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Abstract—Developing on-board automotive driver assistance systems aiming to alert drivers about driving environments, and

possible collision with other vehicles has attracted a lot of attention lately. In these systems, robust and reliable vehicle detection is a

critical step. This paper presents a review of recent vision-based on-road vehicle detection systems. Our focus is on systems where

the camera is mounted on the vehicle rather than being fixed such as in traffic/driveway monitoring systems. First, we discuss the

problem of on-road vehicle detection using optical sensors followed by a brief review of intelligent vehicle research worldwide. Then,

we discuss active and passive sensors to set the stage for vision-based vehicle detection. Methods aiming to quickly hypothesize the

location of vehicles in an image as well as to verify the hypothesized locations are reviewed next. Integrating detection with tracking is

also reviewed to illustrate the benefits of exploiting temporal continuity for vehicle detection. Finally, we present a critical overview of

the methods discussed, we assess their potential for future deployment, and we present directions for future research.

Index Terms—Vehicle detection, computer vision, intelligent vehicles.
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1 INTRODUCTION

EVERY minute, on average, at least one person dies in a
vehicle crash. Auto accidents also injure at least 10 million

people each year, two or three million of them seriously. It is
predicted that the hospital bill, damaged property, and other
costs will add up to 1-3 percent of the world’s gross domestic
product [1], [2]. With the aim of reducing injury and accident
severity, precrash sensing is becoming an area of active
research among automotive manufacturers, suppliers and
universities. Several national and international projects have
been launched over the past several years to investigate new
technologies for improving safety and accident prevention
(see Section 2).

Vehicle accident statistics disclose that the main threats a
driver is facing are from other vehicles. Consequently,
developing on-board automotive driver assistance systems
aiming to alert a driver about driving environments and
possible collision with other vehicles has attracted a lot of
attention. In these systems, robust and reliable vehicle
detection is the first step. Vehicle detection—and tracking
—has many applications including platooning (i.e., vehicles
traveling in high speed and close distance in highways), stop
and go (vehicles traveling in low speeds and close distance in
cities), and autonomous driving.

This paper presents a review of recent vision-based on-
road vehicle detection systems where the camera is
mounted on the vehicle rather than being fixed such as in
traffic/driveway monitoring systems. Vehicle detection
using optical sensors is very challenging due to huge
within class variabilities in vehicle appearance. Vehicles

may vary in shape (Fig. 1a), size, and color. The appearance
of a vehicle depends on its pose (Fig. 1b) and is affected by
nearby objects. Complex outdoor environments (e.g.,
illumination conditions (Fig. 1c), unpredictable interaction
between traffic participants, cluttered background (Fig. 1d)
are difficult to control. On-road vehicle detection also
requires faster processing than other applications since the
vehicle speed is bounded by the processing rate. Another
key issue is robustness to vehicle’s movements and drifts.

More general overviews on various aspects of intelligent
transportationsystems(e.g., infrastructure-based approaches
such as sensors detecting the field emitted by permanent
magnetic markers or electric wires buried in the road) as well
as vision-based intelligent transportation systems (e.g., driver
monitoring, pedestrian detection, sign recognition, etc.) can
be found in [2], [3], [4], [5], [6], [7]. Several special issues have
also focused on computer vision applications in intelligent
transportation systems [8], [9], [10], [11].

This paper is organized as follows: In Section 2, we
present a brief introduction of vision-based intelligent
vehicle research worldwide. A brief review of active and
passive sensors is presented in Section 3. Detailed reviews
of Hypothesis Generation (HG) and Hypothesis Verification
(HV) methods are presented in Sections 5 and 6 while
exploring temporal continuity by integrating detection with
tracking is discussed in Section 7. In Section 8, we provide a
critical overview of the HG and HV methods reviewed.
Challenges and future research directions are presented in
Section 9. Finally, our conclusions are given in Section 10.

2 VISION-BASED INTELLIGENT VEHICLE RESEARCH

WORLDWIDE

Vision-based vehicle detection for driver assistance has
received considerable attention over the last 15 years. There
are at least three reasons for the blooming research in this
field: 1) the startling losses both in human lives and finance
caused by vehicle accidents, 2) the availability of feasible
technologies accumulated within the last 30 years of
computer vision research, and 3) the exponential growth
in processor speeds have paved the way for running
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computation-intensive video-processing algorithms even on
a low-end PC in realtime.

With the ultimate goal of building autonomous vehicles,
many government institutions, automotive manufacturers
and suppliers, and R&D companies have launched various
projects worldwide, involving a large number of research
units working cooperatively. These efforts have produced
several prototypes and solutions, based on rather different
approaches [5], [12], [13], [6]. Looking at research on
intelligent vehicles worldwide, Europe pioneers the re-
search, followed by Japan and United States.

In Europe, the PROMETHEUS project (Program for
European Traffic with Highest Efficiency and Unprecedented
Safety) started this exploration in 1986. More than 13 vehicle
manufactures and research institutes from 19 European
countries were involved. Several prototype vehicles and
systems were designed and demonstrated as a result of
PROMETHEUS. In 1987, the UBM (Universitaet der Bundes-
wehr Munich) test vehicle VaMoRs demonstrated the
capability of fully autonomous longitudinal and lateral
vehicle guidance by computer vision on a 20 km free section
of highway at speed up to 96 km/h. Vision was used to
provide input for both lateral and longitudinal control. That
was considered as the first milestone.

Further development of this work has been in collabora-
tion with von Seelen’s group [14] and Daimler-Benz VITA
project (VIsion Technology Application) [15]. Long range
autonomous driving has been demonstrated by the VaMP of
UBM in 1995. The trip was from Munich to Odense, Denmark,
more than 1,600 km. About 95 percent of the distance was
driven without intervention of the safety driver [3]. Another
experimental vehicle, mobile laboratory (MOB-LAB), was
also part of the PROMETHEUS project [16]. It was equipped
with four cameras, several computers, monitors, and a
control-panel to give a visual feedback and warnings to the
driver. One of the most promising subsystems in the MOB-
LAB was the Generic Obstacle and Lane Detection (GOLD)
system. The GOLD system, utilizing a stereo rig in the MOB-
LAB, addressed both lane and obstacle detection at the same

time. The lane detection was based on a pattern matching
technique, while the obstacle detection was reduced to the
determination of the free-space in front of the vehicle using
the stereo image pairs without 3D reconstruction. The GOLD
system has been ported on ARGO, a Lancia Thema passenger
car with automatic steering capabilities [17].

Although the first research efforts on developing intelli-
gent vehicles were seen in Japan in the 1970s, significant
research activities have been triggered by prototype vehicles
built in Europe in the late-1980s and early-1990s. MITI,
Nissan, and Fujitsu pioneered the research in this area by
joining forces in the project “Personal Vehicle System” [18], a
project with deep influence on Japan. In 1996, the Advanced
Cruise-Assist Highway System Research Association (AHSRA)
was established among automobile industries and a large
number of research centers in Japan [5]. The Japanese
Smartway concept car will implement some driver aid
features, such as lane keeping, intersection collision avoid-
ance, and pedestrian detection. A model deployment project
was planned to be operational by 2003 and national
deployment in 2015 [6].

In the United States, a number of initiatives have been
launched to address this problem. In 1995, the US govern-
ment established the National Automated Highway System
Consortium (NAHSC) [19], and launched the Intelligent Vehicle
Initiative (IVI) in 1997. Several promising prototype vehicles/
systems have been investigated and demonstrated within the
last 15 years [20]. The Navlab group at Carnegie Mellon
University has a long history of development of automated
vehicles and intelligent systems for driver assistance. The
group has produced a series of 11 vehicles, Navlab 1 through
Navlab 11. Their applications have included off-road scout-
ing, automated highways, run-off-road collision prevention,
and driver assistance for maneuvering in crowded city
environments. In 1995, NavLab5 demonstrated long range
partially autonomous driving (i.e., automatic lateral control)
on highways from the east coast to the west. With a more than
5,000 km trip, 98 percent of the distance was driven without
intervention of the human safety driver [21]. The latest model
in the Navlab family is the Navlab 11, a robot Jeep Wrangler
equipped with a wide variety of sensors for short-range and
midrange obstacle detection [22], [23], [20].

Major motor companies including Ford and GM have
poured great effort into this research and already demon-
strated several promising concept vehicles. US government
agencies are very supportive of intelligent vehicle research.
Recently, the US Department of Transportation (USDOT) has
launched a five year, 35 million dollar project with GM to
develop and test preproduction rear-end collision avoidance
system [6]. In March 2004, the whole world was stimulated by
the “grand challenge” organized by The US Defense Advanced
Research Projects Agency (DARPA) [24]. In this competition,
15 fully autonomous vehicles attempted to independently
navigate a 250-mile (400 km) desert course within a fixed time
period, all with no human intervention whatsoever—no
driver, no remote-control, just pure computer-processing and
navigation horsepower, competing for a 1 million cash prize.
Although, even the best vehicle (i.e., “Red Team” from
Carnegie Mellon) made only seven miles, it was a very big
step towards building autonomous vehicles in the future.

