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Abstract Target detection and tracking represent two
fundamental steps in automatic video-based surveillance sys-
tems where the goal is to provide intelligent recognition capa-
bilities by analyzing target behavior. This paper presents a
framework for video-based surveillance where target detec-
tion is integrated with tracking to improve detection results.
In contrast to methods that apply target detection and tracking
sequentially and independently from each other, we feed the
results of tracking back to the detection stage in order to
adaptively optimize the detection threshold and improve sys-
tem robustness. First, the initial target locations are extracted
using background subtraction. To model the background, we
employ Support Vector Regression (SVR) which is updated
over time using an on-line learning scheme. Target detection
is performed by thresholding the outputs of the SVR model.
Tracking uses shape projection histograms to iteratively loca-
lize the targets and improve the confidence level of detection.
For verification, additional information based on size, color
and motion information is utilized. Feeding back the results
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of tracking to the detection stage restricts the range of detec-
tion threshold values, suppresses false alarms due to noise,
and allows to continuously detect small targets as well as tar-
gets undergoing perspective projection distortions. We have
validated the proposed framework in two different applica-
tion scenarios, one detecting vehicles at a traffic intersection
using visible video and the other detecting pedestrians at a
university campus walkway using thermal video. Our expe-
rimental results and comparisons with frame-based detection
and kernel-based tracking methods illustrate the robustness
of our approach.

Keywords Visual surveillance · Background modeling ·
Support vector regression · Target detection · Target
tracking · Integrate detection with tracking

1 Introduction

Target behavior analysis depends heavily on the reliability
of target detection and tracking which can provide important
information about the location of targets and their tempo-
ral correspondences over time. Both target detection and tra-
cking have been investigated widely over the last two decades
with the majority of approaches employing detection alone,
tracking alone, or hybrid schemes such “detect-then-track”
where detection and tracking work sequentially and indepen-
dently of each other [1] (i.e., detect the target in the first frame
and turn it over to the tracker in subsequent frames).

In detection alone schemes, various detection algorithms
have been employed based on background subtraction
[2–13], frame differencing [14,16], and optical flow [17].
Due to low computational complexity requirements, back-
ground subtraction is widely applied in real-time video-based
surveillance systems when the cameras are fixed. In these
systems, accurate and robust background modeling is a
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206 J. Wang et al.

Table 1 Overview of target detection approaches

Method Model Spectral Spatial Temporal Decision Updating
scheme

Parametric-based approach

W4 [2] Minima and
maxima of gray
values

Pixel-based – Motion support
map

Threshold Re-estimate the
model using new
observations

Pfind [3] Single Gaussian Pixel-based – – MAP Adaptive filter

MoG [4] Mixture of
Gaussians

Pixel-based – – Threshold Adaptive filter

Matsuyama [5] Gaussian of
vector distances

Pixel-based Neighboring
block

Temporal
co-occurrence

Threshold Adaptive filter

DEWS [6] Single Gaussian Region-based 4-connected
neighboring
regions

– Hysteresis threshold Adaptive filter

Non-parametric-based approach

Non-parametric [7] Probability
density of pixel
density

Pixel-based Neighboring
pixels

– Threshold Re-estimate the
model using new
observations

Olvier [8] Eigen
background

Block-based – – Threshold Re-estimate the
model using new
observations

Monnet [9] Principal
components of
block

Block-based – Auto-regressive
model

Threshold Incremental
PCA

Wallflower [10] Self-regression
model

Block-based 4-connected
blocks

– Threshold Updating predic-
tion coefficients

Rittscher [11] Discrete states Pixel-based – – Hidden Markov model Dynamic state
model

Seki [12] Principal
components of
block

Block-based Neighboring
block

Color
co-occurrence

Background likelihood Adaptive filter

Liyuan [13] Principal feature
of pixels

Pixel-based Gradient Color
co-occurrence

Bayesian decision Adaptive filter

prerequisite step; however, due to significant intensity varia-
tions in images, statistical learning approaches have been
exploited to provide more accurate models. In these
approaches, the background is usually modeled using a para-
metric or non-parametric probability density estimation
method. In the case of parametric approaches, it is assumed
that the data follow a specific statistical distribution whose
parameters are estimated from the training data. In the case
of non-parametric approaches, the probability distribution of
the data is assumed to have no specific form [7].

Table 1 presents an overview of parametric and non-
parametric background subtraction methods for target detec-
tion. For each method, we report the model used, the level
of information extracted (i.e., pixel-based, block-based, and
region-based), the type of information extracted (e.g., spatial
vs temporal), the decision rule, and the updating scheme (i.e.,
to deal with illumination changes). In the case of parametric
background modeling, a single Gaussian [3] or Mixture of
Gaussian (MoG) distributions [4] have been used for mode-
ling the intensity distribution. A simple model was used in

[2], based on the minimum and maximum gray-level back-
ground pixel values. Instead of using information at fixed
spatial locations of the background scene, Dews [6] modeled
homogeneous regions using a single Gaussian by conside-
ring color information. Non-parametric techniques estimate
the density or color distribution using recent history values.
Examples include kernel density estimation [7], Principal
Component Analysis (PCA) [9], and one-step Wiener pre-
diction filters [10].

