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Detectability, Uniqueness, and Reliability of
Eigen Windows for Stable Verification of
Partially Occluded Objects

Kohtaro Ohba and Katsushi Ikeuchi

Abstract—This paper describes a method for recognizing partially
occluded objects for bin-picking tasks using eigenspace analysis,
referred to as the “eigen window” method, that stores multiple partial
appearances of an object in an eigenspace. Such partial appearances
require a large amount of memory space. Three measurements,
detectability, uniqueness, and reliability, on windows are developed to
eliminate redundant windows and thereby reduce memory
requirements. Using a pose clustering technique, the method
determines the pose of an object and the object type itself. We have
implemented the method and verified its validity.

Index Terms—Object recognition, multiple objects, eigenspace,
detectability, uniqueness, reliability.
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1 INTRODUCTION

OBJECT recognition has a wide variety of military and civilian ap-
plications. Some of the representative applications include bin-
picking, automatic target recognition, and surveillance and moni-
toring. Some earlier works in this domain include [1], [2], [3], [4],
[5], [6]. Despite this long history of research, these applications still
provide a challenge to vision researchers. The main difficulties
include: real-time requirements, difficulty in segmentation, and
difficulty in obtaining appropriate models of the objects.

Recently, visual learning methods based on eigenspace analysis
[71, [8], [9], [10], [11], [12], [13], [14], [15], [16], [17] have shown the
potential to solve some of these problems. These methods learn
object models from a series of images taken in the same environ-
ment as in the recognition mode. Thus, this method by-passes the
difficulty in modeling. Furthermore, since such methods store an
object model as a vector in a low dimensional eigenspace and rec-
ognize objects by comparison of model and image vectors, recog-
nition speed is very rapid and can achieve real-time performance.

Though promising, the current eigenspace analysis assumes
that all the appearances are non-occluded. The “image spotting”
criterion was proposed by Murase and Nayar [16] to handle the
recognition of multiple objects on a complicated background, but
it did not handle occlusion. In order to apply the eigenspace
analysis to recognition of partially occluded objects, we propose to
divide appearances into small windows, referred to as “eigen
windows” [19] and to apply eigenspace analysis to each eigen
window. The basic idea is that, even if some of the windows are
occluded, the remaining windows are still effective and can re-
cover the object pose. The total number of such small windows
may be very large. Storing all of them may require a prohibitive
amount of memory space. This paper proposes a set of measures
to select only effective windows. Krumm [20] independently de-
veloped a similar idea but did not address the uniqueness and
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reliability of the proposed method. Those issues are explicitly ad-
dressed here.

In Section 2, we review eigenspace analysis, discuss the limita-
tions of eigenspace analysis, and explain how to overcome these
limitations using the eigen window method. Section 3 proposes
three measures to select a small set of effective windows. Section 4
shows some of the experimental results and evaluates the stability
of verification. Section 5 concludes this paper.

2 EIGEN WINDOW METHOD

First, we will review the eigenspace technique and discuss the
limitations of the technique under image shift, occlusion, noise,
scaling, and illumination. Then, the eigen window method is pro-
posed. This method is designed to overcome these problems.

2.1 Eigenspace Technique

Let M be the number of the images in a training set. Each image
has been converted into a column vector z; of length N:

(21, 22, -+, Zu] (€0

By subtracting the average image of the all images, we obtain the
training matrix,

Z:[Zl—C,ZZ—C,"',ZM—C] (2)

where c is the average image, and the size of the matrix Z is N X M.
The sample covariance matrix Q, N x N, is obtained as:

Q=127' €)

This sample covariance matrix provides a series of eigenvalues A;
and eigenvectors e,(i = 1, ---, N), where each corresponding eigen-
value and eigenvector pair satisfies:

/l,-e,- = Qei (4)

That is, matrix Q can be decomposed into N orthonormal compo-
nents, of which the eigenvalues are A;. Thus, each image set can be
described by a set of eigenvectors with associated weight factors,
i.e., eigenvalues.

If the number of images M is much smaller than the number of
pixels N, the implicit sample covariance matrix Q = Z'Z can be
used instead of the sample covariance matrix Q to calculate the
first M eigenvectors [21].

For the sake of memory efficiency, we will ignore small eigen-
values and their corresponding eigenvectors using a threshold
value, T
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where k is sufficiently smaller than the original dimension N.

From this reduced set of eigenvectors, the matrix E = [ej, e, -+,
¢] is constructed to project an image, z; (dimension N) into the
eigenspace as an eigen point, §; (dimension k).

G=E(z—¢) ©)

This eigenspace analysis can drastically reduce the dimension of
the images (N) to the eigenspace dimension (k) while keeping several
of the most effective features that summarize the original images.