SUN ET AL.: ON-ROAD VEHICLE DETECTION: A REVIEW 695

Fig. 1. The variety of vehicle appearances poses a big challenge for
vehicle detection.



3 ACTIVE VERSUS PASSIVE SENSORS

The most common approach to vehicle detection is using
active sensors [25] such as radar-based (i.e., millimeter-wave)
[26], laser-based (i.e., lidar) [27], [28], and acoustic-based [29].
In radar, radio waves are transmitted into the atmosphere,
which scatters some of the power back to the radar’s receiver.
A Lidar (i.e., “Light Detection and Ranging”) also transmits
and receives electromagnetic radiation, but at a higher
frequency; it operates in the ultraviolet, visible, and infrared
region of the electromagnetic spectrum.

The reason that these sensors are called active is because
they detect the distance of objects by measuring the travel
time of a signal emitted by the sensors and reflected by the
objects. Their main advantage is that they can measure certain
quantities (e.g., distance) directly without requiring powerful
computing resources. Radar-based systems can “see” at least
150 meters ahead in fog or rain, where average drivers can see
through only 10 meters or less. Lidar is less expensive to
produce and easier to package than radar; however, with the
exception of more recent systems, lidar does not perform as
well as radar in rain and snow. Laser-based systems are more
accurate than radars, however, their applications are limited
by their relatively higher costs. Prototype vehicles employing
active sensors have shown promising results. However,
when a large number of vehicles move simultaneously in the
same direction, interference among sensors of the same type
poses a big problem. Moreover, active sensors have, in
general, several drawbacks, such as low spatial resolution
and slow scanning speed. This is not the case with more recent
laser scanners, such as SICK [27], which can gather high
spatial resolution data at high scanning speeds.

Optical sensors, such as normal cameras, are usually
referred to as passive sensors [25] because they acquire data in
a nonintrusive way. One advantage of passive sensors over
active sensors is cost. With the introduction of inexpensive
cameras, we could have both forward and rearward facing
cameras on a vehicle, enabling a nearly 360 degree field of
view. Optical sensors can be used to track more effectively
cars entering a curve or moving from one side of the road to
another. Also, visual information can be very important in a
number of related applications, such as lane detection, traffic
sign recognition, or object identification (e.g., pedestrians and
obstacles), without requiring any modifications to road
infrastructures. Several systems presented in [5] demonstrate
the principal feasibility of vision-based driver assistance
systems.

4 THE TWO STEPS OF VEHICLE DETECTION

On-board vehicle detection systems have high computational
requirements as they need to process the acquired images at
real-time or close to real-time to save time for driver reaction.
Searching the whole image to locate potential vehicle
locations is prohibitive for real-time applications. The
majority of methods reported in the literature follow two
basic steps: 1) HG where the locations of possible vehicles in
an image are hypothesized and 2) HV where tests are
performed to verify the presence of vehicles in an image
(see Fig. 2). Although there is some overlap in the methods
employed for each step, this taxonomy provides a good
framework for discussion throughout this survey.

5 HG METHODS

Various HG approaches have been proposed in the literature,
which can be classified into one of the following three
categories: 1) knowledge-based, 2) stereo-based, and 3) motion-
based. The objective of the HG step is to find candidate vehicle
locations in an image quickly for further exploration.
Knowledge-based methods employ a priori knowledge to
hypothesize vehicle locations in an image. Stereo-based
approaches take advantage of the Inverse Perspective
Mapping (IPM) [30] to estimate the locations of vehicles and
obstacles in images. Motion-based methods detect vehicles
and obstacles using optical flow. The hypothesized locations
from the HG step form the input to the HV step, where tests
are performed to verify the correctness of the hypotheses.

5.1 Knowledge-Based Methods

Knowledge-based methods employ a priori knowledge to
hypothesize vehicle locations in an image. We review below
some representative approaches using information about
symmetry, color, shadow, geometrical features (e.g., cor-
ners, horizontal/vertical edges), texture, and vehicle lights.

5.1.1 Symmetry

As one of the main signatures of man-made objects,
symmetry has been used often for object detection and
recognition in computer vision [31]. Images of vehicles
observed from rear or frontal views are in general symme-
trical in the horizontal and vertical directions. This observa-
tion has been used as a cue for vehicle detection in several
studies [32], [33]. An important issue that arises when
computing symmetry from intensity, however, is the pre-
sence of homogeneous areas. In these areas, symmetry
estimations are sensitive to noise. In [4], information about
edges was included in the symmetry estimation to filter out
homogeneous areas (see Fig. 3). In a different study, Seelen
et al. [34] formulated symmetry detection as an optimization
problem which was solved using Neural Networks (NNs).

5.1.2 Color

Although few existing systems use color information to its
full extent for HG, it is a very useful cue for obstacle detection,
lane/road following, etc. Several prototype systems have
investigated the use of color information as a cue to follow
lanes/roads [35], or segment vehicles from background [36],
[37]. Crisman et al. [35] used two closely positioned cameras
to extend the dynamic range of a single camera. One camera
was set to capture the shadowed area by opening its iris, and
the other the sunny area by using a closed iris. Combining
color information (i.e., red, green, and blue) from the two
images, he formed a six-dimensional color space. A Gaussian
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Fig. 2. Illustration of the two-step vehicle detection strategy.



distribution was fit to this color space and each pixel was
classified as either road or nonroad pixel.

Buluswar and Draper [36] used a nonparametric learning-
based approach for object segmentation and recognition. A
multivariate decision tree was utilized to model the object in
the RGB color space from a number of training examples.
Among various color spaces, the RGB color space ensures that
there is no distortion in the initial color information, however,
color features are highly correlated—it is difficult to evaluate
the difference of two colors from their distance in RGB color
space. In [37], Guo et al. chose the L*a*b color space instead.
The L*a*b color space has the property that it maps equally
distinct color differences into equal Euclidean distances. An
incremental region fitting method was investigated in the
L*a*b color space for road segmentation [37].

5.1.3 Shadow

Using shadow information as a sign pattern for vehicle
detection was initially discussed in [38]. By investigating
image intensity, it was found that the area underneath a
vehicle is distinctly darker than any other areas on
an asphalt paved road. A first attempt to deploy this
observation can be found in [39], although there was no
systematic way to choose appropriate threshold values. The
intensity of the shadow depends on the illumination of the
image, which in turn depends on weather conditions.
Therefore, the thresholds cannot be, by any means, fixed. To
segment the shadow area, a low and a high threshold are
required. However, it is obvious that it is hard to find a low
threshold for a shadow area. The high threshold can be
estimated by analyzing the gray level of the “free driving
space”—the road right in front of the prototype vehicle.

Tzomakas and Seelen [40] followed the same idea and
proposed a method to determine the threshold values.
Specifically, a normal distribution was assumed for the

intensity of the free driving space. The mean and variance
of the distribution were estimated using Maximum Like-
lihood (ML) estimation. The high threshold of the shadow
area was defined as the limit where the distribution of the
road gray values declined to zero on the left of the mean,
which was approximated by m� 3�, where m is the mean
and � is the standard deviation. This algorithm is depicted
in Fig. 4. It should be noted that the assumption about the
distribution of the road pixels might not always hold true.

5.1.4 Corners

Exploiting the fact that vehicles in general have a rectangular
shape with four corners (upper-left, upper-right, lower-left,
and lower-right), Bertozzi et al. proposed a corner-based
method to hypothesize vehicle locations [41]. Four templates,
each of them corresponding to one of the four corners, were
used to detect all the corners in an image, followed by a search
method to find the matching corners (i.e., a valid upper-left
corner should have a matched lower-right corner).

5.1.5 Vertical/Horizontal Edges

Different views of a vehicle, especially rear/frontal views,
contain many horizontal and vertical structures, such as rear-
window, bumper, etc. Using constellations of vertical and
horizontal edges has shown to be a strong cue for hypothesiz-
ing vehicle presence. In an effort to find pronounced vertical
structures in an image, Matthews et al. [42] used edge
detection to find strong vertical edges. To localize left and
right position of a vehicle, they computed the vertical profile
of the edge image (i.e., by summing the pixels in each column)
followed by smoothing using a triangular filter. By finding
the local maximum peaks of the vertical profile, they claimed
that they could find the left and right position of a vehicle. A
shadow method, similar to that in [40], was used to find the
bottom of the vehicle. Because there were no consistent cues
associated with the top of a vehicle, they detected it by
assuming that the aspect ratio of any vehicle was one.

Goerick et al. [43] proposed a method called Local
Orientation Coding (LOC) to extract edge information. An
image obtained by this method consists of strings of binary
code representing the directional gray-level variation in the
pixel’s neighborhood. These codes carry essentially edge
information. Handmann et al. [44] also used LOC, together
with shadow information, for vehicle detection. Parodi and
Piccioli [45] proposed to extract the general structure of a
traffic scene by first segmenting an image into four regions:
pavement, sky, and two lateral regions using edge grouping.
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Fig. 3. Computing the symmetry: (a) gray-level symmetry, (b) edge

symmetry, (c) horizontal edges symmetry, (d) vertical edges symmetry,

and (e) total symmetry (from [70]).