In order to deal with illumination changes in outdoor envi-
ronments, techniques based on background updating rely
on slowly integrating background changes into the back-
ground model. One way that this can be implemented is by
adding a portion of the difference between a new observa-
tion and the background model, where a learning factor is
used to control the speed of insertion. Pixel statistics were
used in [3] and MoG in [4] to estimate the learning fac-
tor and recursively update the parameters of the Gaussian
distribution based on a simple adaptive filter. Alternatively,
the background model can be updated by re-estimating the
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Improving target detection by coupling it with tracking 207

parameters of the model using new observations [7] or
incremental PCA [9]. It should be noted that, many of the
existing approaches utilize both spatial and temporal infor-
mation to represent complex background scenes containing
stationary and non-stationary information. As illustrated in
Table 1, choosing an appropriate threshold value is critical for
accurate and robust foreground detection. However, choosing
a suitable threshold value in order to maximize true detec-
tions while minimizing false positives is a challenging issue.
Hidden Markov models and probability decision models (i.e.,
Bayesian decision, maxima of a posteriori probabilities) are
alternative approaches to using thresholding in foreground
detection.

Tracking methods can be divided into two main categories.
In the first category, the state sequence of a target is iterati-
vely predicted and updated using prior information from past
measurements and likelihood information from current mea-
surements, respectively. Various filters have been employed
to predict the state sequence of a target including Kalman fil-
ters [19] and extended Kalman filters for linear predictions, as
well as unscented Kalman filters [19] for non-linear predic-
tions. The most general class of filters, however, includes par-
ticle filters [20], also called bootstrap filters [21], which are
based on Monte Carlo integration methods. Methods belon-
ging in the second category use various target characteristics,
such as color or gray-level information, shape, and motion
information. These methods perform tracking by building the
unique correspondence relationship in the appearance of the
target from frame to frame [22].

In tracking alone methods, the initial location of a tar-
get is usually specified manually. The majority of methods
employing detection along with tracking use a detect-then-
track approach where the target is detected in the first frame
and then turned over to the tracker in subsequent frames. The
main problem with these methods is that they aim to resolve
detection and tracking sequentially and independently of each
other. An important issue considered in this work is impro-
ving the performance of target detection by feeding tempo-
ral information from tracking back to the detection stage. In
this context, we propose a detect-and-track scheme where
detection and tracking are addressed simultaneously in a
unified framework (i.e., detection results trigger tracking,
and tracking re-enforces detection). One approach to deal
with this problem is by using a Bayesian decision frame-
work which combines prior probability information provided
by tracking with likelihood information provided by frame-
based detection [23]. However, the performance of target
detection depends heavily on the threshold used to distin-
guish between foreground and background objects. Another
approach is propagating the probabilities of detection para-
meters (e.g., at several scales and poses) over time using
condensation and factored sampling [24].

In this paper, we propose a framework for integrating
target detection with tracking to improve detection results.
Besides improving detection, integrating detection with tra-
cking can help to initialize tracking automatically. In this
framework, we employ SVR [26] to model the background
along with an on-line learning scheme [27] to update it effi-
ciently over time. The initial locations and representations
of the targets are extracted by thresholding the outputs of
the SVR model where the threshold is adaptively optimized
using feedback from tracking. Tracking uses shape projec-
tion histograms to iteratively localize the targets and improve
detection confidence between successive frames. Using feed-
back from tracking restricts the range of detection threshold
values, suppresses false alarms due to noise, and allows for
continuously detecting small targets, especially targets under-
going projection distortions. To reduce false positives, addi-
tional cues based on size, color and motion information are
used when tracking multiple targets. We have validated the
proposed framework in two different application scenarios,
one detecting vehicles at a traffic intersection using visible
video and the other detecting pedestrians in a university cam-
pus walkway using thermal video.

The rest of the paper is organized as follows. Section 2
gives a brief overview of the proposed target detection and
tracking framework. Section 3 describes our background
modeling approach and the process for initializing the loca-
tion of targets. In Sect. 4, we discuss the process for integra-
ting target detection and tracking. Our experimental results
and comparisons are presented in Sect. 5. Finally, our conclu-
sions and directions for future research are given in Sect. 6.

2 Framework for target detection and tracking

Figure 1 illustrates the proposed framework for integrating
target detection with tracking. This framework includes three
main modules: (a) background modeling, (b) target detec-
tion, and (c) target tracking. The purpose of background
modeling is to construct the intensity variation model of the
pixels belonging to the background. Here, a SVR approach
is exploited to fit the intensity distribution of background
pixels using a Gaussian kernel. Target detection is performed
by subtracting those pixels that fit the background model.
Finally, the tracking module is used to establish a unique
correspondence relationship among the detected targets over
time.