0162-8828/97/$10.00 © 1997 IEEE
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Fig. 1. Eigen window technique.

2.2 Limitations of the Eigenspace Technique

The eigenspace representation, which is a collection of points in
the eigenspace, is very sensitive to image conditions—background
noise, image shift, occlusion of objects, scaling of the image, and
illumination changes.

As an effort to reduce these disturbance effects in the ei-
genspace, Murase and Nayar segmented only a window circum-
scribing the object using the movement of the object. Unfortu-
nately, however, the usual bin-picking scenario does not provide
such convenient clues for segmenting out a target region. Moreo-
ver, it often occurs that one window contains other objects due to
the cluttered environment typical in a bin-picking scenario. Thus,
we need a method to overcome these limitations.

2.3 Eigen Window Technique

To reduce the disturbance effects, we propose to apply small win-
dows to the original images and to project all of them into the ei-
genspace. We refer to this method as the “eigen window” tech-
nique. Fig. 1 shows an overview of the technique.

2.3.1 Training Eigen Windows
The training set of eigen windows is given as:

F=[F, F, -, Fyl )

where F; denotes the collection of eigen windows from the ith

training image. Each F; has the form
[fl—c, f,-c ...,f“ —c]

where f; denotes the jth eigen window in the ith training image; n;
denotes the number of eigen windows in the ith image; and ¢ is the
average eigen window across all eigen windows in the whole
training set. In Fig. 1, the white square denotes one of the training
eigen windows. A strategy for selection of these optimal eigen
windows in each training image will be discussed in Section 3.

Note that all the projected points of these eigen windows are
represented in a common eigenspace as shown in Fig. 1. Each
point in the space has the label of the original eigen window and
original training image.

2.3.2 Matching Operation
From an input image, a set of sub-window images is obtained:

G=[gi—¢g—¢c -, g—cl ®)

such as the white window in the lower left image in Fig. 1.
The similarity between a training eigen window and an input

®<— Training
Eigen Points
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eigen window is evaluated using their distance in the eigenspace.
Given an input eigenspace point y; projected from an input eigen
window g; using (6), we try to find one corresponding point with
maximum similarity among all of the dictionary points ¢ projected
from any training eigen window f.

That is,

b= s (v, o) 2

where ||x]| denotes the norm of x using L1-norm, L2-norm, or Ma-
halanobis distance, etc. We used the L1-norm to save computation

time. We will denote the eigen window that projects to ¢, as fk,
and consider it as the corresponding training eigen window to the
input window g;. In other words, each eigen windows g; in the
input image is matched to its nearest training eigen window fk

with this equation.

2.3.3 Voting Operation
The previous matching operation selects a set of training eigen

windows, [fl, fz, ., f”] corresponding to input eigen windows, [g;,

82 '+ 8nl- We will partition this set into groups such that they
come from the same image, that is all eigen windows in one group,

[, B By o)
where
E = {f|f comes from image i} 1n

We then prepare a pose space for voting from the correspon-
dences. In this operation, we consider only the effect of translation,
and therefore the space is two dimensional. Here, the size of the

pose space is twice the size of the input image size, i.e., 256 x 240.
One pose space is prepared for each group, 15, .
Each correspondence between input eigen windows, g, and

training eigen window, f; (= fk), within the group F, provides an

estimate of the object’s position. Let X;,(gy) and X(f;) denote the
position of the input eigen window g; in the input image and that
of the training eigen window f; in the ith image, respectively.
Then, the difference, AX = (Ax, Ay)T = Xi(go) — Xi(f) provides an
estimate of the translation of the object. The cell that represents

this distance in the two-dimensional pose space gets a vote. If sev-
eral local appearances in the training image can be seen in the
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input image, their estimates of translation should combine to form
one prominent peak in the pose space. In order to absorb the dig-

itization error, a 5 x 5 window of cells around the center cell all get
votes from a single correspondence. We repeat this operation us-
ing all the correspondences in the group (all the correspondences
from the same training image).

2.3.4 Pose Determination

Some small peaks in the pose space are due to noise; other promi-
nent peaks are due to actual objects in an input image. By thresh-
olding these peaks, the system eliminates noise peaks and extracts
prominent peaks. The number of the prominent peaks in the space
is equal to the number of objects that have roughly the same rota-
tion, but a different translation. By retrieving voted pairs in these
prominent peaks, the system further divides this group into sub-
groups so that each sub-group belongs to one prominent peak,
and thus, one isolated object in the input image.

Although we consider only translation, since the training set is
sampled along the rotation dimension, there will be a small rota-
tion effect in object pose due to the sampling interval. To recover
this small rotation and the precise translation value, the system
computes a final pose estimate via weighted least square minimi-
zation. The pairs in each sub-group are weighted by their unique-
ness 1/||g; — £]| to compute the pose parameters by solving:

Xin(gr) =RX; (f) + T (12)

Yoy :|:711r12i| s, +|:t1}

Ye, T || Y ty
where R and T denote the small rotation and translation,
respectively.

