
Integrating Algebraic Functions of Views with

Indexing and Learning for 3D Object Recognition

Wenjing Li and George Bebis
Computer Vision Laboratory
University of Nevada, Reno

(wjli,bebis)@cs.unr.edu

Nikolaos Bourbakis
Information Technology Research Institute

Wright State University
bourbaki@cs.wright.edu

Abstract This paper focuses on the problem of
3D object recognition from different viewing angles
and positions. In particular, we propose a new ap-
proach that integrates Algebraic Functions of View
(AFoVs) with indexing and learning. During train-
ing, we consider groups of point features and we rep-
resent a sparse number of views that they can pro-
duce in a k-d tree. Moreover, we learn the manifold
formed by a dense number of views using mixture
models and Expectation-Maximization (EM). Learn-
ing takes place in a “universal”, lower-dimensional,
space computed through Random Projection (RP).
The images that a group of model points can produce
are computed off-line using AFoVs by combining a
small number of reference views that contain the
group. Rigidity constraints are imposed during this
step to remove unrealistic views. During recognition,
groups of point features are extracted from the scene
and used to retrieve from the k-d tree the most fea-
sible model groups that might have produced them.
To reduce the number of hypotheses for verification,
we rank them by computing the probability that the
hypothesized model group is present in the scene.
Only hypotheses ranked high enough are considered
for further verification. The proposed method has
been evaluated using both artificial and real data,
illustrating good performance.

Keywords: object recognition, algebraic functions
of views, indexing, learning

1 Introduction

Building systems capable of recognizing relevant ob-
jects in their environment with accuracy and robust-
ness has been a difficult and challenging task in com-
puter vision [24]. Recognition is difficult because the
appearance of an object can have a large range of
variation due to photometric effects, scene clutter,
changes in shape, and viewpoint changes. As a re-
sult, different views of the same object can give rise

to widely different images.
Our emphasis in this paper is on handling varia-

tions in shape appearance due to viewpoint changes
more efficiently and effectively. Typical strategies
to cope with this problem include the use of invari-
ants [18], explicit 3D models [13, 6], and multiple-
views [15, 25, 19]. Each of these strategies, how-
ever, has several drawbacks. For example, no gen-
eral case invariants exist under 3D perspective pro-
jection [8], 3D models are not always easy to obtain,
and multiple-view methods require storing a large
number of views.

In [5, 4], we proposed a new object recognition
approach based on AFoVs [26, 21]. AFoVs pro-
vide a powerful framework for investigating varia-
tions in the shape appearance of a 3D object due
to viewpoint changes. In particular, the main re-
sult of AFoVs states that “the variety of 2D views
depicting the shape appearance of a 3D object can
be expressed as a combination of a small number
of 2D views of the object”. This suggests a sim-
ple but powerful framework for predicting shape ap-
pearance: “novel 2D views of a 3D object can be
recognized by combining a small number of known
2D views of the object”. The main advantage of this
framework is that it does not rely on invariants or
3D models. In fact, no camera calibration or 3D
scene recovery are necessary. Also, it is fundamen-
tally different from multiple-view approaches which
perform matching by comparing novel views to pre-
stored views of the object (i.e., reference views). In
contrast, AFoVs predict the shape appearance of a
3D object by combining a small number of reference
2D views of the object.

Although interesting and appealing, the underly-
ing theory of AFoVs is based on several restrictive
assumptions, making AFoVs of less practical use.
For example, it assumes that the correspondences
between features in the novel view and features in
the reference views are known. Also, it assumes that

the values of the parameters of the AFoVs are known.
We have addressed these issues in our previous work
[4, 5, 2, 3] by (1) coupling AFoVs with indexing,
to bypass the correspondence problem, and (2) esti-
mating the ranges of values that the parameters of
AFoVs can assume using Singular Value Decomposi-
tion (SVD) [10] and Interval Arithmetic (IA) [17].
Using two reference views per object, we demon-
strated the feasibility of our approach by recognizing
novel views of the object from different viewpoints.