In order to improve target-to-target correspondences over
time, we calculate confidence coefficients based on shape,
size, color and motion (i.e., velocity) information. Most
importantly, the shape confidence coefficient computed in
the tracking module is further exploited to iteratively update
the threshold used in the detection stage to decide whether a
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Fig. 1 Framework for target detection and tracking

pixel belongs to background or not. The detection threshold
can be iteratively increased or reduced to improve detection
results by considering the temporal correspondences of tar-
gets between adjacent frames. A voting-based strategy has
been adopted to enhance matching results during target tra-
cking under illumination changes and shape deformations
due to perspective projection. Specific details are provided
in the following sections.

3 Background modeling and initialization of target
location

In order to effectively detect the precise location of targets in
a scene but also to avoid missing small targets, an accurate
background model is required. Moreover, an effective way is
required to incorporate background changes by updating the
background model fast and effectively. In this study, we pro-
pose using SVR for background modeling. SVR represents a

statistical learning technique for estimating a function from
a set of training data [26]. It estimates not only a function
that does well on the training data, but also takes account
of the possible deviation of the test data from the estima-
ted function. Given a new input, SVR provides a tolerance
which characterizes the regression estimate being away from
the true estimate by a certain distance. To update the back-
ground model, we use an on-line SVR learning algorithm
[27].

3.1 Background modeling using SVR

Given a set of training data, SVR fits a function by specifying
an upper bound on a fraction of training data allowed to lie
outside of a distance ε from the regression estimate. This type
of SVR is usually referred to as ε-insensitive SVR [26]. For
each pixel belonging to the background, a separate SVR is
used to model it as a function of intensity. To classify a given
pixel as background or not, we feed its intensity value to the
SVR associated it and threshold the output of the SVR.

Let us assume a set of training data for some pixel p obtai-
ned from several frames {(x1, y1), ..., (xl , yl)}, where xi cor-
responds to the intensity value of pixel p at frame i , and yi

corresponds to the confidence of pixel p being a background
pixel. Once the SVR has been trained, the confidence of the
pixel p in a new frame i , f (xi ), is computed using the follo-
wing linear regression function:

f (xi ) =
l∑

j=1

(ai − a∗
j )k(xi , x j ) + ζ (1)

where k(xi , x j ) is a kernel function.
The parameters a, a∗ and ζ , called Lagrange multipliers,

and are obtained by solving an optimization problem using
the method of Lagrange multipliers [26]. Specifically, the
solution of the ε-insensitive SVR corresponds to solving an
optimization problem where the optimization criterion pena-
lizes data points whose yk-values differ from f (xk) by more
than ε. Introducing Lagrange multiplies a, a∗, ζ , δi , µi and
µ∗

i , the following quadratic objective function needs to be
minimized:

W = 1

2

l∑

i

l∑

j

(ai − a∗
i )k(xi , x j )(a j − a∗

j )

−
l∑

i

yi (ai − a∗
i ) + ε

l∑

i

(ai + a∗
i ) −

l∑

i

δi (ai + a∗
i )

+
l∑

i

[µi (ai − C) + µ∗
i (a

∗
i − C)] + ζ

l∑

i

(ai − a∗
i ) (2)

where 0 ≤ ai , a∗
i ≤ C and

∑
i (ai − a∗

i ) = 0. By using
different kernels, SVR implements a variety of estimation
functions (e.g., a sigmoidal kernel corresponding to a two-
layer sigmoidal neural network while a Gaussian kernel
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Fig. 2 Captured traffic scenes and the computed “clean” background scene using median filtering

corresponding to a radial basis function (RBF)). Here, we
used a Gaussian kernel:

k(xi , x j ) = exp

(
−

∥∥xi − x j
∥∥2

2σ 2

)
(3)

By considering the dual optimization problem, Eq. (2) can
be rewritten as follows:

LW = 1

2

l∑

i=1

(ai − a∗
i )(a j − a∗

j ) + ε

l∑

i=1

(ai + a∗
i )

−
l∑

i=1

yi (ai − a∗
i ) +

l∑

i=1

[ui (ai − C)+u∗
i (a

∗
i − C)]

−
l∑

i=1

(δi ai + δ∗
i a∗

i ) + ξ

l∑

i=1

(ai − a∗
i ) (4)

where ui ,u∗
i , δ and ξ are also Lagrange multipliers. Opti-

mizing this function leads to a set of conditions called the
Karush-Kuhn-Tucker (KKT) conditions which state that at
the point of the solution the product between dual variables
and constraints has to vanish. In general, the KKT conditions
are set of constraints that are necessary for a nonlinear pro-
gramming solution to be optimal. In our problem, the KKT
conditions can be expressed as follows:

∂LW

∂ai
=

l∑

j=1

k(xi , x j )(a j −a∗
j ) + ε − yi + ξ − δi + ui =0

(5)

∂LW

∂a∗
i

= −
l∑

j=1

k(xi , x j )(a j − a∗
j )

+ε + yi − ξ − δ∗
i + u∗

i = 0 (6)

A detailed presentation of the SVR theory can be found
in [26].