Fig. 4. Free driving spaces, the corresponding gray-value histograms

and the thresholded images (from [40]).



Groups of horizontal edges on the detected pavement were
then considered for hypothesizing the presence of vehicles.

Betke et al. [46] utilized edge information to detect distant
cars. They proposed a coarse-to-fine search method looking
for rectangular objects. The coarse search checked the whole
image to see if a refined search was necessary, and a refined
search was activated only for small regions of the image,
suggested by the coarse search. The coarse search looked
through the whole edge maps for prominent edges, such as
long uninterrupted edges. Whenever such edges were found,
the refined search process was started in that region.

In [47], vertical and horizontal edges were extracted
separately using the Sobel operator. Then, two edge-based
constraint filters (i.e., rank filter and attached line edge
filter) were applied on those edges to segment vehicles from
background. The edge-based constraint filters were derived
from prior knowledge about vehicles. Assuming that lanes
have been successfully detected, Bucher et al. [48] hypothe-
sized vehicle presence by scanning each lane starting from
the bottom to a certain vertical position, corresponding to a
predefined maximum distance in the real world. Potential
candidates were obtained if a strong horizontal segment
delimited by the lane borders had been found. A multiscale
approach which combines subsampling with smoothing to
hypothesize possible vehicle locations more robustly was
proposed in [49] to address the above problems.

Three levels of detail were used: ð360� 248Þ, ð180� 124Þ,
and ð90� 62Þ. At each level, the image was processed by
applying the following steps:

1. low pass filtering (e.g., first column of Fig. 5);
2. vertical edge detection (e.g., second column of Fig. 5),

vertical profile computation of the edge image (e.g.,
last column of Fig. 5), and profile filtering using a low
pass filter;

3. horizontal edge detection (e.g., third column of Fig. 5),
horizontal profile computation of the edge image (e.g.,
last column of Fig. 5), and profile filtering using a low
pass filter; and

4. local maxima and minima detection (e.g., peaks and
valleys) of the two profiles.

The peaks and valleys of the profiles provide strong
information about the presence of a vehicle in the image.
Starting from the coarsest level of detail, all the local maxima
at that level are found first. Although the resulted low
resolution images have lost fine details, important vertical
and horizontal structures are mostly preserved (e.g., first row
of Fig. 5). Once the maxima at the coarsest level have been
found, they are traced down to the next finer level. The results
from this level are finally traced down to the finest level
where the final hypotheses are generated.

The proposed multiscale approach improves system
robustness by making the hypothesis generation step less
sensitive to the choice of parameters. Forming the first
hypotheses at the lowest level of detail is very useful since this
level contains only the most salient structural features.
Besides improving robustness, the multiscale scheme
speeds-up the whole process since the low resolution images
have much simpler structure as illustrated in Fig. 5 (i.e.,
candidate vehicle locations can be found faster and easier).
Several examples are provided in Fig. 5 (left column).

5.1.6 Texture

The presence of vehicles in an image causes local intensity
changes. Due to general similarities among all vehicles, the
intensity changes follow a certain texture pattern [50]. This
texture information can be used as a cue to narrow down the
search area for vehicle detection. Entropy was first used as a
measure for texture detection. For each image pixel, a small
window was chosen around it, and the entropy of that
window was considered as the entropy of the pixel. Only
regions with high entropy were considered for further
processing.

Another texture-based segmentation method suggested in
[50] uses co-occurrence matrices introduced in [51]. The co-
occurrence matrix contains estimates of the probabilities of
co-occurrences of pixel pairs under predefined geometrical
and intensity constraints. Fourteen statistical features were
computed from the co-occurrence matrices [51]. For typical
textures of geometrical structures, like trucks and cars, four
measurements out of the 14 were found to be critical for object
detection (i.e., energy, contrast, entropy, and correlation) [50].
Using co-occurrence matrices for texture detection is more
accurate in general than using the entropy method mentioned
earlier since co-occurrence matrices employ second order
statistics as opposed to histogram information employed by
the entropy method (see Fig. 6). However, computing the co-
occurrence matrices is expensive.
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Fig. 5. Multiscale hypothesis generation—size of the images: 90� 62
(first row), 180� 124 (second row), and 360� 248 (third row). The
images in the first column have been obtained by applying low pass
filtering at different scales; second column: vertical edge maps; third
column: horizontal edge maps; fourth column: vertical and horizontal
profiles. All images have been scaled back to 360� 248 for illustration
purposes (from [49]).

Fig. 6. Image, free driving space and image segmentation-based
local image entropy and co-occurrence-based image segmentation
(from [50]).



5.1.7 Vehicle Lights

Most of the cues discussed above are not helpful for
nighttime vehicle detection—it would be difficult or
impossible to detect shadows, horizontal/vertical edges,
or corners in images obtained at night conditions. A salient
visual feature during night time is the vehicle lights.
Cucchiara and Piccardi [52] have used morphological
analysis to detect vehicle light pairs in a narrow inspection
area. The morphological operator also considered the
shape, size, and minimal distance between vehicles to
provide hypotheses.

5.2 Stereo-Vision-Based Methods

There are two types of methods that use the stereo
information for vehicle detection. One uses disparity map,
while the other uses an antiperspective transformation—
Inverse Perspective Mapping (IPM). We assume that camera
parameters have already been computed through calibration.

5.2.1 Disparity Map

The difference in the left and right images between corre-
sponding pixels is called disparity. The disparities of all the
image points form the disparity-map. If the parameters of the
stereo rig are known, the disparity map can be converted into
a 3D map of the viewed scene. Computing the disparity map is
very time consuming due to the requirement of solving the
correspondence problem for every pixel; however, it is
possible to do it in real-time using a Pentium class processor
or embedded hardware [53]. Once the disparity map is
available, all the pixels within a depth of interest according to
a disparity interval are determined and accumulated in a
disparity histogram. If an obstacle is present within the depth
of interest, then a peak will occur at the corresponding
histogram bin (i.e., similar idea to the Hough transform).

In [54], it was argued that, to solve the correspondence
problem, area-based approaches were too computationally
expensive, and disparity maps from feature-based methods
were not dense enough. A local feature extractor (i.e.,
“structure classification”) was proposed to solve the corre-
spondence problem faster. According to this approach, each
pixel was classified into various categories (e.g., vertical edge
pixels, horizontal edge pixels, corner edge pixels, etc.) based
on the intensity differences between the pixel and its four
direct neighbors. To simplify finding pixel correspondences,
the optical axes of the stereo-rig were aligned in parallel (i.e.,
corresponding points were on the same row in each image).
Accordingly, their search for corresponding pixels was
reduced to a simple test (i.e., whether two pixels belong to
the same category or not). Obviously, there are cases where
this approach does not yield unique correspondences. To
address this problem, they furtherclassified the pixels bytheir
associated disparities into several bins by constructing a
disparity histogram. The number of significant peaks in the
histogram indicated how many possible objects were present
in the images.

5.2.2 Inverse Perspective Mapping

The term “Inverse Perspective Mapping” does not corre-
spond to an actual inversion of perspective mapping [30],
which is mathematically impossible. Rather, it denotes an
inversion under the additional constraint that inversely
mapped points lie on the horizontal plane. If we consider a
point p in the 3D space, perspective mapping implies a line

passing through this point and the center of projection N ,
see Fig. 7. To find the image of the point, we intersect the
line with the image plane. IPM is defined by the following
procedure: For a point pI

0 in the image, we trace the
associated ray through N towards the horizontal plane. The
intersection of the ray with the horizontal plane is the result
of the inverse perspective mapping applied to the image
point pI

0. If we compose both perspective and inverse
perspective, the horizontal plane is mapped onto itself,
while elevated parts of the scene appear distorted.

Assuming a flat road, Zhao and Yuta [55] used stereo
vision to predict the image seen from the right camera, given
the left image, using IPM. Specifically, they used IPM to
transform every point in the left image to world coordinates,
and reprojected them back onto the right image, which were
then compared against the actual right image. In this way,
they were able to find contours of objects above the ground
plane. Instead of warping the right image onto the left image,
Bertozzi and Broggi [16], [56] computed the IPM of both the
right and left images. Then, they took the difference between
the two remapped left and right images. Due to the flat-road
assumption, anything elevating out from the road was
detected by looking for large clusters of nonzero pixels in
the difference image. In the ideal case, the difference image
contains two triangles for each obstacle that correspond to the
left and right boundaries of the obstacle (see Fig. 8e). This is
because, except for those pixels on the left and right
boundaries of the obstacle, all other pixels are the same in
the left and right remapped images. Locating those triangles,
however, was very difficult due to texture, irregular shape,
and nonhomogeneous brightness of obstacles. To deal with
these issues, they used a polar histogram to detect the
triangles. Given a point on the road plane, the polar histogram
was computed by scanning the difference image and
counting the number of over threshold pixels for every
straight line originating from that point. Knoeppel et al. [57]
clustered the elevated 3D points based on their distance from
the ground plane to generate hypotheses. Each hypothesis
was tracked over time and further verified using Kalman
filters. This system assumed that the dynamic behavior of the
host vehicle was known, and the path information was stored
in a dynamic map. The system was able to detect vehicles up
to 150 m under normal daytime weather conditions.