This work builds upon our previous work on ob-
ject recognition using AFoVs with the goal of im-
proving its efficiency and performance. Specifically,
an important advantage of using AFoVs for recog-
nition is that they allow us to compute off-line the
space of 2D views that a 3D object can produce us-
ing a small number of 2D reference views of the ob-
ject. During the training phase of our algorithm, we
use this idea to sample the space of 2D views of an
object (i.e., by sampling the space of the AFoVs pa-
rameters) and represent information about them in
a hash table. This information is used during recog-
nition to form hypotheses between the models and
the scene. We have improved both the training and
recognition phases of our method in several impor-
tant ways.

First, when generating the sampled views of an
object, we now impose a pair of rigidity constraints
to avoid representing unrealistic views in the hash
table. This saves both space at indexing and re-
duces the number of invalid hypotheses during recog-
nition. Second, the recognition performance of the
method depends on the number of sampled views
represented in the hash table. Increasing this num-
ber would improve performance, however, it would
also increase space requirements as well as recogni-
tion time due to an expected increase in the number
of hypotheses generated. Here, we propose a two-
stage scheme to deal with these issues. In the first
stage, we represent a sparse number of sampled views
in an indexing structure. This stage allows us to gen-
erate hypotheses efficiently through indexing while
keeping space requirements low. To account for the
sparse number of views used, we have replaced hash-
ing by a more powerful indexing scheme based on k-d
trees [12, 23] which perform nearest-neighbor search
as opposed to range search performed by hashing.
In the second stage, we learn the manifold formed
by a dense number of sampled views using the EM
algorithm [20]. Learning takes place in a “univer-
sal”, lower-dimensional, space computed through RP
[9, 7]. This stage reduces storage requirements con-
siderably (i.e., only a few parameters need to be
stored for each manifold) and it allows us to rank

the hypotheses generated by the first stage. Rank-
ing saves significant time during verification since the
most likely hypotheses are verified first.

The rest of the paper is organized as follows. In
Section 2, we provide background information on
AFoVs and our previous work on recognition us-
ing AFoVs. The proposed improved recognition ap-
proach is presented in detail in Section 3. Section 4
presents our experimental procedures and results us-
ing both artificial and real 3D objects. Finally, our
conclusions and plans for future work are given in
Section 5.

2 Background on AFoVs

Simply speaking, AFoVs are functions which express
a relationship among a number of views of an object
in terms of their image coordinates alone. In par-
ticular, Ullman and Basri [26] showed that if we let
an object undergo 3D rigid transformations and as-
sume that the images of the object are obtained by
orthographic projection followed by uniform scaling
(i.e., a good approximation to perspective projec-
tion when the camera is far from the object), then
novel views of the object can be expressed as a lin-
ear combination of three other views of the same
object (i.e., reference views). This result can be sim-
plified by removing the orthonormality constraint as-
sociated with the rotation matrix. In this case, the
object undergoes 3D linear transformations in space
and AFoVs become simpler, involving only two ref-
erence views. Specifically, let us consider two refer-
ence views V1 and V2 of the same object which have
been obtained by applying different linear transfor-
mations, and two points p′ = (x′, y′), p′′ = (x′′, y′′),
one from each view, which are in correspondence.
Then given a novel view V of the same object which
has been obtained by applying another linear trans-
formation and a point p = (x, y) which is in corre-
spondence with point p′ and p′′, the coordinates of
p can be expressed as a linear combination of the
coordinates of p′ and p′′ as

x = a1x
′ + a2y

′ + a3x
′′ + a4 (1)

y = b1x
′ + b2y

′ + b3x
′′ + b4

where the parameters aj , bj , j = 1, ..., 4, are the same
for all the points which are in correspondence across
the three views. It should be noted that the above
equations can be rewritten using the y-coordinates
of the second reference view instead. Also, with-
out additional constraints, it is impossible to distin-
guish between rigid and non-rigid transformations of
the object. To impose rigidity, additional constraints
must be satisfied [26]. The above results hold true

in the case of objects with sharp boundaries, how-
ever, similar results exist in the case of objects with
smooth boundaries [1] as well as non-rigid objects
[26] (i.e., more reference views are required in these
cases). The extension of AFoVs to the case of per-
spective projection has been carried out in [21, 11].