(13)

3 SELECTION OF EFFECTIVE EIGEN WINDOWS

One of the issues in the eigen window technique is the selection of
the optimal set of eigen windows. If all the eigen windows are
utilized,

1) the number of eigen windows becomes very large and
storing them requires a large amount of memory space, and

2) due to the similarity among eigen windows, the matching
process becomes increasingly prone to error.

In this section, we will introduce three criteria to select the op-
timal set of windows: detectability, uniqueness, and reliability. The
detectability measures how easy it is to detect one window within a
large image. For example, a window containing corners of an ob-
ject is much easier to detect than those containing a planar region.
Although some windows are easy to detect, they may be similar
with each other, e.g., the target object may have multiple similar
corners. In order to select truly discriminative windows, we will
also introduce a global measure of uniqueness. Finally, a reliability
measure selects windows that remain stable within a range of object
poses. Through applying these three measures, we will be able to
prune the full set of possible eigen windows down to an optimal set.

3.1 Detectability: Local Goodness

Window selection may be considered as selecting feature points
for object tracking. In [18], the following 2 x 2 matrix was pro-
posed to measure the trackability of a window:

*- Xl

where X = (x, )" € R and I denotes the image intensity. This

(14)
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Fig. 2. A problem in corner detection with trackability.

matrix G, has two eigenvalues 4, 4,. The window is accepted as a
good one if the relation

min(4,, 4;) > 4 (15)
holds, where 1 is a predefined threshold. This measure works well
for detecting all important corners.

3.2 Uniqueness: Global Goodness

The detectability measure selects windows containing features that
are easily detected. Unfortunately, the detectability measure does
not guarantee the global uniqueness of the window (see Fig. 2).

The global goodness of windows can be determined as the
uniqueness of an eigen window. This uniqueness of each window
may be measured using the similarity among eigen windows. As
was discussed in Section 2.3.2, the similarity between training and
input eigen windows was evaluated using their distance in the
eigenspace, namely,

Sl,m = ||¢1 - (pm” (16)

This measure, S,,, denotes the similarity of the two eigen points
¢ and ¢,, in the eigenspace, which are projected from f; and f£,,
respectively. We can use the same measure for evaluating the
global goodness of a window, i.e., by evaluating the similarity
among training eigen windows in eigenspace.

The similarity between two training eigen windows, f; and f,,
is evaluated using (16). If this measure is less than a certain
threshold Ty;,, then these two eigen windows, f, f,, are removed
from the training set.

The elimination of similar eigen windows can make the size of
a training set smaller than the original one. This operation also
makes the matching process more stable, since the matching
evaluation will not consider a sum of random contributions from a
large number of similar eigen windows.

3.3 Reliability

To achieve stable object verification, we consider the reliability of
each eigen window in this section. The reliability of an eigen win-
dow can be defined as how stable its projected points are in the
eigenspace, when the object is viewed within some range of rota-
tion angles. for example, if the training set rotation sampling angle
is 10° each, eigen window reliability can be evaluated within view
rotations of +5°. The training windows at each sampling angle
have already been evaluated according to uniqueness evaluation in
the previous section.

When an object undergoes small rotations around the sampling
angle, the appearance of feature points may change; some of the
feature points may disappear, and some new feature points may
appear. We define highly reliable feature points as those that re-
main present and stay within some neighborhood of the original

dictionary point ¢, in the eigenspace, which is projected from eigen

window, f;. Thus, a reliability measure, RjiA, is defined as follows:
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where T,, is a threshold value for the reliability, and ¢;5 denotes
. . . . . +8
the eigen point, projected from the eigen window £, at the same

feature point but different sampling angle & (see Fig. 3).

To realize this process in consideration of the geometric rela-
tion of the eigen windows of the training images, the voting oper-
ating system in Section 2.3.3 may be useful. Here, we have an as-

sumption, that the difference & is small enough to suppose the
movements of each eigen window are only translation. Then, the

difference, X(fjﬂs) - X(fj) will make a single peak in the pose space,
for which (17) holds. If there is any difference in appearance be-
tween points ¢;’5 and ¢;, the pose space contains some distribution

of votes around the original peak. Elimination of features that
cause this disturbance of the original peak enables a choice of ei-
gen windows for which both (17) and the geometric relation of the
eigen windows hold.