SUN ET AL.: ON-ROAD VEHICLE DETECTION: A REVIEW 699

Fig. 7. Geometry of perspective mapping.



Although only two cameras are required to find the range
and elevated pixels in an image, there are several advantages
to use more than two cameras [58]: 1) repeating texture can
confuse a two cameras system by causing matching ambi-
guities, which can be eliminated when additional cameras are
present and 2) shorter baseline systems are less prone to
matching errors while longer baseline systems are more
accurate. The combination is better than either one alone.
Williamson and Thorpe [59] investigated a trinocular system.
The trinocular rig was mounted on top of a vehicle with the
longest baseline being 1.2 meters. The third camera was
displaced 50 cm horizontally and 30 cm vertically to provide a
short baseline. The system reported a capacity of detecting
objects as small as 14 cm at range in excess of 100 m. Due to the
additional computational costs, however, binocular system is
more preferred in the driver assistance system.

5.3 Motion-Based Methods

All the cues discussed so far use spatial features to
distinguish between vehicles and background. Another
cue that can be employed is relative motion obtained via the
calculation of optical flow. Let us represent image intensity
at location ðx; yÞ at time t by Eðx; y; tÞ. Pixels on the images
appear to be moving due to the relative motion between the
sensor and the scene. The vector field ~ooðx; yÞ of this motion
is referred to as optical flow.

Optical flow can provide strong information for HG.
Approaching vehicles at an opposite direction produce a
diverging flow, which can be quantitatively distinguished
from the flow caused by the car ego-motion [60]. On the other
hand, departing or overtaking vehicles produce a converging
flow. To take advantage of these observations in obstacle
detection, the image is first subdivided into small subimages
and an average speed is estimated in every subimage.
Subimages with a large speed difference from the global
speed estimation are labeled as possible obstacles.

The performance of several methods for recovering optical
flow~ooðx; yÞ from the intensity Eðx; y; tÞ have been compared
in [61] using some selected image sequences from (mostly
fixed) cameras (see Fig. 9). Most of these methods compute
temporal and spatial derivatives of the intensity profiles and,
therefore, are referred to as differential techniques. Getting a
reliable dense optical flow estimate under a moving-camera
scenario is not an easy task. Giachetti et al. [60] developed
some of the best first-order and second-order differential
methods in the literature and applied them to a typical image
sequence taken from a moving vehicle along a flat and
straight road. In particular, they managed to remap the
corresponding points between two consecutive frames, by
minimizing the following distance measure:
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Fig. 8. Obstacle detection: (a) left and (b) right stereo images, (c) and

(d) the remapped images, (e) the difference image, and (f) corresponding

polar histogram (from [56]).

Fig. 9. Comparison of optical flows computed with different algorithms:
(a) a frame of image sequence, (b) the theoretical optical flow expected
from a pure translation over a flat surface, (c) optical flow from first-order
derivative method, (d) optical flow using second-order derivatives the
remapped images, (e) optical flow using multiscale differential techni-
que, and (f) optical flow computed with correlation technique (from [60]).
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where ðx0; y0Þ and ðx; yÞ are two corresponding points at
time t0 and t. The size of the search window was n� n.
Since adjusting the corresponding pairs for each of the
points was quite expensive, they employed a less dense grid
to reduce computational cost.

Kruger et al. [62] estimated optical flow from spatio-
temporal derivatives of the gray value images using a local
approach. They further clustered the estimated optical flow to
eliminate outliers. Assuming a calibrated camera and known
ego-motion, they detected both moving and stationary
objects. Generating a displacement vector for each pixel (i.e.,
dense optical flow) is time consuming and also impractical for
a real-time system. In contrast to dense optical flow, “sparse
optical flow” is less time consuming by utilizing image
features, such as corners [63], [64], local minima and maxima
[65], or “Color Blobs” [66]. Although it can only produce a
sparse flow, feature based methods can provide sufficient
information for HG. Moreover, in contrast to pixel-based
optical flow estimation methods where pixels are processed
independently, feature-based methods utilize high-level
information. Consequently, they are less sensitive to noise.

6 HV METHODS

The input to the HV step is the set of hypothesized locations
from the HG step. During HV, tests are performed to verify
the correctness of a hypothesis. Approaches to HV can be
classified mainly into two categories: 1) template-based and
2) appearance-based. Template-based methods use predefined
patterns from the vehicle class and perform correlation.
Appearance-based methods, on the other hand, learn the
characteristics of the vehicle class from a set of training
images which should capture the variability in vehicle
appearance. Usually, the variability of the nonvehicle class
is also modeled to improve the performance. Each training
image is represented by a set of local or global features. Then,
the decision boundary between the vehicle and nonvehicle
classes is learned either by training a classifier (e.g., NNs,
Support Vector Machines (SVMs)) or by modeling the
probability distribution of the features in each class (e.g.,
using the Bayes rule assuming a Gaussian distribution).

6.1 Template-Based Methods

Template-based methods use predefined patterns of the
vehicle class and perform correlation between the image
and the template. Some of the templates reported in the
literature represent the vehicle class “loosely,” while others
are more detailed. It should be mentioned that, due to the
nature of the template matching methods, most papers in
the literature do not report quantitative results and
demonstrate performance through examples.

Parodi and Piccioli [45] proposed a hypothesis verification
scheme based on the presence of license plates and rear
windows. This can be considered as a loose template of the
vehicle class. No quantitative performance was include in the
paper. Handmann et al. [44] proposed a template based on the
observation that the rear/frontal view of a vehicle has a
“U” shape (i.e., one horizontal edge, two vertical edges, and
two corners connecting the horizontal and vertical edges).

During verification, they considered a vehicle to be present in
the image if they could find the “U” shape.

Ito et al. [67] used a very loose template to recognize
vehicles. Using active sensors for HG, they checked whether
or not pronounced vertical/horizontal edges and symmetry
existed. Due to the simplicity of the template, they did not
expect very accurate results, which was the main reason for
employing active sensors for HG. Regensburger et al. [68]
utilized a template similar to [67]. They argued that the
visual appearance of an object depends on its distance from
the camera. Consequently, they used two slightly different
generic object (vehicle) models, one for nearby objects and
another for distant objects. This method, however, raises the
question of what model to use in a specific location. Instead
of working with different generic models, distance-depen-
dent subsampling was performed before the verification
step in [69].

A template, called “moving edge closure,” was used in
[52] which was fit to groups of moving points. To get the
moving edge closure, they performed edge detection on the
area covered by the detected moving points, followed by
the external edge connection. If the size of the moving edge
closure was within a predefined range, they claimed vehicle
detected. Nighttime vehicle detection was also addressed in
this work [52]. Basically, pairs of headlights were consid-
ered as templates for vehicle detection.

A rather loose template was also used in [70], where
hypotheses were generated on the basis of road position and
perspective constraints. The template contained a priori
knowledge about vehicles: “A vehicle is generally symmetric,
characterized by a rectangular bounding box which satisfies
specific aspect ratio constraints.” The model matching
worked as follows: Initially, the hypothesized region was
checked for the presence of two corners representing the
bottom of the bounding box, similar to the “U” shape idea in
[44]. The presence of corners was validated using perspective
and size constraints. Then they detected the top part of the
bounding box in a specific region determined, once again, by
perspective and size constraints. Once the bounding box was
detected successfully, they claimed vehicle presence in that
region. This template could be very fast, however, it
introduces some uncertainties, given that there might be
other objects on the road satisfying those constraints (e.g.,
distant buildings).

6.2 Appearance Methods

HV using appearance models is treated as a two-class
pattern classification problem: vehicle versus nonvehicle.
Building a robust pattern classification system involves
searching for an optimum decision boundary between the
classes to be categorized. Given the huge within-class
variabilities of the vehicle class, we can imagine that this is
not an easy task. One feasible approach is to learn the
decision boundary based on training a classifier using the
feature sets extracted from a training set.

Appearance-based methods learn the characteristics of
vehicle appearance from a set of training images which
capture the variability in the vehicle class. Usually, the
variability of the nonvehicle class is also modeled to
improve performance. First, a large number of training
images is collected and each training image is represented
by a set of local or global features. Then, the decision
boundary between the vehicle and nonvehicle classes is

SUN ET AL.: ON-ROAD VEHICLE DETECTION: A REVIEW 701



learned either by training a classifier or by modeling the
probability distribution of the features in each class.

Various feature extraction methods have been investi-
gated in the context of vehicle detection. Based on the method
used, the features extracted can be classified as either local or
global. Global features are obtained by considering all the
pixels in an image. Wu and Zhang [71] used standard
Principal Components Analysis (PCA) for feature extraction,
together with a nearest-neighbor classifier, reporting an 89
percent accuracy. However, their training database was quite
small (93 vehicle images and 134 nonvehicle images), which
makes it difficult to draw any useful conclusions.