Given a novel view of an object, AFoVs can be
used to predict the image coordinates of point fea-
tures in the novel view by appropriately combining
the image coordinates of corresponding point fea-
tures across the reference views. We have employed
this idea in our previous work to recognize unknown
views of an object from a small number of reference
views of the same object, assuming orthographic pro-
jection and linear 3D transformations [5, 4]. To by-
pass the correspondence problem, we proposed cou-
pling AFoVs with indexing. During indexing, we
used AFoVs to predict the views that groups of point
features can produce and represented the predictions
in a hash table. During recognition, groups of points
were extracted from the scene and used to retrieve
from the hash table hypotheses (i.e., model groups
that might have produced them). Each hypothesis
was then verified to find the correct model in the
scene. To sample the space of views that groups of
model points can produce, we sampled the space of
parameters of the AFoVs. For this, it is necessary to
estimate the allowable ranges of values that the pa-
rameters of the AFoVs can assume. We dealt with
this issue by introducing a methodology based on
SVD [10] and IA [17].

3 The Proposed Framework

The proposed recognition framework has two main
phases: training and recognition, as shown in Fig. 1.
Compared to our previous work, both phases have
been improved in several important ways. First of
all, we have improved the feature extraction step of
our algorithm in order to obtain more stable and
robust point features. While the point features in
our previous work were extracted using a corner de-
tector [22], in this work, we extract point features
corresponding to intersections of lines forming con-
vex groups [14]. Second, when sampling the space
of views that groups of model points can produce,
we impose a pair of rigidity constraints to eliminate
unrealistic views. This saves both space during in-
dexing and time during recognition (i.e., reduces the
number of invalid hypotheses). Third, we propose a
more effective scheme to represent the space of views
that groups of model points can produce. This re-
duces the space requirements of our method consid-
erably, a major issue involved in our previous work.

This scheme is based on two distinct stages. The
first stage relies on indexing as before, however, to
keep space requirements low we index only a sparse
number of sampled views per model. To improve the
quality of the hypotheses generated during recogni-
tion, we have replaced hashing, which performs a
range search, with a more powerful indexing scheme
based on k-d trees [12, 23], which performs nearest-
neighbor search. In the second stage, we learn the
manifold formed by a dense number of sampled views
per model using the EM algorithm [20]. Learn-
ing takes place in a “universal”, lower-dimensional,
space computed through RP [9, 7]. The only infor-
mation that needs to be stored at this stage is just a
few parameters for each manifold.

The main purpose of the first stage is to gener-
ate hypothetical matches between the models and
the scene very fast. Although this is to be expected
by using indexing, it is also reasonable to expect
that this step would generate a large number of hy-
potheses, many of which would be invalid due to the
sparseness constraint. The main purpose of the sec-
ond stage to filter out quickly and inexpensively as
many invalid hypotheses as possible. This stage pro-
vides a way to rank each hypothesis prior to verifica-
tion. This saves time since only hypotheses ranked
high enough are considered for further verification.
Verification is performed by matching the predicted
model appearances with the scene.