To illustrate the SVR-based background modeling
approach, we use a video sequence captured at a traffic inter-
section assuming a fixed camera (see Fig. 2a). To train the
SVR, we created B number of “clean” background images

(i.e., without containing moving vehicles or pedestrians) by
taking F number of successive frames and finding the median
intensity value at each pixel location (see Fig. 2b). Here, we
used a total of 90 frames to build B=30 clean background
images using F=30 frames each time. It should be noted
that, although all the images were captured using a fixed
camera, there were still fluctuations in the intensity values
in the “clean” background images due to light changes cau-
sed by outdoor environmental conditions. To train the SVR
model assigned to a particular pixel location, we used the
intensity values at this location from all clean images (i.e.,
xi ) and assigned a high confidence value to this pixel (i.e.,
yi =1).

Figure 3 shows the results of background modeling at a
fixed pixel location using Mixtures of Gaussians (MoG) and
SVR. In each graph, the x-axis corresponds to the intensity of
the pixel over the 30 “clean” background images (i.e., shown
as red circles), while the y-axis corresponds to confidence
of that pixel belonging to the background (i.e., set to 1).
Figure 3a shows the SVR-based model, whereas Fig. 3b, c
shows the MoG-based models using four and two Gaussians
correspondingly. As it can be observed, SVR can find a better
solution than MOG. Figure 3d shows an SVR-based solution
corresponding to a different pixel location.

3.2 Extracting initial target locations

Given the SVR-based background model, the intensity of
each pixel in a new frame forms the input to the SVR. The
output of the SVR represents the confidence that a given pixel
belongs to the background. Eventually, a pixel is labelled as
background if its confidence is between a low threshold Sl

and a high threshold Sh (i.e., hysteresis thresholding). Spe-
cifically, a binary foreground detection map Mt

xi
is formed

at frame t as follows:

Mt
xi

=
{

0, background, Sl < f (xi ) < Sh

1, foreground otherwise
(7)

where f (xi ) is the SVR output and S = {Sl , Sh} are the initial
thresholds. Then, for each region in the binary map, we fit an
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Fig. 3 Different solutions for background modeling: a SVR solution, b MoG solution using 4 Gaussians, c MoG solution using 2 Gaussians,
d SVR solution at a different pixel location

ellipse. Figure 4 shows an incoming frame and corresponding
detection results. Detection results using the low and high
thresholds separately are shown in Fig. 4b, c. The results
using hysteresis thresholding are shown in Fig. 4d. The initial
location of each target was determined by best ellipse-fitting
as shown in Fig. 4e.

3.3 On-line SVR learning

To update the background model over time, we need an effi-
cient method that avoids re-training the SVR models which is
very expensive. Here, we used an efficient on-line SVR lear-
ning algorithm which updates the SVR function whenever
new training data becomes available [27].

The main idea behind on-line SVR learning is to gradually
change the difference of Lagrange multipliers a and a∗ cor-
responding to the new training data in a finite number of steps
until the KKT conditions are satisfied [27]. Figure 5a, b illus-
trates the on-line SVR learning procedure where the training
data is shown by red circles. After training, the estimated
regression function in Fig. 5a contains a single peak (i.e., red
dashed line). When new data comes along, shown by black
circles, the regression function is updated using on-line lear-
ning. In this example, the regression function becomes bimo-
dal (i.e., black line). Figure 5b shows another case where the
regression function contains multiple peaks. In this case, the

number of peaks does not change before (i.e., red dashed
line) and after (i.e., black line) the addition of new examples,
however, the peaks do shift to the right. As it can be observed,
the SVR background model has the ability to adapt to new
incoming data (i.e., the regression function shifts along the
direction of new incoming data).

4 Integrating target detection with tracking

When multiple targets are present, out system maintains a list
of targets which are actively tracked over time. The tracking
is implemented through target feature matching within conti-
nuous frames. This matching can build the correspondence
relationships between the previous tracked targets and each
potential targets at the current frame, detected by threshol-
ding the outputs of SVR-based background model as descri-
bed in Sect. 3. If the matching is successful and reliable, then
the target is added to the list of targets for further tracking.

