined 

dataset consisting of both splicing and copy-move forged 

images. 

1) Results on Splicing Detection  

The detection performance results for splicing detection using 

multi-LBP with three varients of LBP and Cr are shown in 

Table III while Table IV shows the results with chromonance 

componet Cb. The results indicate that almost similar and 

better detection performance is obtained with both LBP
u2

 and 

LBP
riu2

 and Cr crominance compnent, but LBP
u2 

shows more 

stable behavior because std in this case is smaller for accuracy 

as well as AUC. Fig.10. demonstrates corresponding ROC 

curves.   

Table III. Detection results on splicing detection with 

multi-LBP and Cr chrominance component. 

LBP 

variants  
Acc(%) ± std AUC ± std #Features 

LBP
ri

 88.21 ± 3.70 0.89 ± 0.05 76 

LBP
u2

 90.36 ± 2.94 0.90 ± 0.04 256 

LBP
riu2

 90.48 ± 4.20 0.90 ± 0.05 37 

Table IV. Detection results on splicing detection with 

multi-LBP and Cb chrominance component. 

LBP 

variants  
Acc(%) ± std AUC ± std #Features 

LBP
ri

 86.55 ± 3.60  0.86 ± 0.04 117 

LBP
u2

 86.55 ± 2.81  0.86 ± 0.04 115 

LBP
riu2

 86.67 ± 3.96 0.88 ± 0.05 39 

 

2) Results on Copy-move Forgery Detection 

The results for copy-move forgery detection with Cb and Cr 

are shown in Tables V and VI, respectively. We observe that 

in this case both Cr and Cb components give almost similar 

results. The results indicate that LBP
ri 

varaint performs better 

for copy-move forgery than LBP
u2 

and LBP
riu2

. This fact is 

also depicted by ROC curves shown in Figure 11. 

Table V. Detection performance results with multi-LBP 

and chrominance component Cr for copy-move forgery. 

LBP 

variants  
Acc(%) ± std AUC ± std # Features 

LBP
ri

 85.56 ± 4.91 0.83 ± 0.06 1203 

LBP
u2

 85.28 ± 3.48 0.81 ±0.04 114 

LBP
riu2

 75.14 ± 4.65 0.71 ± 0.07 33 

Table VI. Detection performance results with multi-LBP 

and chrominance component Cb for copy-move forgery. 

LBP 

variants  
Acc(%) ± std AUC ± std # Features 

LBP
ri

 85.83 ± 5.31 0.83 ± 0.08 3842 

LBP
u2

 80.69 ± 3.49 0.78 ± 0.06 147 

LBP
riu2

 72.64 ± 3.59 0.66 ± 0.05 34 

Table VII. Detection performance results with multi-LBP 
and chrominance components Cr and Cb for 

combined dataset. 

LBP 

variants 

Chrom. 

Comp. 
Acc(%) ± std AUC ± std 

# 

Features 

LBPri 
Cr 85.41 ± 3.02 0.85 ± 0.03 4495 

Cb 84.30 ± 2.78 0.85 ± 0.04 4414 

LBPu2 
Cr 85.93 ± 4.95 0.86 ± 0.04 248 

Cb 85.52 ± 2.91 0.86 ± 0.04 274 

LBPriu2 
Cr 80.70 ± 3.73 0.81 ± 0.04 38 

Cb 79.48 ± 2.26 0.79  0.03 34 

 

3) Results on full dataset (Splicing+Copy-move) 

Similarly to multi-WLD, we performed expariemnts for the 

combined dataset. The detection results with the three variants 

of LBP are shown in Table VII. The results show that for 

combined dataset, LBP
u2 

performs better than LBP
ri 

and  

LBP
riu2

 and it is with both Cr and Cb components.  

E. Disscusion  

The results shown in Figure 12 for combined dataset and the 

results presented in the previous sections indicate that multi-

WLD performs better than multi-LBP in general. Out of three 

variants of LBP, LBPu2 results in better detection performance 

for both splicing and copy-move forgeries than other varients, 

LBPriu2 results in better accruacy for splicing detection but it is 

not better than LBPu2, on the other hand LBPri gives better 

accruacy for copy-move forgery detection but it is not better 

than LBPu2. In general both multi-WLD and multi-LBP give 

better perfromance for splicing detection than copy-move 

detection. It is due to the reason that in copy-move forgery the 

source and terget regions belong to the same image and so the 

texture microstructures are similar and the distortion in 

microstructures forgery is less pronoucned as compared to 

Fig. 12. Comparsion between the the dtection 

performance results with multi-WLD and 

multi-LBP on combined dataset. 



splicing where the source and terget regions are from different 

images.  

In general chrominance component Cr gives better 

performance than Cb with both multi-WLD and multi-LBP. In 

case of multi-WLD, Cr and FLF give alsmost similar results 

for both splicing and copy-move forgries, but for combined 

dataset FLF outforms Cr. In case of multi-LBP, we did not test 

FLF because the result without fusion is much less than that 

with multi-WLD and there is little chnance that the result will 

be better using fusion than that with multi-WLD.      

F. Comparison with other methods 

The forgery detection methods based on multi-WLD and 

multi-LBP have been compared with a similar method [21] 

that also uses chrominance channels. We implemented the 

method described in [21] and evaluated it on CASIA v1.0 

dataset using Cr channel. Table VIII gives the comparison 

results in both copy-move and splicing forgeries detection. 

Not only Multi-WLD based method but also multi-LBP based 

method outperforms the method in [21] on CASIA TIDE v1.0 

TABLE VIII. Comparison of Accuracies between the 

method based on Multi-WLD and the method in [21]. 

Type of 

forgery 
Multi-WLD Multi-LBP 

Method in 

[21] 

Spliced 94.29% 90.48% 79.90% 

Copy-Move 90.97% 85.83%  76.30% 

V. CONCLUSION 

Assuming that image forgery distorts the texture micro-

patterns in a digital image, the forgery detection problem has 

been addressed using texture descriptors. We thoroughly 

investigated two stat-of-the-art texture descriptors (multi-

WLD and multi-LBP) for forgery detection. Multi-WLD 

results in better performance than multi-LBP. The best results 

achieved by multi-WLD based method are 94.29% for splicing 

detection, 90.97% for copy-move forgery detection and 

94.19% for combined dataset. Both multi-WLD and multi-

LBP perform better for splicing detection than copy-move 

forgery detection, which is due to the reason that in copy-

move forgery the texture micro-pattern are similar in the 

copied and pasted regions and the distortion is less noticeable. 

This indicates that more powerful and sensitive texture 

descriptors are needed to improve the detection rate for copy-

move forgery.   
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