
Genetic Feature Subset Selection for Gender
Classification: A Comparison Study

Zehang Sun1,George Bebis1, Xiaojing Yuan1, and Sushil J. Louis2

1Computer Vision Lab. Department of Computer Science, University of Nevada, Reno
2Genetic Adaptive Systems Lab, Department of computer science, University of Nevada, Reno

(zehang,bebis,xjyuan,sushil)@cs.unr.edu

Abstract— We consider the problem of gender classifica-
tion from frontal facial images using genetic feature subset
selection. We argue that feature selection is an important
issue in gender classification and demonstrate that Genetic
Algorithms (GA) can select good subsets of features (i.e.,
features that encode mostly gender information), reducing
the classification error. First, Principal Component Analy-
sis (PCA) is used to represent each image as a feature vector
(i.e., eigen-features) in a low-dimensional space. Genetic
Algorithms (GAs) are then employed to select a subset of
features from the low-dimensional representation by disre-
garding certain eigenvectors that do not seem to encode im-
portant gender information. Four different classifiers were
compared in this study using genetic feature subset selec-
tion: a Bayes classifier, a Neural Network (NN) classifier,
a Support Vector Machine (SVM) classifier, and a classifier
based on Linear Discriminant Analysis (LDA). Our experi-
mental results show a significant error rate reduction in all
cases. The best performance was obtained using the SVM
classifier. Using only 8.4% of the features in the complete
set, the SVM classifier achieved an error rate of 4.7% from
an average error rate of 8.9% using manually selected fea-
tures.

I. Introduction

A successful gender classification approach can boost
the performance of many other applications including face
recognition and smart human-computer interfaces. Despite
its importance, it has received relatively little attention in
the literature. An automatic feature-selection-based gen-
der classification scheme is proposed in this paper. We
argue that feature selection is important for gender classi-
fication, and demonstrate that, by removing features that
do not encode important gender information from the rep-
resentation of the faces (e.g., eigenvectors encoding infor-
mation about glasses), the error rate can be reduced sig-
nificantly.

A. Previous Work

Based on the type of features used, existing gender
classification approaches fall into one of two categories:
geometry-based and appearance-based.

Geometry-based methods use metric features, e.g., face
width, face length, mouth size, eye size, distances, angles
and areas among salient feature points (eyes, nose, etc.). In
Burton et al. [1], 73 points were extracted from a database
containing 179 frontal facial images. Discriminant analysis
was then used to classify gender using point-to-point dis-
tances. The accuracy reported on the training data was
85%. Fellous et al. [2] computed 22 normalized distances

using a database with 109 images. The accuracy reported
in that work was 90%. Brunnelli et al [3] used 16 geomet-
rical features as the input to two competing hyper-basis
function networks. A database with 168 images was used
for training. The reported accuracy was 79% using novel
faces.

Appearance-based methods learn the decision boundary
between the male and female classes from training imagery
without extracting any geometrical features. A represen-
tative method belonging to this category is the eigenface
approach [4]. Cottrell et al [5] has proposed a face cate-
gorization method using a two-stage neural network, one
for face compression and one for face classification. The
output of the hidden layer of the compression network
performs dimensionality reduction similar to the eigenface
method. The accuracy reported was 63% on a database
containg 64 images. Colomb et al. [6] used a similar
method and referred to their gender classification network
as SEXNET. Using a database containing 90 images, they
reported 91.9% accuracy. Yen et al. [7] followed the same
scheme using a larger database (i.e., 1400 face images).
They reported 90% accuracy.

Abdi et al. [8] compared raw image with PCA-based im-
age representations using Radial Basis Function (RBF) and
perceptron networks. Using 160 facial images, the best per-
formance of 91.8% was achieved by a perceptron classifier
trained with PCA-based features. O’Toole et al. [9], [10]
have also reported good performance using PCA and neu-
ral networks. Using raw images, Moghaddam et al. [11] in-
vestigated gender classification using SVMs on a database
with 1755 face images. They reported 96.6% accuracy us-
ing RBF kernels.