An inherent problem with global feature extraction
approaches is that they are sensitive to local or global
image variations (e.g., pose changes, illumination changes,
and partial occlusion). Local feature extraction methods on
the other hand are less sensitive to these effects. Moreover,
geometric information and constraints in the configuration
of different local features can be utilized either explicitly
or implicitly.

Different from [71], in [42], PCA was used for feature
extraction and Neural Networks (NNs) for classification.
First, eachsubimagecontaining vehiclecandidates wasscaled
to 20� 20, then it was subdivided into 25 4� 4 subwindows.
PCA was applied on every subwindow (i.e., “local PCA”) and
the output was provided to a NN to verify the hypothesis.

Goerick et al. [43] andNoli et al. [72] usedthe (LOC) method
(see Section 5.1.5) to extract edge information. The histogram
of LOC within the area of interest was then provided to a
NN classifier, a Bayes classifier and combination of both for
classification. For NN, the number of nodes in the first layer
was between 350-450 while the number of hidden nodes was
10-40. They used 2,000 examples for training and the whole
system ran in real-time. The performance of the neural net
classifier was 94.7 percent, which is slightly better than their
Bayes classifier (94.4 percent), also very close to the combined
classifier (95.7 percent).

Kalinke et al. [50] designed two models for vehicle
detection: one for sedans and the other for trucks. Two
different model generation methods were used. The first one
was designed manually, while the second one was based on a
statistical algorithm using about 50 typical trucks and sedans.
Classification was performed using NNs. The input to the
NNs was the Hausdorrf distances between the hypothesized
vehicles and the models, both represented in terms of the
LOC. The NN classified every input into three classes: sedans,
trucks, or background. Similar to [43], Handmann et al. [44]
utilized the histogram of LOC, together with a NN, for vehicle
detection. The Hausdorrf distance was used for the classifica-
tion of trucks and cars such as in [50]. No quantitative
performance was reported in [44] or [50].

A statistical model of vehicle appearance was investigated
by Schneiderman and Kanade [73]. A view-based approach
employing multiple detectors was used to cope with view-
point variations. The statistics of both object and “nonobject”
appearance were represented using the product of two
histograms with each histogram representing the joint
statistics of a subset of Haar wavelet features and their
position on the object. A three-level wavelet transform was
used to capture the space, frequency, and orientation
information. This three-level decomposition produced
10 subbands and 17 subsets of quantized wavelet coefficients
were used. Bootstrapping was used to gather the statistics of
the nonvehicle class. The best performance reported in [73]

was 92 percent. A different statistical model was investigated
by Weber et al. [74]. They represented each vehicle image as a
constellation of local features and used the Expectation-
Maximization (EM) algorithm to learn the parameters of the
probability distribution of the constellations. They used
200 images for training and reported an 87 percent accuracy.

An overcomplete dictionary of Haar wavelet features was
utilized in [75] for vehicle detection. They argued that this
representation provided a richer model and spatial resolution
and that it was more suitable for capturing complex patterns.
The overcomplete Haar wavelet features were derived from a
set of redundant functions, where the wavelets at level nwas
1=4� 2n instead of 2n. They referred it to as quadruple density
dictionary. A total of 1,032 positive training patterns and
5,166 negative training patterns were used for training and
the ROC showed that the false positive rate was close to
1 percent when the detection rate approached to 100 percent.

Sun et al. [76], [49] went one step further by arguing that
the actual values of the wavelet coefficients are not very
important for vehicle detection. In fact, coefficient magni-
tudes indicate local oriented intensity differences, informa-
tion that could be very different even for the same vehicle
under different lighting conditions. Following this observa-
tion, they proposed using quantized coefficients to improve
detection performance. The quantized wavelet features
yielded a detection rate of 93.94 percent compared to
91.49 percent using the original wavelet features.

Using Gabor filters for vehicle feature extraction was
investigated in [77]. Gabor filters provide a mechanism for
obtaining orientation and scale tunable edge and line
detectors. Vehicles contain strong edges and lines at
different orientation and scales; thus, this type of features
are very effective for vehicle detection. The hypothesized
vehicle subimages were subdivided into nine overlapping
subwindows. Gabor filters were then applied on each
subwindow separately. The magnitudes of the responses of
the Gabor filters were collected from each subwindow and
represented by three moments: the mean �, the standard
deviation �, and the skewness �. Classification was
performed using Support Vector Machines (SVMs) yield-
ing an accuracy of 94.81 percent.

A “vocabulary” of information-rich vehicle parts was
constructed automatically by applying the Forstner interest
operator onto a set of representative images, together with a
clustering method in [78]. Each image was represented in
terms of parts from this vocabulary to form a feature vector,
which was used to train a classifier to verify hypotheses.
Some successful detections were reported under high
degree of clutter and occlusion, and an overall 90.5 percent
accuracy was achieved. Following the same idea (i.e.,
detection using components), Leung [79] investigated a
different vehicle detection method. Instead of using the
Forstner interest operator, differences of Gaussians were
applied onto images in scale space, and maxima and
minima were selected as the key-points. At each of the key-
points, the Scale Invariant Feature Transform (SIFT) [80]
was utilized to form a feature vector, which was used to
train a SVM Classifier. Leung tested his algorithm on the
UIUC data [78], showing slightly better performance.

7 INTEGRATING DETECTION WITH TRACKING

Vehicledetectioncanbeimprovedconsiderably,bothinterms
of accuracy and time, by taking advantage of the temporal
continuity present in the data. This can be achieved by
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employing a tracking mechanism to hypothesize the location
of vehicles in future frames. Tracking takes advantage of the
fact that it is very unlikely for a vehicle to show up only in one
frame. Therefore, vehicle location can be hypothesized using
past history and a prediction mechanism. When tracking
performance drops, common hypothesis generation techni-
ques can be deployed to maintain performance levels.

By examining the reported vehicle detection and tracking
algorithms/systems at the structural level, many similarities
can be found. Specifically, the majority of existing on-road
vehicle detection and tracking systems use a detect-then-track
approach (i.e., vehicles are first detected and then turned over
to the tracker). This approach aims to resolve detection and
tracking sequentially and separately. There are many exam-
ples in the literature following this strategy. In Ferryman et al.
[81], vehicle detection is based on template matching [82]
while tracking uses dynamic filtering. In that work, high
order statistics were used for detection and a Euclidean-
distance-based correlation was employed for tracking. In
[47], vehicles were tracked using multiple cues such as
intensity and edge data. To increase sensor range for vehicle
tracking, Clady et al. employed an additional P/T/Z camera
[83]. In [84], close to real time performance was reported (i.e.,
14 frames per second) by integrating detection with tracking
based on deformable models. This approach has several
drawbacks. First, false detections will be passed to the tracker
without a chance of rectification. Second, tracking templates
from imperfect detections will jeopardize the reliability of
trackers. Most importantly, this type of approaches do not
exploit temporal information in detection.

There exist several exceptions, where temporal informa-
tion has been incorporated into detection. Betke et al. [85],
[46] have realized that reliable detection from one or two
images is very difficult and it only works robustly under
cooperative conditions. Therefore, they used a refined
search within the tracking window to re-enforce the
detections (i.e., a car template was created online every
10th frame and was correlated with the object in the
tracking windows). Similar to [46], temporal tracking was
used to suppress false detections in [86], where only two
successive frames were employed. Similar observations
were made by Hoffman et al. [87] (i.e., detection quality was
improved by accumulating feature information over time).

Temporal information has not been fully exploited yet in
the literature. Several efforts have been reported in [88] and
more recently in [89]. We envision a different strategy (i.e.,
detect-and-track), where detection and tracking are addressed
simultaneously in a unified framework (i.e., detection results
trigger tracking, and tracking reenforces detection by
accumulating temporal information through some probabil-
istic models). Approaches following this framework would
have better chances to filter out false detections in subsequent
frames. In addition, tracking template updates would be
achieved through repeated detection verifications.

8 DISCUSSION

On-road vehicle detection is so challenging, that none of the
methods reviewed can solve it alone completely. Different
methods need to be undertaken and selected based on the
prevailed conditions faced by the system [44], [90].
Complementary sensors and algorithms should be used to
improve overall robustness and reliability. In general,

surrounding vehicles can be classified into three categories
according to their relative position to the host vehicle:
1) overtaking vehicles, 2) midrange/distant vehicles, and
3) close-by vehicles (see Fig. 10). In close-by regions (A1),
we may only see part of the vehicle. In this case, there is no
free space in the captured images, which makes the
shadow/symmetry/edge-based methods inappropriate. In
the overtaking regions (A2), only the side view of the
vehicle is visible while appearance changes fast. Methods
detecting vehicles in these regions might be better to
employ motion information or dramatic intensity changes
[85], [46]. Detecting vehicles in the midrange/distant region
(A3) is relatively easier since the full view of a vehicle is
available and appearance is more stable.