Specifically, our matching procedure searches iteratively
for target candidates in the current frame that have similar
shape and appearance with target models defined in the pre-
vious frame. First, we compute a similarity score based on
weighted normalized shape projection histograms. Then, to
discriminate between targets having similar shape, we com-
pute additional information based on target’s size, color and
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Improving target detection by coupling it with tracking 211

Fig. 4 Background subtraction
with low and high thresholds
and initial target locations
represented by best-ellipse
fitting

Fig. 5 Illustration of on-line SVR learning

motion and apply a voting-based strategy. Targets that have
been tracked consistently over a number of frames, are added
to the list of targets for tracking. This list is properly maintai-
ned to include new targets and remove targets that disappear
from the scene. The same procedure is also used to handle

occlusions. Targets in the list of targets are tracked using
shape projection histograms only. The ratio between projec-
tion histograms of candidate and model targets, called confi-
dence coefficient, is used to localize the targets accurately as
well as to define the range of detection threshold.
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In the following, we describe the framework for integra-
ting target detection with tracking. First, we discuss our tar-
get representation scheme. Then, we describe the algorithm
used to predict the location of targets in subsequent frames.
Finally, we present the feedback mechanism for optimizing
the detection threshold.

4.1 Target representation

Our target representation scheme is based on shape, size,
color and motion information. In order to make it robust to
perspective projection, scale, and rotation transformations,
we employ normalized shape projection histograms.

4.1.1 Normalized shape projection histograms

The location of a target is denoted by (xi , yi ) and it corres-
ponds to the location of the best-fitting ellipse. To compute
the projection histograms, we project the target horizontally
and vertically by counting the number of pixels in each row
and each column correspondingly. To make the projection
histograms invariant to target orientation, first we transform
the target to a default coordinate system. This is done in two
steps: (a) we find the best-fitting ellipse of the target, and (b)
we align its major and minor axes with the x- and y-axes of
the default coordinate system. The main assumption here is
that the targets are approximately 2-D; this is a valid assump-
tion in our application since the depth of the targets is much
smaller compared to their distance from the camera.

Since projection histograms are sensitive to the location
and size of the targets, we normalize them by shifting the
middle bin of the histogram to the geometric center of the
target and resizing the number of bins to a fixed size. Speci-
fically, the normalized horizontal (i.e., H̄x ) and vertical (i.e.,
H̄y) shape projection histograms are defined as follows:

H̄x (m) = {(xi , y)|(xi , y) ∈ R}
m = xi − x + M/2 (8)

H̄y(n) = {(x, y j )|(x, y j ) ∈ R}
n = y j − y + N/2 (9)

where (x, y) is the geometric center of the target (i.e., the cen-
ter of the best-fitting ellipse), m, n are indices, and M , N are
the number of bins in the horizontal and vertical projection
histograms.

4.1.2 Weighted shape projection histograms

In order to reduce the effects of background noise and image
outliers, we introduce weights to improve the robustness of
matching. This is done by employing an isotropic kernel
function k(·) in a similar way as in [22]. In particular, the

role of the kernel function is to assign smaller weights to
pixels farther away from the center bin of the project histo-
gram. Then, the weighted target model histograms, denoted
as H T

x and H T
y , are defined as follows:

H T
x (m) = H̄ T

x (m) + k(·)
∑M

m=1 H̄ T
x (m) + k(·)

H T
y (n) = H̄ T

y (n) + k(·)
∑N

n=1 H̄ T
y (n) + k(·) (10)

where k(xi , y j ) = c − [(xi − x)2 + (y j − y)2], and c =
(w/2 + 1)2 + (h/2 + 1)2 where the size of the target is
w × h.

To predict the location of targets in subsequent frames,
we search a window of size W × H . Candidate targets are
identified in this window by thresholding the outputs of the
SVR models. The weighted target candidate projection his-
tograms, denoted as HC

x and HC
x , are defined as follows:

HC
x (m) = H̄C

x (m) + g(·)
∑M

m=1 H̄C
x (m) + g(·)

HC
y (n) = H̄C

y (n) + g(·)
∑N

n=1 H̄C
y (n) + g(·) (11)

where g(xi , y j ) = c − {[(xi − x)/h]2 + [(y j − y)/h]2
}
,

and c is calculated based on the size h = W × H of the
search window. Figure 6 shows an example of shape projec-
tion histograms.

4.2 Predicting target location

To find the location of a target in subsequent frames, we need
to define a similarity measure between the target model, com-
puted in previous frames, and the target candidate, detected in
the current frame. Here, we use a similarity measure based on
the Manhattan distance between the corresponding weighted
shape projection histograms of model and candidate targets:

Dx =
M∑

m=1

[HC
x (m) − H T

x (m)]

Dy =
N∑

n=1

[HC
y (n) − H T

y (n)] (12)

To accurately localize a target in the search window, we
minimize the objective function shown below in the case of
horizontal shape projection histograms (similar derivations
apply in the case of vertical shape projection histograms):
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Fig. 6 a, b: Targets, c vertical shape projection histograms of the targets, d horizontal shape projection histograms of the targets

� = min
k

M∑

m=1

[
H

C S
k

xk (m) − H T
x (m)

]

=
∑

k

wk

M∑

m=1

[
H

C S
k

xk (m) − H T
x (m)

]

=
∑

k

wk

∑

xi ∈R

[
H

C S
k

xk (xi − x + M/2)

−H T
x (xi − x + M/2)

]
(13)