B. Feature selection

Brunelli et al. [3] suggested that information useful for
classifying faces according to their sex can be captured by a
very limited number of geometrical measurements. More-
over, several studies [9][10] have shown that some of the
eigenvectors are more useful for predicting sex of faces than
others. For example, [9] reported 74.3% classification ac-
curacy by using only the first four eigenvectors. A question
that arises very naturally from these studies is ”which facial
features are most suitable for gender classification?”

Most gender classification methods reported in the liter-
ature use all the features extracted for classification pur-



poses. As a result, gender-irrelevant information might be
fed to the gender classifier which might not allow the clas-
sifier to generalize nicely, especially when the training set
is small. Exhaustive evaluation of possible feature subsets
is usually computationally prohibitive in practice. A num-
ber of feature selection approaches have been proposed in
the literature (see Siedlecki et al. [12], Jain et al. [13] for
comprehensive surveys).

C. Overview of proposed method

Automatic feature subset selection distinguishes the pro-
posed gender classification method from all other reported
approaches. In particular, GAs [14] are employed to select
features that encode important gender information and im-
prove classification performance. GAs belong to the class
of randomized heuristic search techniques, offering an at-
tractive approach to feature subset selection. Although
they have been used in various pattern recognition appli-
cations, their use in the area of computer vision is rather
limited. Siedlecki et al. [15] has presented one of the ear-
liest studies of GA-based feature selection in the context
of a K-nearest-neighbor classifiers. Roth et al. [16] have
proposed extracting geometric features using GAs. Yang
et al. [17] have also proposed using GAs for feature selec-
tion. Using several benchmark real-world problems, they
reported improved classification performance using NNs.
Chitoui et al. [18] investigated the use of GAs for feature
selection in a seed discrimination problem.

In our approach, facial images without hair are repre-
sented in a low-dimensional space, computed by using PCA
[4]. GAs are then used to select gender-related PCA fea-
tures. Four classifiers (i.e., Bayesian Classifier, LDA, NNs
and SVMs), which have been used extensively in previous
gender classification studies, are compared in this study.
Our experimental results show significant error rate reduc-
tions for all the classifiers considered. For visualization
purposes, we reconstruct the faces using the selected eigen-
features. Although the reconstructed images have lost in-
formation about identity, they do disclose strong gender
information. This implies that GAs can select eigenvectors
encoding mostly gender information. Some results using
the NN classifier have been reported previously in [19].

The rest of the paper is organized as follows: In Sec-
tion II, feature selection in the context of gender classifi-
cation is addressed. Section III presents a brief review on
the classifiers used. In section V, we present the genetic
search approach for eigen-feature selection. The database
and preprocessing are discussed in section VI. Experimen-
tal results and comparisons are presented in section VII.
Section VIII discusses the results and section IX concludes
with possible directions for future work.

II. Eigen-features

Eigenspace representations of images use PCA [4] to lin-
early project images onto a low-dimensional space. This
space is spanned by the principal components (i.e., eigen-
vectors corresponding to the largest eigenvalues) of the dis-
tribution of the training images. We refer to the projection

coefficients of an image on this space as eigen-features. It
has been found in several studies that different eigenvec-
tors encode different kind of information [20], [21], [8]. For
example, the first few eigenvectors seem to encode light-
ing while other eigenvectors seem to encode features such
as glasses or moustaches [20]. We have made very similar
observations in our case by analyzing the eigenvectors ob-
tained from our training sets. Fig.1, for example, shows
some of the eigenvectors computed from our training data.
Obviously, eigenvectors 1-4 encode light variations while
eigenvectors 10 and 20 encode information about glasses.

Although many of the eigen-features are important for
face recognition, they might actually confuse the classifier
in other applications such as in gender classification. In
this study, we consider using GAs to select a good subset
of eigen-features in order to improve gender classification
performance.

Fig. 1. Eigenvectors (from left to right and from top to bottom):
No. 1-6, 8, 10, 12, 14, 19, 20, 150, 200 and 250.