Obtain Reference

views

Extract model

groups

Estimate the range

of parameters

 Sampling

parameter space

Validate

appearances

Training phase Recognition phase

New image

Extract image

groups

k-d Tree

Predict AFoVs

parameters

Verify hypotheses

Recognition

results

Low-dimensional

space

Rank Hypotheses

Manifold Learning

Random Projection

dense coarse

Hypothetical

matches

Retrieve

Figure 1: The proposed framework

3.1 Eliminating Unrealistic Views

When sampling the parameters of the AFoVs to gen-
erate the sampled views of an object using Eq. (1),
it is possible to generate views that are not realistic
in practice. This is because of two reasons. First,
Eq. (1) corresponds to the case of linear 3D trans-
formations, a superset of 3D rigid transformations.
Second, the interval solutions for the parameters of
the AFoVs are not tight [5, 4]. We can eliminate
such views by imposing a pair of rigidity constraints
[26]. This requires some information from the ref-
erence views. Specifically, if we assume that the
first reference view has been obtained by the iden-
tity transformation, and the second reference view
has been obtained from the first reference by rota-
tion R, then the parameters of the AFoVs of Eq. (1)
(a1, a2, a3, b1, b2, b3) must satisfy two following two
constraints:

a1b1 + a2b2 + a3b3 + (a1b3 + a3b1)r11 (2)

+(a2b3 + a3b2)r12 = 0

a2
1 + a2

2 + a2
3 − b2

1 − b2
2 − b2

3 − 2(b1b3 − a1a3)r11 (3)

−2(b2b3 − a2a3)r12 = 0

where r11 and r12 are the first two elements of the ro-
tation matrix R. By applying these two constraints,
the sampled views can be effectively refined. In prac-
tice, we implement this test by checking whether the
expressions on the left hand-side are less than a small
threshold. If the matrix R is not known, a third view
can be used to recover the values of r11 and r12 by
solving two linear equations [26]. In practice, we can
apply specific rotations (e.g., by placing the object
on a turn table) to get the required entries of R .

3.2 Indexing Based on k-d Tree

To reduce space requirements but also to enable
fast hypothesis generation, we index only a sparse
number of sampled views per object. In our previ-
ous work, hashing was used to retrieve the closest
model views to a given novel view. Hashing, how-
ever, would not be appropriate now since it does
a range search. In contrast, employing more pow-
erful indexing schemes performing nearest-neighbor
search would be more appropriate due to the sparse-
ness constraint.

Perhaps the most widely used algorithm for per-
forming nearest-neighbor search in multiple dimen-
sions is a static space partitioning technique based
on a k dimensional binary search tree, called k-d tree
[12, 23]. The k-d tree is a data structure which par-
titions the space hierarchically using hyper-planes.
In a typical k-d tree [12], the partition hyper-plane
is perpendicular to the coordinate axes. In this

work, we use the Sproull k-d tree [23], a radical
refinement to the traditional k-d tree. The choice
of the partition plane is not orthogonal or “coordi-
nate based”. Instead, it is chosen by computing the
principal eigenvector of the covariance matrix of the
points.

Similarly to our previous work, we store infor-
mation only about the x-coordinates of the sampled
views in the k-d tree. This is because the process
generating the x-coordinates of the sampled-views
is the same to that generating the y-coordinates of
the sampled views [5, 4]. During recognition, how-
ever, the k-d tree must be accessed twice. First, the
x-coordinates of the novel view are used to gener-
ate hypotheses predicting the aj parameters of the
AFoVs, and second, the y-coordinates of the novel
view are used to generate hypotheses predicting the
bj parameters of the AFoVs.

3.3 Manifold Learning

Although AFoVs allow us to generate the views that
an object can produce efficiently, representing this
information compactly would be critical. We have
decided to use statistical learning techniques for this
purpose. In particular, the views that an object
can produce form a manifold in a lower-dimensional
space. This manifold can be learned efficiently using
mixture models and the EM algorithm. The main
advantage in our case is that we can generate a large
number of sampled views using AFoVs, therefore,
improving our chances to capture the true structure
of the manifold. This is in contrast to similar ap-
proaches in the literature where a large number of
images is required to ensure good results [19].