−→ min over S and xk

where S is the threshold used to find the target candidates
in the search window and wk restricts the spatial position
xk of the target candidates around the geometric center x

of the target model. H
C S

k
xk (m) is the weighted shape projec-

tion histogram of the k-th target candidate detected using
threshold S. In practice, we evaluate the weighted sum of
∑M

m=1[H
C S

k
xk (m) − H T

i (m)], instead of evaluating mink
∑M

m=1[H
C S

k
xk (m) − H T

x (m)] which is difficult to compute.
To perform the above minimization, we employ an ite-

rative scheme which gradually decreases the value of the
threshold S used for target detection and changes the spatial
center position of the search window as shown in the next
two subsections. The objective function is updated iteratively
as follows:

�(l) =
∑

k

wk

M∑

m=1

[
H

C S(l)
k

xk (l)
(m) − H T

x (m)

]

=
∑

k

wk

∑

xi ∈R(l)

[
H

C S(l)
k

xk (l)

(
xi − xk(l) + M/2

)

−H T
x (xi − x + M/2)

]
(14)

where l corresponds to the iteration number.

4.3 Confidence coefficient

A key issue in implementing the above idea is how to choose
an appropriate function for decreasing S as well as to change
the geometric center (x, y) of the candidate targets at each
iteration l. For this, we use the ratio between the weighted
shape projection histogram of the target model and the can-
didates. We refer to this ratio as the confidence coefficient
and it is defined as follows:

ξx (l) =
∑

xi ∈R(l)

√√√√ H S(l)
xk (l)

[xi − xk(l) + M/2]
HC

x [x − xk(l) + M/2] (15)

ξy(l) =
∑

yi ∈R(l)

√√√√ H S(l)
yk (l)

[yi − yk(l) + N/2]
HC

y [y − yk(l) + N/2] (16)
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where xi and yi are the spatial location of pixels belonging
to the candidate target R(l).

The confidence coefficient becomes a weight factor in the
iterative procedure used to update the spatial location of the
targets as well as to select the threshold range for target detec-
tion (see next section). Specifically, using the confidence
coefficient, the center of the search window is updated as
follows:

xk(l) = xk(l − 1) × ξx (l − 1)

yk(l) = yk(l − 1) × ξy(l − 1) (17)

4.4 Adaptive threshold optimization

The confidence coefficient is also used to update the thre-
shold S used in the target detection stage. Specifically, let us
denote the threshold at the l − 1 iteration as S(l − 1), then
the threshold at the l iteration S(l) is updated as follows:

S(l) = S(l − 1) −
[
1 −

√
ξ2

x (l − 1) + ξ2
y (l − 1)

]
(18)

The above iterative procedure decreases Dx and Dy while
moving the spatial center of the search window iteratively
closer to the geometric center of the target. The iterative pro-
cedure terminates when the distance between the weighted
shape projection histogram of target model and the target
candidates is smaller than a given value. However, when the
confidence coefficient is too low, we increase the detection
threshold to avoid under-segmentation which could cause
differences in the shape of the targets in successive frames
(see Fig. 12).

4.5 Tracking multiple targets

Using shape information alone (i.e., shape projection histo-
grams) to track multiple tatgets is not sufficient as it might
lead to false matches. To eliminate such matches, we need to
use additional information based on the target’s size, color
and motion. The key idea is using a voting strategy based on
a majority rule.

Specifically, suppose that O p
t and Ol

t−1 correspond to the
pth target in the current t frame and the lth target in the
t − 1 frame respectively. The correspondence between O p

t
and Ol

t−1 is established if O p
t is spatially close to Ol

t−1, and
both targets have sufficiently close appearances in terms of
shape, size, color, and motion information. The condition on
the spatial locations of the targets is given as follows:

d(O p
t , Ol

t−1) < Rl (19)

where d(O p
t , Ol

t−1) is the Euclidean distance between the
spatial locations of O p

t and Ol
t−1, Rl is the radius of the

search area centered at O p
t . The condition on the appearance

of the targets is given as follows:

ξ f (O p
t , Ol

t−1) > Tξ f (20)

where ξ f (O p
t , Ol

t−1) is the confidence coefficient between
O p

t and Ol
t−1 in terms of a feature f (i.e., shape, size, color,

and motion). Tξ f is the threshold used for that feature. The
above two equations yield a total of five constraints (i.e., one
constraint based on Eq. (19)) and four constraints based on
Eq. (20). If more than half of the constraints are satisfied for a
number of frames, then the correspondence between targets
O p

t and Ol
t−1 is established and the target is added to the list

of targets for tracking.
It should be mentioned that the same equations used to

compute the confidence coefficient in the case of shape pro-
jection histograms (i.e., Eqs. (15) and (16)) can also be used
to compute a confidence coefficient using size, color, and
motion information.