III. classifiers

A. Neural Network

Fully connected, 2-layer networks trained by the back-
propagation algorithm are used in this study [22]. Sig-
moidal activation units are used in the hidden and output
layers. NNs can directly construct highly non-linear deci-
sion boundaries, without estimating the probability distri-
bution of the data.

B. Bayesian classifers

Each feature in this case is assumed to be a random vari-
able. Given some features x, classification is performed by
computing the posterior probabilities for each class using
the Bayes rule:

P (ωj |x) =
p(x|ωj)P (ωj)

p(x)
(1)

where ωj corresponds to class j and P (x|ωj) is the likeli-
hood. In this study, the likelihoods are modeled as d di-
mensional multivariate Gaussians with different covariance
matrices:

p(x|ωj) =
1

(2π)d/2 | Σj |1/2
exp[−1

2
(x− µj)TΣ−1(x− µj)]

(2)



where x is the d-dimensional vector, µj is the d-dimensional
mean vector of the jth class, Σj is the d × d covariance
matrix of jth class. Maximum likelihood method is used to
estimate the mean and covariance matrix for each class.

C. Linear Discriminant Analysis (LDA)

The objective of LDA is to find a projection, y = WT x
(where x is the input image and W the projection ma-
trix), that maximizes the ratio of the between-class scatter
and the within-class scatter [22], [11]. To avoid problems
with singularities of the within-class scatter matrix (i.e.,
when the training data is much smaller than the dimen-
sion of the data), the original space is projected first onto
a smaller, intermediate space using PCA and then onto a
final space using LDA. Since there are only two classes here
(male/female), the LDA space is one-dimensional. The
Bayes classifier is used again with LDA features (the like-
lihoods are modeled with 1D Gaussians in this case).

D. Support Vector Machine

SVMs are primarily two-class classifiers that have been
shown to be an attractive and more systematic approach to
learning linear or non-linear decision boundaries [23] [24].
Given a set of points, which belong to either of two classes,
SVM finds the hyper-plane leaving the largest possible frac-
tion of points of the same class on the same side, while max-
imizing the distance of either class from the hyper-plane.
This is equivalent to performing structural risk minimiza-
tion to achieve good generalization [23] [24]. Assuming l
examples from two classes

(x1, y1)(x2, y2)...(xl, yl), xi ∈ RN , yi ∈ {−1, +1} (3)

finding the optimal hyper-plane implies solving a con-
strained optimization problem using quadratic program-
ming. The optimization criterion is the width of the mar-
gin between the classes. The discriminate hyper-plane is
defined as:

f(x) =
l∑

i=1

yiaik(x, xi) + b (4)

where k(x, xi) is a kernel function and the sign of f(x)
indicates the membership of x. Constructing the optimal
hyper-plane is equivalent to finding all the nonzero ai. Any
data point xi corresponding to a nonzero ai is a support
vector of the optimal hyper-plane. The Gaussian kernel is
used in this study (i.e., our experiments have shown that
the Gaussian kernel outperforms other kernels in the con-
text of our application).

IV. Background on Genetic Algorithms

Goldberg [14] provides a nice introduction to GAs and
the reader is referred to this source as well as the survey
paper of Srinivas and Patnaik [25] for further information.
GAs are a class of optimization procedures inspired by
the biological mechanisms of reproduction. In the past,
they have been used in various applications including tar-
get recognition [26], face detection and verification [27],
image registration [28], and object recognition [29].

GAs operate iteratively on a population of structures,
each one of which represents a candidate solution to the
problem at hand, properly encoded as a string of symbols
(e.g., binary). A randomly generated set of such strings
forms the initial population from which the GA starts its
search. Three basic genetic operators guide this search:
selection, crossover, and mutation. The genetic search
process is iterative: evaluating, selecting, and recombining
strings in the population during each iteration (generation)
until reaching some termination condition.