Mixture models are a type of density model which
comprises a number of component functions, usually
Gaussian. These component functions are combined
to provide a multi-modal density. In the past, they
have been employed to model the color distribution
of objects for real-time segmentation and tracking
[16]. Mixture models provide greater flexibility and
precision in modelling the underlying statistics of
sample data. Once a model is generated, conditional
probabilities can be computed. Let the conditional
density for the sample data ξ belonging to an object
O be a mixture of M component densities:

p(ξ|O) =
M∑

j=1

p(ξ|j)π(j) (4)

where the mixing parameter π(j) corresponds to the
prior probability that data ξ was generated by com-
ponent j and where

∑M
j=1 π(j) = 1. Here, each mix-

ture component is a Gaussian with mean µ and co-
variance matrix Σ, i.e.

p(ξ|j) =
1

(2π)N/2|Σj | 12
e−

1
2 (ξ−µj)

T Σ−1
j

(ξ−µj) (5)

1

2

3
4

5

6

7
8

9
10

11
12

13

14

15

16

17

18

19

20

21

22

23

24

(a) (b)

Figure 2: The mixture model obtained (shown in (a))
for a group of 8 point features (9 to 16) from the artificial
object shown in (b).

The EM algorithm [20] is a well established max-
imum likelihood estimation algorithm for fitting a
mixture model to a set of training data. It is iterative
with the mixture parameters being updated in each
iteration. It has been shown that it monotonically in-
creases the likelihood with each iteration, converging
to a local maximum. EM suffers from singularities in
the covariance matrix when the dimensionality of the
data is high. We encountered similar problems here
using large groups of point features. To avoid these
problems, we used RP to project the sampled views
into a low dimensional space before running the EM
algorithm [9, 7]. The same RP was used for each ob-
ject, therefore, we refer to this low-dimensional space
as the “universal” object space.

Coupling RP with the EM algorithm has shown
to have some important advantages. First, the data
from a mixture of M Gaussian functions can be pro-
jected into just O(logM) dimensions while still re-
taining the approximate level of separation between
clusters. This projected dimension is independent of
the number of data points and of their original di-
mension. Second, even if the original clusters are
highly eccentric (i.e, far from spherical), RP will
make them more spherical. In our case, we used RP
to reduce the dimension of our data down to 3.

It should be noted that the EM algorithm re-
quires the a-priori selection of the number M of
components. Here, we determined the number of
components automatically by using a method based
on mutual information [27]. Fig. 2 shows the mix-
ture model obtained for a group of 8 points from an
artificial object (i.e., rocket) used in our experiments.

3.4 Hypothesis Ranking

Each hypothesis generated by the k-d tree search, is
ranked by computing its probability using the mix-
ture models described in the previous subsection.
Specifically, for each test view, we compute two prob-
abilities, one from the x-coordinates of the view and
the other from the y-coordinates of the view. The
overall probability for a particular hypothesis is then
computed as follows:

p(j) =
log(px(j) ∗ py(j))

log(max(px(i)) ∗max(py(i)))
(6)

where i = 1...,H. H the number of hypotheses gen-
erated by the k-d tree search, px(j) and py(j) are
the probabilities from the x- and y-coordinates of
the current hypothesis, and p(j) is the overall prob-
ability of the current hypothesis.

4 Experimental Results

We describe below a number of experiments to
demonstrate the proposed approach. To enable ro-
bust feature extraction, we consider objects contain-
ing sharp edges. Each object view is represented by
a set of point features corresponding to intersections
of line segments comprising the boundary of the ob-
ject. To account for occlusion, we use subsets (i.e.,
groups) of point features as opposed to using all point
features. In practice, we can select salient groups
of point features, for example, corresponding to in-
tersections of perceptually important groups of lines
(e.g., convex groups [14]). In this case, each point
feature has a certain ordering in the group which
can facilitate matching.