5 Experimental results

The proposed framework has been evaluated by detecting
vehicles and pedestrians using visible and thermal video
sequences. The visible video sequence was captured at a
traffic intersection and contains a total of two hours video
with a sampling rate 4 frames/s. The thermal video data
were captured at a university campus walkway intersection
over several days (morning and afternoon) using a Raytheon
300D thermal sensor core with 75 mm lens mounted on an
8-story building [29]. Compared to visible image sensors,
infrared image sensors exploit a combination of temperature
difference, emissivity difference and “cold sky” reflection to
generate images with high contrast between the target and
the background. Infrared image sensor-based detection may
enhance system performance for nighttime surveillance and
has a relative higher resistance to poor weather (snow, rain
and fog) [29]. In the following, we demonstrated the perfor-
mance of the proposed algorithm in terms of the following
aspects: (1) detection alone, (2) integrating detection with
tracking, (3) new targets, (4) occlusion, and (5) comparisons
using frame-based detection, kernel-based tracking, and our
proposed method.

5.1 Results using detection alone

First, we demonstrate the performance of a system employing
frame-based detection and SVR-based background mode-
ling, without feedback from the tracking stage for threshold
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Fig. 7 Detection results using SVR-based background modeling, without feedback from tracking

optimization. Figures 7 and 8 show the locations of the tar-
gets found using this approach. Figure 9 shows comparison
results between SVR-based background modeling and Ada-
Boost [29]. Our first observation is that SVR-based detection
produces more accurate detections (i.e., the window enclo-
sing the targets is much narrower). Moreover, it can observed
in the left part of Fig. 9, a pedestrian who was detected as
two separate entities by Adaboost (i.e., over-segmentation).
On the right part of Fig. 9, however, the same pedestrian
was detected as a single entity using SVR. Nevertheless, the
performance of detection without employing some kind of
feedback from tracking depends heavily on the choice of the
threshold. If the threshold is not chosen properly, we might
end up with many false alarms as shown in Fig. 4.

5.2 Results using integration of detection with tracking

Figures 10 and 11 present comparison results between frame-
based detection without feedback from tracking and the pro-
posed method which integrates detection with tracking. Each

target is tracked and labeled with rectangles having different
colors. The 1st and 2nd rows of Fig. 10, show tracking results
and detection maps using the proposed method. The last row
presents detection results using frame-difference and no thre-
shold optimization.

Among the results shown, it is interesting to note that the
small target, labeled by a green rectangle in the 1st row of
Fig. 10, is very difficult to detect using frame-based detec-
tion and non-optimized thresholds as shown in the 3rd row
of Fig. 10. On the other hand, the proposed method shows
more accurate detection results by optimizing the threshold.
In particular, the proposed method suppresses false alarms as
shown in the 2nd row of Fig. 11. Table 2 shows quantitative
comparisons in terms of true positives and false alarms for
frame-based detection and the proposed approach. Obviously,
the proposed approach has lower false alarm and higher true
positive rates than frame-based detection.

Figure 12a , b shows another quantitative comparison bet-
ween frame-based detection and the proposed method by
counting the number of pixels in two different segmented
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Fig. 8 Detection results using SVR-based background modeling, without feedback from tracking

Fig. 9 Comparison results between AdaBoost [29] (left) and SVR (right)

regions. The red curve indicates ground truth information
(i.e., the true number of pixels in the segmented region).
The reason that the number of pixels decrease over time is
because the target becomes smaller and smaller over time
due to moving away from the camera. The green and blue
curves show the performance of the proposed method and
frame-based detection respectively. As it can be observed,
the green curves are closer to the red curves, indicating that
the proposed method makes less errors compared to frame-
based detection.

Figure 12c shows the adaptive threshold values over time
for two targets with different motion characteristics (i.e., a
car and a pedestrian). As it can be observed, the thresholds
were iteratively decreased based on the confidence coeffi-
cient computed from the shape projection histogram mat-
ching process. To avoid under-segmentation, the threshold

was re-set to a higher value when the confidence coefficient
fell below a certain value. Figure 12d demonstrates the ave-
rage number of iterations for each frame. As it can be obser-
ved, the time complexity of this step is not high.

5.3 Tracking new targets

In our framework, target detection guides tracking by upda-
ting its predictions based on the latest observations. There-
fore, tracking can quickly respond to the appearance of new
targets. In addition, our tracking algorithm has two different
modes, one that tracks targets actively and one that tracks tar-
gets temporarily in order to avoid propagating false alarms
from the target detection stage to the tracking stage. The tran-
sition between temporary tracking to active tracking is based
on detection continuity.
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Fig. 10 Comparison results between the proposed method and frame-based detection using visible video: 1st and 2nd rows tracking results and
corresponding detections using the proposed method; 3rd row detection results using frame-based detection

Figure 13 shows target detection and tracking results when
a new vehicle appears in the scene. It should be noted that
the new target is not tracked immediately as shown in the
3rd frame of Fig. 13 although it has been detected. Initially,
the target is tracked on a temporary basis. Only when the
new target is detected continuously, then it is tracked actively
based on the latest detection results as shown in the 4th frame
of Fig. 13.