Evaluation of each string is based on a fitness function
that is problem-dependent. It determines which of the can-
didate solutions are better. Selection of a string, which rep-
resents a point in the search space, depends on the string’s
fitness relative to that of other strings in the population. It
probabilistically removes from the population those points
that have relatively low fitness. Mutation, as in natural
systems, is a very low probability operator and just flips a
specific bit. Mutation plays the role of restoring lost genetic
material. Crossover in contrast is applied with high prob-
ability. It is a randomized yet structured operator that
allows information exchange between points. Its goal is
to preserve the fittest individuals without introducing any
new value.

Selection probabilistically filters out solutions that per-
form poorly, choosing high performance solutions to con-
centrate on or exploit. Crossover and mutation, through
string operations, generate new solutions for exploration.
Given an initial population of elements, GAs use the feed-
back from the evaluation process to select fitter solutions,
generating new solutions through recombination of parts of
selected solutions, eventually converging to a population of
high performance solutions.

V. genetic feature selection

A. Encoding

Each image is represented as a vector of eigen-features
which are the coefficients of the linear expansion of the im-
age in the eigenspace. In our encoding scheme, the chromo-
some is a bit string whose length is determined by the num-
ber of eigenvectors. Each eigenvector is associated with one
bit in the string. If the ith bit is 1, then the ith eigenvec-
tor is selected, otherwise, that component is ignored. Each
chromosome thus represents a different eigen-feature sub-
set.

B. Initial Population

In general, the initial population is generated randomly,
(e.g., each bit in an individual is set by flipping a coin). In
this way, however, we will end up with a population where
each individual contains the same number of 1’s and 0’s
on the average. To explore subsets of different numbers of
features, the number of 1’s for each individual is generated
randomly. Then, the 1’s are randomly scattered in the
chromosome.



C. Fitness Evaluation

The goal of feature subset selection is to use fewer fea-
tures to achieve the same or better performance. Therefore,
the fitness evaluation contains two terms: (i) accuracy from
the validation data and (ii) number of features used. Only
the features in the eigen-feature subset encoded by an in-
dividual are used to train a classifier. The performance of
the classifier is estimated using a validation data set and
used to guide the GA. Each feature subset contains a cer-
tain number of features. If two subsets achieve the same
performance, while containing different number of features,
the subset with fewer features is preferred. Between accu-
racy and feature subset size, accuracy is our major concern.
Combining these two terms, the fitness function is given as:

fitness = 104 ×Accuracy + 0.4× Zeros (5)

where Accuracy is the accuracy rate that an individual
achieves, and Zeros is the number of zeros in the chromo-
some. The accuracy ranges roughly from 0.5 to 1 (i.e., the
first term assumes values in the interval 5000 to 10000).
The number of zeros ranges from 0 to L where L is the
length of the chromosome (i.e., the second term assumes
values in the interval 0 to 100 since L = 250 here).

Overall, higher accuracy implies higher fitness. Also,
fewer features used imply a greater number of zeros, and
as a result, the fitness increases. It should be noted that
individuals with higher accuracy will outweigh individuals
with lower accuracy, no matter how many features they
contain.

D. Crossover and Mutation

In general, we do not know how the eigen-features de-
pend upon each other. If dependent features are far apart
in the chromosome, it is more probable that traditional 1-
point crossover will destroy the schemata. To avoid this
problem, uniform crossover is used. Mutation is a very low
probability operator and just flips a specific bit. It plays
the role of restoring lost genetic material. Our selection
strategy is cross generational. Assuming a population of
size N , the offspring double the size of the population, and
we select the best N individuals from the combined parent-
offspring population [30].

VI. Dataset

The dataset used contained 400 frontal images from 400
distinct people, representing different races, with different
facial expressions, and under different lighting conditions.
The 400 images were equally divided between males and
females. To compute the eigenvectors, the images were
first registered using the procedure given in [27]. Histogram
equalization was also applied to each normalized image to
account for different lighting conditions. For each approach
considered in our experiments, the average error rate was
recorded using a three-fold cross-validation procedure (i.e.,
Data Set1, Data Set2, and Data Set3). To do this, we
randomly split the database three times by keeping 300
images (150 females and 150 males) for training, 50 images

for validation (25 females and 25 males) and 50 images for
testing (25 females, 25 males). The validation sets were
used to terminate the training of the NN classifier while
the test sets were strictly used to evaluate the suitability
of a given subset of selected eigen-features. As mentioned
above, the database used in this study contains 400 images
from 400 distinct people. This results in a more difficult
database than those used in other studies, where the same
person appears multiple times in the dataset [3].