4.1 Artificial Objects

A set of 10 artificial 3D models (i.e., car, truck, tank,
rocket, airplane, monitor, bench, house, desk, sta-
pler) was used to evaluate the performance of the
proposed approach. Each model was represented by
2 reference views which were obtained by applying
different orthographic projections on the 3D models.
For each model, we considered all possible groups
having 8 point features (i.e., 22 groups on average
for each model). First, a coarse k-d tree was built
by storing information about a sparse set of views
that the model groups can produce. A total of 2, 242
sampled views were generated and stored in the k-d
tree. Then, a dense number of views was generated
for each model group and its manifold was learned
using the EM algorithm. The ratio of sparse to dense
views used was 2%.

The test views were generated by applying ran-
dom orthographic projections on the 3D models. We
also added 3 pixels random noise to point features of
the test views. We did not assume any knowledge
of the point feature correspondences between model
and scene groups, however, we did assume that point
features have certain ordering in the group (i.e., see
our discussion in the previous subsection). Assuming
that there is no easy way to select the initial point
feature in a group, we considered all possible circu-
lar shifts (i.e., 8 in our case) of point features when
searching the k-d tree.

The query results for three of our models (i.e.,
car, tank, and rocket) are shown in Table 1, as well
as their rankings, computed by the mixture models.
The first column in Table 1 indicates the query group
and the model it comes from, the second column in-
dicates the circular shift applied (i.e., “shift 0” cor-
responds always to the correct hypothesis), and the
third column shows the model candidates retrieved
by the k-d tree query. The fourth column of the ta-
ble shows the un-normalized probabilities computed
from the x- and y-coordinates respectively while the
overall probabilities, computed using Eq. (6), are
shown in the last column. The overall probabilities
indicate the level of confidence for each hypothesis
and are used to rank them.

Table 1: Probabilistic ranking for the queries

Query shift Cand. Prob. Rank
0 Car-g1 (99.11,34.07) 1.00

Car-g1 6 Bench-g5 (29.59,28.89) 0.83
4 Car-g1 (99.77,0.73) 0.53
7 Car-g2 (0,0), 0

Car-g2 0 Car-g2 (164.65,50.85) 1
4 Rocket-g2 (0.48,0.22) 0
0 Tank-g1 (74.35,38.73) 1

Tank-g1 3 Monitor-g1 (18.54,2.10) 0.46
4 Monitor-g1 (0.00,22.46) 0
4 Bench-g1 (0,0) 0

Tank-g2 0 Tank-g2 (227.30,85.29) 1
0 Tank-g3 (1158.0,905.8) 1
3 Truck-g1 (179.73,263.93) 0.78
3 Rocket-g3 (39.43,60.15) 0.56

Tank-g3 4 Rocket-g2 (43.72,54.30) 0.56
2 Car-g1 (22.49,5.8191) 0.35
6 Car-g1 (18.54,4.22) 0.31
7 House-g1 (0,0) 0

Rocket-g1 0 Rocket-g1 (539.1,1922.9) 0.94
4 Rocket-g1 (674.4,3562.1) 1

Rocket-g2 0 Rocket-g2 (32.66,171.94) 1
4 Bench-g2 (0,0) 0

Rocket-g3 0 Rocket-g3 (21.45,137.07) 1
4 Bench-g4 (0,87.22) 0

Once the hypotheses have been ranked, we apply
further verification to those hypotheses ranking high
enough (i.e., 0,9 or above). In this case, the parame-
ters of the AFoVs are estimated accurately from the

hypothetical match using a least-squares approach
such as SVD. Using the estimated AFoVs parame-
ters, we then predict the appearance of the candidate
model using Eq. (1) and compare it with the scene.
Computing the mean square error (MSE) between
the predictions and the scene provides a measure of
similarity for deciding the presence of the candidate
model in the scene. Fig. 3 shows the verification re-
sults for the hypotheses listed in Table 1 in the case
of the rocket model. We received extremely small
MSE errors in all of our experiments using artificial
data sets.