5.4 Tracking occluded targets

The proposed detection and tracking approach can handle tar-
get occlusion using the track-to-track stitching scheme repor-
ted in [30]. The voting-based matching scheme described in
Sect. 4 is used to track accurately the targets when their shape
is deformed due to perspective projection. Figure 14 demons-
trates how our proposed approach handles target occlusion.
When two targets occlude each other, as shown in Fig. 14b, a

new track is assigned to the occluded targets. After occlusion,
the tracks are recovered by stitching their new tracks with
previous tracks as described in [30]. Figure 15 shows an
example of tracking multiple targets and their trajectories.
For each target, its trajectory is shown in the same color as
its frame box.

5.5 Comparison with kernel-based tracking

In this section, we present comparison results between kernel-
based tracking [22] and the proposed approach. Figure 16
shows tracking results for frames 4, 22, 26, 39 of a test
sequence using the proposed method (1st row) and kernel-
based tracking (2nd row). The 3rd row of Fig. 16 shows
the detected targets using the proposed method. In order to
make the comparison fair, kernel-based tracking was initiali-
zed using the initial target locations found by our approach,
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Fig. 11 Comparison results between the proposed method (1st row) and frame-based detection (2nd row) using thermal video: As it can be
observed, frame-based detection yields false positives

Table 2 Quantitative
comparisons in terms of True
Positives (TP), False Alarms
(FA), and Ground Truth (GT)

Data sets Methods Ground truth True positive False alarm

Visible video Frame-based detection 346 296 30

Integrating detection with tracking 346 340 5

Thermal video Frame-based detection 371 371 35

Integrating detection with tracking 371 371 0

shown in the first column of Fig. 16. As it can be obser-
ved, kernel-based tracking has difficulties with tracking small
targets (e.g., a small human walking along the road) and
targets with perspective projection distortions. On the other
hand, the proposed approach can handle these cases due to
the adaptive thresholding scheme.

5.6 Running time requirements

Our algorithm was implemented in C++ using Microsoft
foundation class (MFC) interface and runs on a 2.4 GHz stan-
dard desktop PC. The frame size of the test video sequences
was 240 × 320. After the background has been learned, the
object detection module takes 0.17 s per frame while the
tracking module takes 0.015 s per frame. The time com-
plexity of the proposed tracking module is comparable with
that of kernel-based tracking, where the average processing

time is 0.0169 s per frame. Overall, our algorithm can detect
and track objects in real time with a sample rate of
4 frames/s.

6 Conclusions

We have proposed a framework for improving video-based
surveillance by integrating target detection with tracking. The
proposed framework was evaluated by detecting and tracking
pedestrians and vehicles both in visible and thermal video
sequences. On-line SVR was used to model the background
and to accurately detect the initial locations of the targets.
Moreover, shape projection histograms were exploited to pre-
dict the location of targets in successive frames. At the same
time, a confidence coefficient based on shape matching was
computed to suppress false alarms. Using weights derived
from the confidence coefficient of shape matching, we were
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Fig. 12 a, b Comparison results between frame-based detection and
the proposed approach by counting the number of pixels in two dif-
ferent segmented regions. The red curve indicates ground truth infor-
mation while the green and blue curves indicate the performance of the

proposed method and frame-based detection, respectively; c adaptive
threshold values over time for two different targets; d average number
of iterations

Fig. 13 Target detection and tracking results in the appearance of a new target
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Fig. 14 An example of handling target occlusion. For each target, its
trajectory and frame box are shown in the same color. When two targets
occlude each other, occluded targets are labeled using the same color

box. After occlusion, the trajectories of targets are successful recovered
by stitching their tracks with previous tracks

Fig. 15 Multiple target tracking and their trajectories. For each target, its trajectory is shown in the same color as its frame box

able to optimize the threshold used in the target detection
stage. Additional cues based on size, color, and motion were
used to eliminate false positives when tracking multiple tar-
gets. Our experimental results show good performance, espe-
cially when dealing with small targets and targets undergoing
perspective projection distortions. Moreover, they show good
suppression of false alarms due to noise.

For future work, we plan to improve the speed of back-
ground modeling in our method. Although we were able to

achieve good speed in our experiments by sub-sampling the
captured images, further improvements are necessary for true
real-time performance. One way to improve the speed is by
using region-based instead of pixel-based SVR models to
represent the background scene.
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Motor Company under grant No. 2001332R, and the University of
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Fig. 16 Comparison results between kernel-based tracking and the
proposed approach when tracking small targets and target with pro-
jection distortions. Tracking results are labelled using rectangles of dif-
ferent colors. Frames 4, 22, 26, 39 of the test sequence are shown.

1st row tracking results using the proposed method. 2nd row tracking
results using kernel-based tracking where, the initial target locations
were chosen to be the same to those found by our approach (i.e., shown
in the first row). 3rd row detection results using the proposed method
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