VII. experiments and results

We have performed a number of experiments and com-
parisons in order to demonstrate the performance of the
proposed gender classification approach.

First, each classifier was tested using manually selected
eigen-features. The NN classifier used was a 2-layer net-
work trained by the back-propagation algorithm (we will
be referring to this approach as NN-PCA). Several runs
were performed varying both the number of hidden nodes
(from 5 to 40) and the number of eigenvectors (from 10
to 150). We used one output node with the number of in-
put nodes being determined by the number of eigenvectors
used. In the case of the Bayes classifier, both the male and
female classes were modeled using Gaussian densities in the
eigenspace, assuming equal priors (we will be referring to
this approach as Bayes-PCA). We run several experiments
varying the number of eigenvectors from 10 to 150 (i.e.,
using more than 150 eigenvectors yields singular covari-
ance matrices due to the relatively small number of training
data). The LDA was tested using PCA as a preprocessing
step (we will be referring to this approach as LDA-PCA).
Several experiments were performed varying the number of
eigenvectors kept in the intermediate eigenspace (from 10
to 150). Finally, the SVM classifier was trained using a
Gaussian kernel (we will be referring to this approach as
SVM-PCA). Several runs were performed again by varying
the width of the Gaussian kernel and the number of eigen-
vectors (from 10 to 150). Table I summarizes the results
obtained (see also Figure 2). The best performance, 8.9%,
was obtained using the SVM classifier.

TABLE I

Error rate(ER) using manually selected features. In the

3rd column, the numbers in parentheses indicate the number

of hidden nodes

EV Bayes NN LDA SVM
10 17.3% 15.3%(5) 13.3% 7%
20 19.3% 18%(5) 14.7% 8.7%
30 16% 17.3%(10) 14% 8%
50 20% 18.7%(15) 14% 8.7%
150 39.3% 19.3%(40) 15% 12%

Average 22.38% 17.7% 14.2% 8.9%

In the next set of our experiments, we used GAs to select
optimum subsets of eigenvectors for gender classification.
The GA parameters we used in all experiments are as fol-



lows: population size: 350, number of generations: 400,
crossover rate: 0.66 and mutation rate: 0.04. It should be
noted that in every case, the GA converged to the final
solution much earlier (i.e., after 150 generations). Fig. 2
shows the average error rate obtained in these runs. The
results illustrate clearly that the feature subsets selected
by the GA have reduced the error rate of all the classi-
fiers significantly: from 22.4% to 13.3% using the Bayes
classifier, from 17.7% to 11.3% using NNs, from 14.2% to
9% using LDA, and from 8.9% to 4.7% using SVMs. The
best classification performance was achieved by the SVM
classifier. In these experiments, GAs searched the space of
the first 250 eigenvectors (except in the case of the Bayes-
PCA+GA approach, where they searched the space of the
first 150 eigenvectors only). The number of eigen-features
selected by the NN-PCA+GA approach was 17.6% of the
complete set of 250 eigenvectors. In terms of information
contained in the selected feature subsets, the NN feature
subset contains 38% of the information contained in the
250 eigenvectors. In the case of the Bayes-PCA+GA ap-
proach, the number of eigen-features selected was 13.3% of
the original set of 150 eigenvectors. This corresponds to
31% of the information in the complete set. The number
of eigen-features selected by LDA-PCA+GA approach was
36.4% of the original set, which contained 61.2% informa-
tion. The smallest number of eigen-features were selected
by the SVM-PCA+GA approach − only 8.4% of the fea-
tures in the original set were selected, containing 32.4%
information. Fig. 2 shows these results.