Table 1 shows that the hypotheses with the high-
est probabilities were also the correct hypotheses in
all cases except in one case (i.e., Rocket-g1). In that
case, the first group of the rocket model was matched
to the model assuming two different solutions due to
symmetry, as shown in Fig. 3(a). We denote the test
group of point features using “+”, while the blue
lines indicate the predicted views. Such symmetric
solutions can be resolved later during the verification
step.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(a)

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(b)

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(c)

Figure 3: Verification results for the rocket query
(a)group 1 (b)group 2 (c)group 3

4.2 Real Objects

In this section, we demonstrate the proposed ap-
proach using the real 3D objects shown in Fig. 4.
Each object was represented from a particular as-
pect only using two reference views. Fig. 4 shows
the first of the reference views for each model. The
second reference view was obtained by rotating the
object about the y-axis (by a small angle (e.g., 10
to 20 degrees). Knowledge of the rotation between
the reference views allows us to enforce the rigidity
constraints as discussed in Section 3. In these exper-
iments, we used groups containing 6 point features.
These groups were formed by two convex subgroups
[14] of size 4, having two point features in common.
Fig. 4 shows the groups used for each of our mod-
els. To order the points in a group during recogni-
tion, we choose the common points as starting points
and trace the rest of the points counterclockwise. A
sparse set of 2060 sampled views of the groups were
represented in a k-d tree. The manifold of each group

was then learned using the EM algorithm. The ratio
of sparse to dense views used in this case was 35%.

Fig. 5 shows some of the test views used in our
experiments. As before, we extract groups of point
features from the scene and we use them to retrieve
hypothetical matches from the k-d tree. Each hy-
pothesis is then ranked using the mixture models
of the model groups. We do not present detailed
information in this case due to lack of space, how-
ever, it should be mentioned that the correct model
was always ranked first or second in our experiments.
The verification results can be seen in Fig. 5 where
the yellow lines correspond to the scene groups and
the red lines to the predicted models. The models
present in the scene were recognized correctly in all
cases. The MSE error was less than 0.6. Fig. 5(i)
shows a case where an object not belonging to the
set of models is present in the scene. This object
produced a MSE higher than 3 and it was rejected
at the verification stage.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Models (a)-(b) two groups of model1, (c)-(f)
4 groups for model2, (g)-(i) 3 groups of model3

5 Conclusions

In this paper, we presented a new approach for 3D
object recognition from different viewing angles and
positions. The new approach builds on our previous
work on using AFoVs for 3D recognition. Specific im-
provements include (1) eliminating unrealistic views
during indexing by using rigidity constraints, (2) re-
ducing space requirements significantly by combin-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Verification results (a)-(c) novel views, (d)-(h)
novel views with occlusion (i) unknown object

ing indexing with learning, and (3)improving recog-
nition time by ranking hypotheses based on proba-
bilistic mixture models. For future research, we plan
to perform larger scale experiments and investigate
the problem of selecting a small but sufficient num-
ber of reference views to be able to recognize a given
object from every possible aspect. One idea, for ex-
ample, is choosing the reference views based on the
quality of the groups of point features that they con-
tain. Another research direction is combining AFoVs
(i.e., a powerful framework for representing changes
in geometrical appearance), with empirical models of
appearance (i.e., eigenspace methods [19]).

Acknowledgements: This work was supported by
the Office of Naval Research (ONR) under grant
N00014-01-0781.

References

[1] R. Basri and S. Ullman. The alignment of objects

with smooth surfaces. Computer Vision, Graph-

ics, and Image Processing: Image Understanding,

57(3):331–345, 1993.

[2] George Bebis, M. Georgiopoulos, N. V. Lobo, and

M. Shah. Learning affine transformations of the

plane for model-based object recognition. 13th

International Conference on Pattern Recognition,

IV:60–64, 1996.

[3] George Bebis, M. Georgiopoulos, N. V. Lobo, and

M. Shah. Learning affine transformations. Pattern

Recognition, 32:1783–1799, 1999.

[4] George Bebis, Michael Georgiopoulos, Mubarak

Shah, and Niels da Vitoria Lobo. Algebraic func-

tions of views for model-based object recogni-

tion. International Conference on Computer Vision,

pages 634–639, 1998.

