
FLAD-Feature Based Locally Adaptive Diffusion Based Image Denoising 
 

Ajay K. Mandava, Emma E. Regentova, George Bebis* 
Department of Electrical and Computer Engineering 
University of Nevada, Las Vegas, NV 89154, USA 
*Department of Computer Science & Engineering 

University of Nevada, Reno, NV 89557, USA 
Email: mandavaa@unlv.nevada.edu, emma.regentova@unlv.edu, 

 bebis@cse.unr.edu 
 

 
Abstract- A novel patch based adaptive diffusion 
method is presented for image denoising. This is done 
with the purpose of locally and feature adaptive 
diffusion and for attaining patch-wise best peak signal 
to noise ratio. Our framework uses over-segmentation 
method to segment the image in to sensible regions and 
then diffusion of each segment/region to obtain the 
near-optimal solution and iterates to a lesser-
segmented region/patches until a best PSNR value is 
attained. In performing diffusion the method uses the 
inverse difference moment (IDM) which is a robust 
feature in determining the amount of local intensity 
variation in the presence of noise. The experiments 
show that the proposed method delivers high denoising 
performance, both in terms of objective metric and the 
visual quality.  
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1. Introduction 

Nonlinear anisotropic diffusion has drawn considerable 
attention over the past decade and has experienced 
significant developments as it gracefully diffuses the 
noise in the intra-region while inhibiting inter-region 
smoothing. Introduced first by Perona and Malik (PM 
diffusion) [1] the diffusion process is mathematically 
described by the following equation: 
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where I(x,y,t) is the image, t is the iteration step and 
c(x,y,t) is the diffusion function monotonically decreasing 
of the magnitude of the image gradient. Two diffusivity 
functions proposed are: 
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where λ is referred to as a diffusion constant. Depending 
on the choice of the diffusivity function, equation (1) 
covers a variety of filters. The discrete diffusion structure 
is translated into the following form: 
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(4), 

Subscripts N, S, E and W (North, South, East and West) 
describe the direction of the local gradient, and the local 
gradient is calculated using nearest-neighbor differences 
as 

jijijiN III ,,1, −=∇ − ;  jijijiS III ,,1, −=∇ +  
jijijiE III ,1,, −=∇ + ; jijijiW III ,1,, −=∇ −                    

(5). 
 
Generally, the effectiveness of the anisotropic diffusion is 
determined by (a) the efficiency of the edge detection 
operator to distinguish between noise and edges; (b) the 
accuracy of an “edge-stopping” function to promote or 
inhibit diffusion; and (c) the adaptability of a convergence 
condition to terminate the diffusion process automatically.  
The model in [1] has several practical and theoretical 
limits. It needs a reliable estimate of image gradients 
because with the increase of the noise level, the 
effectiveness of the gradient calculation degrades and 
deteriorates the performance of the method. Secondly, the 
equal number of iterations in the diffusion of all the pixels 
in the image leads to blurring of textures and fine edges.  
    Several authors have independently proposed 
modifications to the model to overcome the above 
problem. Catte et al. [2] used a smoothed gradient of the 
image, rather than the true gradient. The smoothing 
operator removes some of the noise which might have 
deceived the original PM filter. In this case, the scale 
parameter σ is fixed. In [3] authors have proposed the 
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inhomogeneous anisotropic diffusion which includes a 
separate multiscale edge detection part to control the 
diffusion.  
Yu et al. [4] proposed a method wherein the SUSAN edge 
detector is incorporated into the model. Noise 
insensitivity and structure preservation properties of 
SUSAN guides the diffusion process in an effective 
manner.  Li et al. [5] proposed a context adaptive 
anisotropic diffusion via weighted diffusivity function by 
jointly exploiting contextual information (i.e. calculation 
of gray level variance) and spatial gradient. Chao and Tsai 
[6] proposed a diffusion model which incorporates both 
the local gradient and the gray-level variance to preserve 
edges and fine details while effectively removing noise. 
When the level of noise is high; noisy pixels in the image 
generally involve larger magnitudes of gray level variance 
and gradients than those of actual edges and fine details. 
Thus, the method is becoming inefficient quite soon.  
Wang et al. [7] proposed a local variance controlled 
scheme wherein spatial gradient and contextual 
discontinuity of a pixel are jointly employed to control the 
evolution. However, a solution to estimating the 
contextual discontinuity leads to an exhaustive search 
procedure, which causes algorithm to be too 
computationally expensive. Zhang et al. [8] presented a 
Laplacian pyramid-based nonlinear diffusion (LPND) 
method where Laplacian pyramid was utilized as a 
multiscale analysis tool to decompose an image into 
subbands, and then anisotropic diffusion with different 
diffusion flux is used to suppress noise in each subband. 
LPND tries to introduce sparsity and multiresolution 
properties of multiscale analysis into anisotropic 
diffusion. Another approach to context-based diffusion 
was researched in [9], where we proposed SWCD 
method. The multi-scale stationary wavelet analysis of the 
local neighborhood across the scales provides the edge 
information partially free of noise and thus makes 
possible the tunable diffusion. As a result, and due to the 
shift invariance property of stationary wavelet transform 
the PSNR has been improved compared to Shih’s 
diffusion [10] which was performed on wavelet 
coefficients without consideration of the structural content 
of the local neighborhood. 
    State-of-the art denoising techniques all rely on 
patches, either for dictionary learning [11,12], 
collaborative denoising of blocks of similar patches [13] 
or for non-local sparse models [14]. Regularization with 
non-local patch-based weights has shown improvements 
on classical regularization involving only local 
neighborhoods [15, 16, 17]. The shape and size of patches 
should adapt to anisotropic behaviour of natural images 
[18, 19]. In spite of the high performance of the patch-
based denoising techniques they generally produce 
artifacts even at a comparatively moderate noise levels. In 
addition, the size of the patch has a significant impact on 
the PSNR even for the similar or identical contents. 
    All above considerations suggest an approach which 
incorporates adaptation to the image local structure within 