Next, we provide a critique of the HG and HV methods
reviewed in the previous sections. Our purpose is to
emphasize their main strengths and weaknesses as well as
to present potential solutions reported in the literature for
enhancing their performance for deployment in real settings.
The emphasis is on making these methods more reliable and
robust to deal with the challenging conditions encountered in
traffic scenes. Additional issues are discussed in Section 9.

8.1 Critique of Knowledge-Based HG Methods

Systems employing local symmetry, corners, or texture
information for HG are most effective in relatively simple
environments with no or little clutter. Employing these cues
in complex environments (e.g., when driving downtown
where the background contains many buildings and
different textures), would introduce many false positives.
In the case of symmetry, it is also imperative to have a
rough estimate of the vehicle’s location in the image for fast
and accurate symmetry computations. Even when utilizing
both intensity and edge information, symmetry is quite
prone to false detections, such as symmetrical background
objects, or partly occluded vehicles.

Color information has not been deployed extensively for
HG due to the inherent difficulties of color-based object
detection in outdoor settings. In general, the color of an
object depends on illumination, reflectance properties of the
object, viewing geometry, and sensor parameters. Conse-
quently, the apparent color of an object can be quite
different during different times of the day, under different
weather conditions, and under different poses.

Employing shadow information and vehicle lights for HG
have been exploited in a limited number of studies. Under
perfect weather conditions, HG using shadow information
can be very successful. However, bad weather conditions
(i.e., rain, snow, etc.) or bad illumination conditions make
road pixels quite dark, causing this method to fail. Vehicle
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Fig. 10. Detecting vehicles in different regions requires different
methods. A1: Close by regions. A2: Overtaking regions. A3: Midrange/
distant regions.



lights is a ubiquitous vehicle feature at night; however, it
could be confused with traffic lights and background lights.
We believe that these cues have limited employability.

Utilizing horizontal and vertical edges for HG is
probably the most promising, knowledge-based, approach
reported in the literature. Our experience with using edge
information in realistic experiments has been very positive
[49]. Although this method can suffer from false positives,
many of them can be rejected quickly using simple tests
(e.g., aspect ratio). From a practical point of view, there are
fast implementations of edge detection in hardware making
this approach even more attractive. The main problem with
this approach is that it depends on a number of parameters
that could affect system performance and robustness. For
example, we need to decide the thresholds for the edge
detection step, the thresholds for choosing the most
important vertical and horizontal edges, and the thresholds
for choosing the best maxima (i.e., peaks) in the profile
images. A set of parameter values might work well under
certain conditions, however, they might fail in other
situations. We have described in Section 5 a multiresolution
scheme addressing these issues.

8.2 Critique of Stereo-Based HG Methods

Stereo-based methods have been employed extensively for
HG, however, traditional implementations are time con-
suming and work well only if the camera parameters have
been estimated accurately. As a result, their performance is
significantly impaired. Using stereo vision to hypothesize
vehicle location, dense disparity maps are necessary to
guarantee that all regions are searched for potential
vehicles. Naive approaches to stereo computation are not
suitable for dynamic object detection at reasonable vehicle
speed due to the high complexity (i.e., Oðdm2n2Þ, where d is
the number of shifts over which the correspondence search
is performed, m is the size of the support window, and n is
the size of the images). There have been several approaches
to overcome this problem, such as, computing sparse
disparity maps [90], [13], employing multiresolution
schemes [90], [13], or using prior knowledge about the
environment to limit the search for correspondences [53].

Estimating the stereo parameters accurately is also hard
to guarantee in an on-road scenario. Since the stereo rig is on
a moving vehicle, vibrations from the vehicle’s motion and
windy conditions might shift the cameras, while the height
of the cameras keeps changing due to the vehicle’s
suspension. Suwa et al. [91] proposed a method to update
the parameters and compensate for errors caused by camera
movements. The 3D measurements of a stereo-based system
are calculated using:

Mw ¼ RcMc þ tc; ð2Þ

where Mw and Mc represent vectors in the world coordinate
and camera coordinate systems,Rc is a rotation matrix, and tc
is a translation vector. A two-parameter sway model was
used in [91]: the sway direction angle and the sway range.
Incorporating the effect of sway parameters leads to a
modified model:

Mw ¼ R�R�ðR��R�Mc þ tcÞ þ t�; ð3Þ

where� ¼ �2 sin�1ð d2HÞ, d is the sway range,H is the height of
the camera, � denotes the sway direction angle, and � the set
up tilt angle. The two sway parameters were estimated from

corresponding pairs with sway and without sway. The image
data without sway was assumed to have been obtained from
the no sway image while the sway data was obtained by using
correlation. Estimation was done using least squares.

Bertozzi et al. [92] have also analyzed the parameter drifts
and argued that vibrations affect, mostly, extrinsic para-
meters, and not the intrinsic parameters. A fast self-calibra-
tion method was considered to deal with this issue. Eight
carefully designed markers were put on the hood, four for
each of the two cameras. Since the world coordinates of the
markers were known, the determination of their image
coordinates was sufficient to compute the position and
orientation of the cameras in the same reference system.

8.3 Critique of Motion-Based HG Methods

In general, motion-based methods can detect objects based
on relative motion information. Obviously, this is a major
limitation, for example, this method cannot be used to
detect static obstacles, which can represent a big threat.
Despite this fact, employing motion information for HG has
shown promising results; however, it is computationally
intensive while its performance is affected by several
factors. Generating a displacement vector for each pixel
(continuous approach) is time-consuming and impractical
for a real-time system. In contrast, discrete methods based
on image features such as color blobs [66] or local intensity
minima and maxima [65] has shown good performance
while being faster. There have been also attempts to speed
up motion-based computations using multiresolution
schemes [90]. Several factors affect the computation of
motion information [60] including:

. Displacements between consecutive frames. Fast move-
ment of the host vehicles causes significant pixel
displacements. Points in the image can move by
more than five pixels, when the car moves at a speed
faster than 30 km/h. Consequently, aliasing in the
computation of the temporal derivatives introduces
errors into the computation of optical flow.

. Lack of textures. Large portions in the images
represent the road bed, where gray-level variations
are quite small, especially when driving the vehicle
in a country road. Significant instability can be
introduced to the computation of the spatial deriva-
tives due to texture insufficiency.

. Shocks and vibrations. Image motion is the sum of a
smooth component due to the car ego-motion and a
high frequency component due to the camera shocks
and vibrations. In the presence of shocks and
vibrations, caused by mechanical instability of the
camera, a high frequency noise is introduced to the
intensity profile. This noise gets greatly amplified
during the computation of the temporal derivatives.
In general, error introduced by shocks and vibra-
tions is small if the camera is mounted on high
quality antivibrating platforms and the vehicle is
moving along usual roads. However, if the camera is
mounted less carefully or the vehicle is driven on a
bumpy road, the error can be 10 times larger.

Among these factors, camera movement is the main reason
that traditional differential methods fail. If we can counter-
balance camera movements, then these methods could
become very useful. This is the objective of another research
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direction, called “image stabilization” [93], [94]. Image
stabilization is based on frame-to-frame registration. Taking
the first frame of the image sequence as a reference, the
stabilization method registers this frame to the next frame,
computes the motion parameters from the current frame to
the reference frame. Then, it uses the estimated parameters to
warp the current frame to get the stabilized image, which can
be considered as taken from a stationary camera. The motion
model employed in [93] contains four parameters: two for
translation, one for rotation, and one for scaling:

X2

Y2

� �
¼ s cos 	 sin 	

� sin 	 cos 	

� �
X1

Y1

� �
þ �X2

�Y2

� �
; ð4Þ

where Xi

Yi

� �
are the image frame coordinates at time ti,

�X2

�Y2

� �
is the translation measured in the image coordinate system of

a frame at t2, 	 is the rotation angle between the two frames,

and s is a scaling factor.
This model was appropriate for image sequence of

distant scenes, where perspective distortion could be
neglected. The motion parameters were computed by
matching a small number of feature points between two
frames. The extraction of feature points was done via
searching a predefined small window on the very top
region of the image using correlation. By constraining the
selection of feature points to the very top region, features
that were too close to the camera could be avoided and,
consequently, less distortion was introduced to the model.
It should be mentioned that image stabilization methods
would fail when an image contains close scenes—a
common scenario when driving a vehicle in downtown or
during vehicle turns.