Fig. 2. (Top): Error rates of various classifiers using features subsets
selected manually or by GAs. ERM: the error rate using the man-
ually selected feature subsets; ERG: error rate using GA selected
feature subsets. (Bottom): A comparison between the automati-
cally selected feature subsets and the complete feature set. RN:
the ratio between the number of features in the GA-selected fea-
ture subsets and the complete feature set; RI: the percentage of
the information contained in the GA-selected feature subset.

VIII. Discussion

To get an idea regarding the optimal set of eigenvectors
selected by GAs for each classifier, we computed histograms
(see Fig.3), showing the average distribution of the selected
eigenvectors (i.e, over the three training sets). The x-axis

corresponds to the eigenvectors, ordered by their eigenval-
ues, and has been divided into intervals of length 10. The
y-axis corresponds to the average number of times an eigen-
vector within some interval has been selected by the GAs
in the final solution. Note that the Bayes-PCA+GA and
Bayes-PCA+SFBS approach was run using only the first
150 eigenvectors. Fig.3 illustrates that the GA has selected
eigenvectors from the entire range of eigenvectors for all the
approaches. It can be easily noted that the selected eigen-
vectors have some overlap, for example, they all contain
the first principal component.

(a) (b)

(c) (d)
Fig. 3. The distribution of eigenvectors selected by (a) Bayes-

PCA+GA, (b) NN-PCA+GA (c) LDA-PCA+GA. (d) SVM-
PCA+GA.

Fig. 4. Reconstructed images using the selected feature subsets.
First row: original images; Second row: using top 30 eigenvectors;
Third row: using the eigenvectors selected by Bayes-PCA+GA;
Fourth row: using the eigenvectors selected by NN-PCA+GA;
Fifth row: using the eigenvectors selected by LDA-PCA+GA;
Sixth row: using the eigenvectors selected by SVM-PCA+GA.

As we have discussed in Section II, different eigenvectors
seem to encode different kinds of information. For visual-
ization purposes, we have reconstructed the facial images
using the selected eigenvectors only (Fig.4). Several inter-
esting comments can be made through observing the re-
constructed images using feature subsets selected by GAs.



First of all, it is obvious that face recognition can not be
performed based on the reconstructed faces using only the
eigenvectors selected by the GA − they all look fairly simi-
lar to each other. In contrast, the reconstructed faces using
the best eigenvectors (i.e., principal components) do reveal
identity as can be seen from the images in the second row.
The reconstructed images from eigenvectors selected by the
GA, however, do disclose strong gender information − the
reconstructed female faces look more ”female” than the re-
constructed male faces. This implies that the GA did select
out eigenvectors that seem to encode gender information.
Second, those eigenvectors encoding features unimportant
for gender classification seem to have been discarded by the
GA. This is obvious from the reconstructed face images cor-
responding to the first two males shown in Fig.4. Although
both of them wear glasses, the reconstructed faces do not
contain glasses which implies that the eigenvectors encod-
ing glasses have not been selected by the GA. Note that
the reconstructed images using the first 30 most impor-
tant eigenvectors (second row) preserve features irrelevant
to gender classification (e.g., glasses).

IX. Conclusions

We have considered the problem of gender classification
from frontal facial images using feature subset selection.
An automatic eigen-feature selection scheme based on GAs
was proposed in this paper. By reducing irrelevant infor-
mation and using only selected eigen-feature subsets, the
four classifiers (Bayes, NN, LDA and SVM) showed signif-
icant performance improvements. Our method could pro-
vide valuable insights into other pattern classification prob-
lems − how to extract and use only the relevant features for
a particular pattern classification task, especially when the
number of training examples is limited. For future work,
we plan to further explore the selected feature subsets to
better understand the relationships among them. Hope-
fully, this investigation will allow us to get some insights
about the distribution of gender-related features in facial
images. Moreover, we plan to test the genetic eigen-feature
selection scheme using more datasets (e.g., vehicle classi-
fication) as well as features extracted by various methods
(e.g., Gabor features).
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