[5] George Bebis, Michael Georgiopoulos, Mubarak

Shah, and Niels da Vitoria Lobo. Indexing based on

algebraic functions of views. Computer Vision and

Image Understanding, 72(3):360–378, Dec. 1998.

[6] Jeffrey S. Beis and David G. Lowe. Indexing without

invariants in 3d object recognition. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence,

21(10):1000–1015, Oct. 1999.

[7] Ella Bingham and Heikki Mannila. Random projec-

tion in dimensionality reduction: application to im-

age and text data. in Proc. of the 7th ACM SIGKDD

International Conference on Knowledge Discovery

and Data Mining, pages 245–250, Aug. 2001.

[8] D. Clemens and D. Jacobs. Space and time bounds

on indexing 3d models from 2d images. IEEE Trans-

actions on Pattern Analysis and Machine Intelli-

gence, 13(10):1007–1017, 1991.

[9] Sanjoy Dasgupta. Experiments with random pro-

jection. In Proc. of 16th Conference on Uncertainty

in Artificial Intelligence, 2000.

[10] W. Press et al. Numerical Recipies in C: The Art

of Scientific Programming. Cambridge University

Press,UK, 1990.

[11] O. Faugeras and L. Robert. What can two images

tell us about a third one? In Proc. of third Eu-

ropean Conference on Computer Vision, pages 485–

492, 1994.

[12] Jerome H. Friedman, Jon Lousi Bentley, and

Raphael Ari Finkel. An algorithm for finding best

matches in logarithmic expected time. ACM Trans-

actions on Mathmatical Software, 3(3):209–226, Sep.

1977.

[13] D. Jacobs. Mathcing 3d models to 2d images. Inter-

national Journal of Computer Vision, 21(1/2):123–

153, 1997.

[14] David W. Jacobs. Robust and efficient detection of

salient convex groups. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 18(1):23–

37, Jan. 1996.

[15] Y. Lamdan, J. Schwartz, and H. Wolfson. On recog-

nition of 3d objects from 2d images. Proceedings of

the IEEE International Conference on Robotics and

Automation, pages 1407–1413, 1988.

[16] Stephen J. McKenna, Yogesh Raja, and Shaogang

Gong. Tracking colour objects using adaptive mix-

ture models. Image and Vision Computing, 17:225–

231, 1999.

[17] R. Moore. Interval analysis. Prentice-Hall, 1966.

[18] L. Mundy and A. Zisserman. Geometric Invariance

in Computer Vision. MIT Press, 1992.

[19] Hiroshi Murase. Visual learning and recognition of

3-d objects from appearance. International Journal

of Computer Vision, 14:5–24, 1995.

[20] R. A. Redner and H. F. Walker. Mixture densities,

maximum likelihood and the em algorithm. SIAM

Review, 26(2):195–239, 1984.

[21] Amnon Shashua. Algebraic functions for recogni-

tion. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 17(8):779–789, Aug. 1995.

[22] S. Smith and J. Brady. Susan: A new approach to

low level image processing. DRA technical report

TR95SMS1, Dept. of Engineering Science, Oxford

University, 1995.

[23] R. F. Sproull. Refinements to nearest-neighbor

searching in k-dimensional trees. Algorithmica,

6:579–589, 1991.

[24] P. Suetens, P. Fua, and A. Hanson. Computational

strategies for object recognition. Computing Sur-

veys, 24(1):5–61, 1992.

[25] Matthew Turk and Alex Pentland. Eigenfaces for

recognition. Journal of Cognitive Neuroscience,

3(1):71–86, 1991.

[26] Shimon Ullman and Ronen Basri. Recognition

by linear combinations of models. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence,

13(10):992–1005, Oct. 1991.

[27] Zheng Rong Yang and Mark Zwolinski. Mutual

information theory for adaptive mixture models.

IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 23(4):396–403, Apr. 2001.