8.4 Critique of HV Methods

Constructing explicit models of the objects to be recognized is
very difficult when object appearance varies a lot. In general,
appearance-based methods are more accurate than template-
based methods, however, they are more costly due to
classifier training. Nevertheless, appearance-based methods
are becoming more and more popular due to the exponential
growth in processor speed. Analyzing the pros and cons of
various appearance-based methods proposed in the litera-
ture is not simple. Most studies have been performed using
different data sets and performance measures making a fair
evaluation of different feature extraction methods and
classification schemes difficult if not impossible. In a recent
study, experimental results were reported using several
feature extraction methods (i.e., PCA features, wavelet
features, and Gabor features) and classifiers (i.e., Neural
Networks (NN) and Support Vector Machines (SVMs)) [95]).
Testing was performed using a common data set obtained by
driving Ford’s concept vehicle under different traffic condi-
tions (e.g., structured highway, complex urban streets, and
varying weather conditions). The best approach in terms of
accuracy was found to be Gabor features with SVMs, yielding
an error rate of 5.33 percent with a false positives (FP) rate of
3.46 percent and a false negatives (FN) rate of 1.88 percent.
Combining Gabor and Harr wavelet features yielded a
slightly better performance (i.e., an error rate of 3.89 percent
with a FP rate of 2.29 percent and a FN rate of 1.6 percent) at
the expense of higher time requirements. It should be
mentioned that the error rate using Haar wavelet features
with SVMs was 8.52 percent, the FP rate was 6.50 percent and

the FN rate was 2.02 percent. More systematic evaluations of
various feature extraction methods and classification
schemes are required in order to assess the performance of
HV methods. In order for these comparisons to become more
meaningful, it is imperative to develop first representative
datasets (i.e., benchmarks) and carefully designed evaluation
procedures (i.e., see Section 9.6).

9 CHALLENGES AHEAD

An important issue in the realization of successful driver
assistance applications is the design of vehicle detection and
tracking systems that yield a maximum level of reliability
and robustness in real-time. Although many efforts have
been put into this research area, many algorithms and
systems have already been reported, many prototype
vehicles have already been demonstrated, a highly robust,
reliable, real-time system is yet to be demonstrated.
Achieving these objectives requires addressing several
challenges and solving quite different problems.

From a technical point of view, the success of an on-road
vehicle detection system will depend on the number of
correct detections versus the number of false alarms that it
produces, assuming a certain processing rate and a processor
platform. Determining the desired level of accuracy for
vehicle detection is not easy and depends on the nature of the
application. For example, if vehicle detection is part of a
warning system, then higher false positive rates can be
tolerated. In contrast, systems involving active vehicle control
need to be more conservative in terms of false alarms. There
are a number of ways to significantly reduce the number of
false positives while keeping high accuracy including
improved algorithmic solutions (e.g., using multiple cues,
advanced statistical, and learning models), sensor fusion
(e.g., visible, IR, and radar), and telematics (e.g., vehicle-to-
vehicle communication and GPS-based localization). We
elaborate more on these issues next.

9.1 Algorithmic Advances

The design of computer vision algorithms that operate
robustly and reliably in complex and wide varying environ-
ments (e.g., rain, fog, night, etc.) is a major challenge. Using
on-board cameras makes some well-established computer
vision techniques unsuitable (e.g., background subtraction is
not appropriate due to fast background changes caused by
camera motion) or not directly applicable unless making
certain assumptions or adding enhancements (e.g., stereo-
based systems require frequent recalibration to account for
camera movements caused by shocks and vibrations).
Efficient implementations should also be considered (e.g.,
fast motion-based estimation) in order to meet real-time
performance requirements.

Developing more powerful algorithms to deal with a
variety of issues is thus essential. In doing so, it is important to
understand first the requirements of on-road vehicle detec-
tion and design customized algorithmic solutions that meet
the requirements while taking advantage of domain knowl-
edge and inherent constraints (e.g., exploiting temporal
continuity to improve accuracy and robustness or assuming
a flat road to simplify the mapping between image pixels and
word coordinates). We have presented in Section 8 a number
of issues associated with HG approaches and potential
algorithmic solutions to deal with these issues effectively.
More efforts are clearly required in this direction.
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In HV, most research efforts have focused on feature
extraction and classification based on learning and statistical
models. Efforts in this direction should continue while
capitalizing on recent advances in the statistical and machine
learning areas. For example, one issue that has not been given
enough attention in the vehicle detection literature is the issue
of selecting a good set of features. In most cases, a large
number of features is employed to compensate for the fact
that relevant features are unknown a priori. However,
without employing some kind of feature selection strategy,
many of them would be either redundant or even irrelevant
which could affect classification accuracy seriously. In
general, it is highly desirable to use only those features that
have great separability power while ignoring or paying less
attention to the rest. For instance, to allow a vehicle detector to
generalize nicely, it would be nice to exclude features
encoding fine details which might be present in some vehicles
only. Finding out what feature to use for classification/
recognition is referred to as feature selection. Recently, a few
efforts have been reported in the literature addressing this
issue in the context of vehicle detection [76], [96], [97], [98].
Several efforts have even been reported to improve tracking
through feature selection [99]. We believe that more efforts
are required in this direction along with efforts to develop
more powerful feature extraction and classification schemes.
Recent advances in machine learning and statistics (e.g.,
kernel methods [100] should be leveraged in this respect).

Combining multiple cues should also be explored more
actively as a viable means to develop more reliable and
robust systems. The main motivation is that the use of a
single cue suitable for all conceivable scenarios seems to be
impossible. Combining different cues has produced pro-
mising results (e.g., combining LOC, entropy, and shadow
[44], shape, symmetry, and shadow [101], color and shape
[102], and motion with appearance [103]). Effective fusion
mechanisms as well as cues that are fast and easy to
compute are important research issues.

9.2 Sensor Advances

Employing more powerful sensors in vehicle detection
applications can influence system performance consider-
ably. Specific objectives include improving dynamic range,
spectral sensitivity, spatial resolution, and incorporating
computational capabilities.

Traditional CCD cameras lack the dynamic range neces-
sary to operate in traffic under adverse lighting conditions.
Cameras with enhanced dynamic range are needed to enable
daytime and nighttime operation without blooming. An
example is Ford’s proprietary low-light camera which has
been developed jointly between Ford Research Laboratory
and SENTECH. It uses a Sony x-view CCD array with
specifically designed electronic profiles to enhance the
camera’s dynamic range. Fig. 11a and Fig. 11c show the
dynamic range of the low light camera, while Fig. 11b and
Fig. 11d show the same scene images caught under same
illumination conditions by using a normal camera. The low-
light camera has been employed in a number of studies
including [77], [76], [104], [49], [96], [97]. Recently, several
efforts have focused on using CMOS technology to design
cameras with improved dynamic range.

Low-light cameras do not extend visual capabilities
beyond the visible spectrum. In contrast, Infrared (IR) sensors
allow us to sense important information in the nonvisible

spectrum. IR-based systems are less sensitive to adverse
weather or illumination changes—day and night snapshots
of the same scene are more similar to each other. Several
studies have been carried out to evaluate the feasibility and
advantages of using IR for driver assistance system [105],
[106], [107], [108]. An interesting example is the miniaturized
optical range camera developed in the project MINORA [109],
[110]. It works in the near-IR, it is cheap, fast, and capable of
providing 3D information with high accuracy. However, it
has certain limitations such as low resolution and narrow
field of view. Fusing several sensors together could offer
considerable performance improvements (see Section 9.3).

Improving camera resolution can offer significant bene-
fits too. Over the last few years, the resolution of sensors has
been drastically enhanced. A critical issue in this case is
decreasing acquisition and transfer time. CMOS technology
holds some potential in this direction (i.e., pixels can be
addressed independently like in traditional memories).

In conventional vision systems, data processing takes
place at a host computer. Building cameras with internal
processing power (i.e., vision chip) is an important goal. The
main idea is integrating photo-detectors with processors on a
very large scale integration [111]. Vision chips have many
advantages over conventional vision systems, for instance,
high speed, small size, and lower power consumption, as well
as a wide brightness range, etc. Several cameras available
today allow to address and solve some basic problems
directly at the sensor level (e.g., image stabilization can now
be performed during image acquisition).

9.3 Sensor Fusion

Developing driver assistance system suitable for urban
areas where traffic signs, crossings, traffic jams, and other
participants (motorbikes, bicycles, pedestrians, or even live
stocks) may exist poses extra challenges. Exclusively
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daytime image. (b) Same scene caught using normal camera. (c) Low-
light camera nighttime scene. (d) Same nighttime scene caught using
normal camera.



vision-based systems and algorithms are not yet powerful
enough to deal with complex traffic situations. To extend
the application of a driver assistance systems, substantial
research efforts are required to develop systems employing
information from multiple sensors, both active and
passive, effectively (see Fig. 12).

Sensor characteristics reveal that each sensor can only
perceive certain characteristics of the environment, there-
fore, a single sensor is not sufficient enough to comprehen-
sively represent the driving environment [67], [37]. A
multisensor approach has the potential to yield a higher
level of reliability and security. Methods for sensor fusion
and integration are concerned with improving the sensing
capacity by using redundant and complementary informa-
tion from multiple sensors. These sensors are able to obtain
more accurate environment features that are impossible to
perceive with a single sensor.

For example, acoustic sensors were fused with video
sensors in [29] for both detection and tracking in order to take
advantage of the complementary information available in the
two sensors. In another study, a multisensor approach was
adopted using sensor technologies with widely overlapping
fields of view between different sensors [112]. Depending on
the relevance of the area covered, they increased the degree of
vehicle is surveyed by means of a single laser sensor, the sides
are each covered by two independent laser scanners and
several overlapping short range radar sensors, and the front
of the car is covered by three powerful long-range sensors
(i.e., stereo-vision, laser, and radar). The sensor signals are
combined by sensor fusion into a joint obstacle map. By
considering confidence and reliability measures for each
sensor, the obstacle map computed by sensor fusion was
shown to be more precise and reliable than any of the
individual sensor outputs themselves.