optimally sized patches. Unlike block-transform based 
methods such as BM3D [15] which perform with a pre-
determined optimum block size and clustering-based 
denoising methods such as KLLD [14] which uses a 
predetermined optimum number of classes, our method 
searches for an optimum patch size through iterative 
diffusion starting with a small patch size, that is a large 
number of patches and proceeds with a smaller number of 
patches, that is large patches until a best PSNR is attained 
and no further improvement is possible. To initialize the 
algorithm we use superpixel segmentation [20]. Each 
superpixel is diffused to the best PSNR, and then the 
process iterates on larger superpixels. In our pursuit of 
determining the local gradient and thus an amount of 
diffusion we use the inverse difference moment (IDM) 
feature [23]. We demonstrate that the feature is robust in 
determining the amount of local intensity variation in the 
presence of noise. Overall the diffusion process converges 
to PSNR levels known by the state-of-the-art methods 
with a minimum visible blocking/patching artifacts. The 
method is called feature based locally adaptive diffusion 
(FLAD) method.  
The rest of the paper is organized as follows:  Section 2 
provides a theoretical background and introduces the 
method and implementation details.  Section 3 presents 
results of the experiment; thereafter we conclude.  
 

2. Feature Based Locally Adaptive 
Diffusion (FLAD) 
 
2.1 Superpixel Segmentation 

As it was pointed out earlier in this paper, we need the 
image to be over-segmented first. For this purpose we use 
superpixel segmentation.  A single parameter of the 
method- k is a desired number of approximately equally-
sized superpixels. The procedure begins with an 
initialization step where k initial cluster centers Ci are 
sampled on a regular grid spaced S pixels apart. To 
produce roughly equally sized superpixels, the grid 

interval is k
NS = . The centers are moved to seed 

locations corresponding to the lowest gradient position in 
a 3x3 neighborhood, and thus avoid centering a superpixel 
on an edge. This reduces the chance of seeding a 
superpixel with a noisy pixel. Next, in the assignment 
step, each pixel i is associated with the nearest cluster 
center whose search region overlaps its location. A 
distance measure D, determines the nearest cluster center 
for each pixel. Since the expected spatial extent of a 
superpixel is a region of an approximate size SxS, the 
search for similar pixels is carried in a region of size 
2Sx2S around the superpixel center. Once each pixel has 
been associated to the nearest cluster center, an update 
step adjusts the cluster centers to be the mean vector of all 
the pixels belonging to the cluster. The L2 norm is used to 



compute a residual error E between center locations of the 
new and the previous clusters. The assignment and update 
steps can be repeated iteratively until convergence. 
Experimentally, twenty iterations are sufficient for most 
images, and therefore throughout the rest of the paper we 
use this value. 
 
2.2. Modified Diffusion  

Mentioned above the normalized inverse difference 
moment (IDM) feature is visualized in Fig.1. The feature 
captures texture details in both coarse and fine structures. 
IDM will get small contributions from homogenous 
region and larger values in non-homogenous regions. 
Ranging between 0 and 1; the feature being 0 has an 
indication of a pixel being a part of a homogenous 
neighborhood. The value being 1 indicates that the pixel 
is a part of texture or an object boundary.  
The diffusivity function of Eq.2 is modified to the 
following: 
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Given an MxN neighborhood containing G gray levels 

from 0 to G-1, let f(m,n) be the intensity at sample m, line 

n of the neighborhood. 
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For calculation we use  9x9 window centered at pixel(i,j). 
 