3.4 Example of Applying These Measures

Fig. 4 shows an example of applying these three measures to eigen
windows extracted from the image in Fig. 4a. Fig. 4b depicts the
center-points of eigen windows that pass the detectability measure.
The vertical edges are selected as good windows. However, confu-
sion often occurs among such windows along the edge. This
problem is addressed by the uniqueness measure. Fig. 4c shows an
example of the uniqueness evaluation in eigen-space. From the 477
eigen windows selected by the detectability measure, the uniqueness
measure selects the 339 eigen windows shown in Fig. 4c. Most of
the redundant windows such as along the edges in Fig. 4b are
eliminated in Fig. 4c. The right figure of Fig. 4b and 4c shows the
points projected in the 3D eigen space. In Fig. 4b, the distribution
of projection is more uniform than that in Fig. 4c.

Fig. 4d and 4e shows the results of reliability evaluation within
+1 degree and +3 degrees., respectively. In this case, most of the
339 feature points selected by the uniqueness criteria are eliminated
to yield 217 and 47 points after reliability evaluation within
+1 degree and +3 degrees, respectively.

4 EXPERIMENTAL RESULTS

This section presents some experimental results. First, the verifica-
tion of multiple objects is shown to evaluate the validity of the
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Fig. 4. Eigen window extracting process. (a) Original image. (b) De-
tectability. (c) Uniqueness evaluation. (d) Reliability evaluation < +1 de-
gree. e. Reliability evaluation < £3 degrees.

algorithm in both training mode and run mode. Finally, in order to
emphasize the difficulty in modeling, we intentionally use specu-
lar objects in this experiment.

4.1 Training Mode

In training mode, two series of images of each object are taken at 10°
intervals using a rotary table and a CCD camera. The resolution of
these images is 128 x 120 pixels with intensity levels of eight bits.

* First, with the detectability algorithm in (14) and (15), we ex-
tract a set of feature points in each object image for sam-
pling eigen windows. We set the size of an eigen window as
15 x 15 pixels. Thus, the dimension of each eigen window is
225 (15 x 15 pixels), which is sufficiently smaller than the
original image dimension of 15,360 (128 x 120 pixels). From
each training image, we obtain 100 eigen windows on aver-
age. The eigenvectors and eigenvalues are calculated from
the set of eigen windows using (4). The eigenvalues A and W
derived that a 20-dimensional subspace of the original ei-
genspace captures 80 percent of the original image data.

* Next, we apply the uniqueness measure to those eigen win-
dows. We eliminate redundant eigen windows by evaluat-
ing the uniqueness among them with (16). This process se-
lects several eigen windows that are unique. In this exam-
ple, we can eliminate almost half of the eigen windows that
were obtained with the detectability measure alone.

+ Thirdly, to evaluate the reliability of eigen windows, we
take several images around each of the sampling angles. In
this case, we take two images of +3° around each training
image (sampled at 10°). Then, using (17), we evaluate the
reliability of each eigen window, and eliminate the unsta-
ble ones, which reduces the total set of eigen windows by
about one-half.
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type-angle(deg.) llr\l

Fig. 5. Components of the verification results.

4.2 Run Mode

Fig. 5 shows the results in run mode. Here, F , depicts those eigen
windows that have been matched to some training eigen window.
The figures in F, depict window positions that come from the
same rotation angles of the same objects. The next column and the
number ¢ depict the voting results and the standard deviation in

the pose space, respectively, by the calculation of X;,(gy) — Xi(f)).
The number of votes represents the probability of the existence of
the object at that pose angle. from these voting results, we can
calculate the rotation and translation of each object using the vot-
ing elements which make a particular peak in the pose space. The
final positions of each object are superimposed and high-lighted in
the right-hand pictures with (12). The system correctly identifies
each object and pose.

The algorithm also works well for the verification of specular
objects, such as the multiple objects, which includes several bolts
and BNC connectors. In this case, the image training set is com-
posed of object training images such as those. Since specular fea-
tures are all isolated edges and points, they are all good features in
detectability. We thus did not apply the detectability and reliability
measure.

The final verification and localization results are shown in Fig. 6,
which shows the results superimposed on the original input im-
age. The system identifies eight bolts out of ten and two BNC con-
nectors in the input image. In this case, the missing bolts were not

(@ (b)

Fig. 6. Localization and verification results. (a) Original images. (b)
Verification results.
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bright enough to pass the detectability operation for detecting input
eigen windows.

5 CONCLUSION

This paper describes a novel method, referred to as the eigen win-
dow method, to extend the standard eigenspace analysis technique
to be able to recognize partially occluded objects. To reduce the
redundancy among eigen windows, we have proposed three
measures for selecting effective eigen windows: detectability,
uniqueness, and reliability. We have implemented the eigen window
method with these selection measures and verified the validity of
the approach.

The limitation of the eigen window method may be recognition
under illumination changes, such as changes of light position and
brightness. Future work will concentrate on recognizing objects
under severe illumination changes.
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