Although sensor fusion has great potential to improve
driver assistance system, developing the actual multisensor
platform requires dealing with a series of problems including
not only the conventional issues of sensor fusion and
integration, but also some special issues in driver assistance
system design. With the common geometry and time frames,
sensor fusion needs to be implemented at the various levels:

. Registration level. To allow fusing the data from
different sensors effectively, sensor data needs to be
registered first.

. Encapsulation level. Registered data from different
sensors can be fused to yield more accurate informa-
tion for the detected vehicles based on the reliability/
confidence levels of the attributes associated with

different sensors. For instance, a more accurate
position-velocity could be obtained by analyzing the
registered radar and stereo-vision data. In other
words, at this level, same type of information is
encapsulated together to a more accurate and concise
representation.

. Perception-map level. Complementary information
can be fused to infer new knowledge about the
driving environment. The position-velocity informa-
tion of detected vehicles and road geometry infor-
mation (from vision) can be fused to produce a
primary perception map, where vehicles can be
characterized as being either stationary/moving or
inside/outside the lane.

. Threat quantification level. Vehicle type, shape, dis-
tance, and speed information can be fused to
quantify the threat level of a vehicle in the percep-
tion map to the host vehicle.

Most vehicle detection approaches have been implemen-
ted as “autonomous systems” with all instrumentation and
intelligence on-board the vehicle. Significant performance
improvements can be expected, however, by implementing
vehicle detection as “co-operative systems” where assistance
is provided from external sources (i.e., the roadway, or from
other vehicles, or both). Examples of roadway assistance
include passive reference markers in the infrastructure and
GPS-based localization. Vehicle-to-vehicle co-operation
works by transmitting key vehicle parameters and intentions
to close-by vehicles. Having this information available as well
as knowing the type of surrounding environment through
GPS might reduce the complexity of the problem and make
vehicle detection more reliable and robust.

9.4 Software Issues

Vision-based vehicle detection systems should be modular,
reconfigurable, and extensible to be able to deal with a wide
variety of image processing tasks. The functionality of most
vehicle detection systems today is achieved by a few
algorithms that are hard-wired together. This is quite
inefficient and cannot handle satisfactorily the complexities
involved. Recently, there have been some efforts to develop a
software architecture that can deal with different levels of
abstraction including sensor fusion, integration of various
algorithms, economical use of resources, scalability, and
distributed computing. For example, a multiagent-system
approach was proposed in [13] (i.e., ANTS or Agent
NeTwork System) to address these issues. In another study
[85], a hard real-time operating system called “Maruti” was
used to guarantee that the timing constraints on the various
vision processes were satisfied. The dynamic creation and
termination of tracking processes optimized the amount of
computational resources spent and allowed fast detection
and tracking of multiple cars. Obviously, more efforts in this
area would be essential.

9.5 Hardware Issues

On-board vehicle detection systems have high computa-
tional requirements as they need to process the acquired
images at real-time or close to real-time to save time for
driver reaction. For nontrivial velocities of the vehicle,
processing latency should be small (i.e., typically no larger
than 100 ms), while processing frequency should be high
(i.e., typical in excess of 15 frames per second). Due to the
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constrains of low latency and the difficulty in sending and
receiving video data reliably, most image processing must
be done no site on the vehicle.

Computer vision algorithms are generally very computa-
tionally intensive and require powerful resources in order to
comply with the real-time performance constraints. With
increasing computing power of standard PCs, several
systems have been demonstrated using general purpose
hardware. For example, our group has developed a vehicle
detection system that works at a frame rate of approximately
10frameper second(NTSC:processingonaverageeverythird
frame) using a standard PC machine (Pentium III 1133MHZ)
[49]. Although we expect the development of more powerful,
low-cost, general-purpose processors in the near future,
specialized hardwaresolutionsusingoff-the-self components
(e.g., cluster of PCs) seems to be the way to go at present.

Vehicle detection for precrash sensing requires high
enough sampling rate in order to provide a satisfactory
solution. If the vehicle’s speed is about 70 mph, then 10Hz
corresponds to a 3 meter interval. The most time consuming
step in our system is the computation of the vertical/
horizontal edges. Most low-level image-processing algo-
rithms employed for vehicle detection perform similar
computations for all the pixels of an image and require only
local information. Therefore, substantial speed-ups can be
achieved by implementing them on appropriate hardware.
Specialized hardware solutions are possible using low-cost
general-purpose processors and Field Programmable Gate
Arrays (FPGAs).

Recent advances in computation hardware allow us to
have systems that can deliver high computational power,
with fast networking facilities, at an affordable price.
Several studies have taken advantage of hardware imple-
mentations to speed-up computations including edge-based
motion detection [113], hardware-based optical flow esti-
mation [114], object tracking [115], as well as feature
detection and point tracking [116]. Sarnoff has also
developed a powerful image processing platform called
VFE-200 [117]. VFE-200 can perform several front-end
vision functions in hardware simultaneously at video rates
(e.g., pyramids, registration, and optical flow). It is worth
mentioning that, most of the hardware implementations
appeared in the literature have addressed smaller problems
(e.g., motion detection, edge detection, etc.). Integrating all
those hardware components together, as well as integrating
hardware and software implementations seamlessly, re-
quires more effort.

9.6 Benchmarks and Evaluation Methodology

The majority of vehicle detection systems reported in the
literature have not been tested under realistic conditions
(e.g., different traffic scenarios including simply structured
highway, complex urban street, and varying weather
conditions). Moreover, evaluations are based on different
data sets and performance measures, making comparisons
between systems very difficult. Future efforts should focus
on assessing system performance along a real collision time-
line, taking into account driver perception-response times,
braking rates, and various collision scenarios.

The field is lacking representative data sets (i.e., bench-
marks) and specific procedures to allow comprehensive
system evaluations and fair comparisons between different
system. To move things forward, exemplary strategies

developed in related fields (e.g., face recognition [118], and
surveillance [119]) should be adapted in order to develop and
make available to the broader scientific community bench-
marks and carefully designed evaluation procedures to
enable performance evaluations in a consistent way. Relating
level of performance in terms of complexity of driving scene is
also of critical importance. Ideas developed in related fields
(e.g., object recognition [120]) should be adapted to allow
more effective designs and meaningful evaluations.

9.7 Failure Detection

An on-board vision sensor will face adverse operating
conditions, and it may reach a point where it might not be
able to provide good quality data to meet minimum system
performance requirements. In these cases, the driver assis-
tance system may not be able to fulfill its desired responsi-
bilities correctly (e.g., issuing severe false alerts). A reliable
driver assistance system should be able to evaluate its
performance and disable its operation when it cannot provide
reliable traffic information any more. We refer to this function
as “failure detection.” One possible option for failure
detection is to use another sensor exclusively for this purpose,
at the expense of additional cost. A better method might be
extracting information for failure detection from the vision
sensor. Some preliminary experiments have been reported in
the scenario of distance detection using stereo vision [121],
where the host vehicle and subject were both stationary.
Further exploration of this issue is yet to be carried out.

10 CONCLUSIONS

We have presented a survey of vision-based on-road vehicle
detection systems—one of the most important components
of any driver assistance system. On-road vehicle detection
using optical sensors is very challenging and many practical
issues must be considered. Depending on the range of
interest, different methods seem to be more appropriate. In
HG, stereo-based methods have gained popularity but they
suffer from a number of practical issues not found in typical
applications. Edge-based methods, although much simpler,
are quite effective but they are not appropriate for distant
vehicles. In HV, appearance-based methods are more
promising but recent advances in machine and statistical
learning need to be leveraged. Fusing data from multiple
cues and sensors should be explored more actively in order
to improve robustness and reliability. A great deal of work
should also be directed toward the enhancement of sensor
capabilities and performance including the improvement of
gain control and sensitivity in extreme illumination condi-
tions. Hardware-based solutions using off-the-self compo-
nents should also be explored to meet real-time constraints
while keeping cost low.

Although we have witnessed the introduction of the first
vision products on board vehicles in the automobile
industry (e.g., the Lane Departure Warning System avail-
able in Mercedes and Freightliner’s trucks [7]), we believe
that the introduction of vision-based systems in the
automobile industry is still several years away. In our
perspective, the future holds promise for driver assistance
systems that can be tailored to solve well-defined tasks that
attempt to support, not replace the driver. Even though,
several orders of improvement in sensor performance and
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algorithm robustness are needed before these systems can

be deployed effectively.
In spite of the technical challenges that lie ahead, we

believe that some degree of optimism is justifiable based on

the progress that this domain has seen over the last few

years. Judging from the research activities in this field

worldwide, it is certain that it will continue to be among the

hottest research areas in the future. Major motor companies,

government agencies, and universities, are all expected to

work together to make significant progress in this area over

the next few years. Rapidly falling costs for the sensors and

processors combined with increasing image resolution

provides the basis for a continuous growth of this field.
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