 
 
Fig.1 1st column: Gradient image for additive white 
Gaussian noise level σ =20, 40 for “Lena”; 2nd  column: 
Inverse difference moment for additive white Gaussian 
noise level σ =20, 40 
 
2.3 FLAD Algorithm 
 
Let us denote I - input image, k – number of regions, m 
– number of merging steps,  Var –intensity variance and 
n – number of diffusion steps.  The method performs 
according to the following steps: 
1. Initialize m=0, α = 1.1, λ =10. Segment image into 

k (k≠1) regions.  
2. Initialize n=0. Calculate PSNR for each region of 

initial partition, i.e., [PSNRk 
(0)]0. 

3. Iteration step: Diffuse image pixel Ii,j  using Eq.(4). 
4. For ∀ Ri : if  [PSNRk 

(n+1)]m > [ PSNRk 
(n)]m, Goto  

Step 3; else Goto Step 6.  
5. While  Rm ≠ I, for ∀  Ri ~ Rj, if Var(Rj) ≤ α* 

Var(Ri), then  Ri ∪ Rj; m=m+1; update k;, Goto 
Step 2, else Repeat Step 5 with α = α+0.1.  

6. Stop. 

 

3. Experimental Results 

We now test the proposed method on the benchmark 
images corrupted by additive white Gaussian noise. Initial 
number of superpixel segments is set to ‘k’ = MxN/patch 
size; where MxN is the size of the image and the patch 
size is usually set globally (between 5x5 and 19x19). In 
our work, we calculate the bounds with the patch size of 
8x8 for low noise levels i.e. σ≤40 and a larger patch size 
such as 11x11 for high noise levels i.e. σ>40. The 
diffusion constant 10=λ  in the evaluation of benchmark 
images with σ=10, 20, 30, 50 and 100 of the additive 
white Gaussian noise. Table I provides PSNR values by  



 
 

Table I. PSNR of the proposed method. 

Image/Noise, σ FLAD 

10 20 30 50 100 
Lena 35.56 32.61 30.85 28.59 25.56 

House 35.94 32.93 31.11 28.68 25.12 

Peppers 34.48 31.05 29.03 26.56 23.18 

Cameraman 33.99 30.18 28.24 25.89 23.08 
 

 

 
 

Fig.2.First row: “Lena” image and Lena with additive white Gaussian noise level σ =100; Second row: results by BM3D 
and FLAD 
 
 
 
 
 



 
Table II. PSNR comparison of different anisotropic diffusion methods for “Lena”. 

Method/ σ 10 15 20 

Noisy 28.15 24.62 22.14 

PM [1] 32.70 30.71 29.37 

Catte [2] 33.27 31.39 30.09 

Li [5] 34.28 32.41 31.15 

GSZ FAB [21] 32.49 29.86 28.29 

LVCFAB [7] 31.90 28.21 26.67 

RAAD [22] 34.33 32.53 31.24 

FLAD 35.56 33.86 32.61 

 
 
 

 
 

Fig.3.First Column: “Lena” image with additive white Gaussian noise level σ =20 and 50; Second Column: corresponding 
results by FLAD 



  
 

the proposed method for benchmark images. Second, the 
proposed FLAD algorithm is compared to six diffusion 
based methods which are considered as the state-of- the-
art techniques in diffusion based denoising, which are 
FAB based diffusion, GSZ FAB [21], LVCFAB [7], and 
RAAD [22]. The improvement by FLAD for the given 
noise levels is ranging from 1.3 dB for low noise to 
1.59dB for noise level with σ=100. Finally, the 
comparison to BM3D is due, and it shows that the 
performance of FLAD is 0.35 dB lower compared to that 
of the BM3D for noise level σ=10 and 0.39 dB lower for 
noise level σ=100. Fig.2 shows that lesser or no 
blocking/ringing artifacts are introduced by FLAD 
compared to those in BM3D denoised images. The 
denoising performance of the FLAD is further illustrated 
in Fig.3, where we show fragments of a few noisy (σ=20 
and 50) test images and fragments of the corresponding 
denoised ones. The denoised images show high visual 
quality in the areas of smooth intensity transition and 
lesser or no ringing around contours of extended objects.  
 

4. Conclusion 
 
We have presented a novel FLAD algorithm for image 
denoising. The high performance of the method is attained 
due to the following properties:  a) patch-based 
optimization of PSNR through iterative diffusion; b) 
agglomeration of patches and repetitive iteration of the 
process; c) modification of the diffusion function. The 
method has attained a highest performance in the class of 
advanced diffusion based methods and outperforms its 
counterpart by reducing visible blocking and ringing 
artifacts inherent to block- and transform-based methods.  
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