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Abstract Immersive virtual environments with life-like
interaction capabilities can provide a high fidelity view of
the virtual world and seamless interaction methods to the
user. High demanding requirements, however, raise many
challenges in the development of sensing technologies and
display systems. The focus of this study is on improving
the performance of human–computer interaction by render-
ing optimizations guided by head pose estimates and their
uncertainties. This work is part of a larger study currently
being under investigation at NASA Ames, called “Virtual
GloveboX” (VGX). VGX is a virtual simulator that aims
to provide advanced training and simulation capabilities for
astronauts to perform precise biological experiments in a
glovebox aboard the International Space Station (ISS). Our
objective is to enhance the virtual experience by incorpo-
rating information about the user’s viewing direction into
the rendering process. In our system, viewing direction is
approximated by estimating head orientation using markers
placed on a pair of polarized eye-glasses. Using eye-glasses
does not pose any constraints in our operational environment
since they are an integral part of a stereo display used in VGX.
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During rendering, perceptual level of detail methods are cou-
pled with head-pose estimation to improve the visual expe-
rience. A key contribution of our work is incorporating head
pose estimation uncertainties into the level of detail computa-
tions to account for head pose estimation errors. Subject tests
designed to quantify user satisfaction under different modes
of operation indicate that incorporating uncertainty informa-
tion during rendering improves the visual experience of the
user.
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1 Introduction

Virtual environments (VEs) have for a long time been of great
interest to researchers and the general public. Creating virtual
worlds where the laws of nature can be replicated opens the
door to many interesting applications such as training sys-
tems, surgical simulations, machinery tele-operation (e.g. in
hazardous situations), diagnosis and therapy in neuroscience,
and visualization of large datasets among others. The key
element of these computing environments is an immersion
effect provided by a realistic view of the virtual world and
seamless interaction methods. The high complexity required
in creating such immersion effects has motivated significant
research and development in display, rendering and sensing
technologies. Direct sense of the hand, eye-gaze, head and
even the whole human body is required to capture natural
input, while new display technologies accompanied by fast
rendering algorithms are needed to convey high quality visual
information in real-time.

Display subsystems in VEs can show marginally differ-
ent characteristics than conventional ones. Many applications
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require simulating our natural way of viewing the world,
which is not as simple as displaying an image sequence
on a static display screen. In most cases, head position and
eye-gaze determine what we see; therefore, tracking viewing
direction and integrating this information with rendering is
usually necessary to provide a natural view of the VE. This
type of view control is especially important for head mounted
displays (HMDs) and flat stereo displays.

Navigating through a VE can be naturally performed using
some information about the user’s viewing direction. This
information can be used to compensate for the user’s con-
stantly changing position and orientation relative to a flat
display. When the location and orientation of the screen rela-
tive to the user’s viewing direction deviates significantly from
the standard perspective view, a series of modifications to the
viewport mapping can be made to generate a visual image
that is consistently registered with the physical space. Track-
ing viewing direction can also be useful is rendering opti-
mizations. Once the viewing direction is known, it becomes
possible to employ adaptive level of detail (LOD) algorithms
[1] to improve the visual experience perceived by the users
without major increases in computational load. In a sense,
systems employing LOD simulate the multi-resolution char-
acteristics of the human visual system to avoid rendering
everything at the highest possible detail.

Choosing an effective motion tracking method to imple-
ment advanced display systems represents an important
design decision that can have considerable effects on user sat-
isfaction. An important criterion to be considered is the level
of intrusiveness introduced by the method. Computer vision
has a distinctive role as a direct sensing method because of its
non-intrusive, non-contact nature. However, computer vision
faces several other challenges including generality, precision,
robustness and processing speed requirements. Even in the
case of head tracking, a 6 degree-of-freedom (DOF) rigid
object tracking problem, various issues could have an adverse
effect on the robustness and precision of pose estimates (e.g.,
varying illumination conditions, varying background, feature
extraction, modeling errors). Overcoming these difficulties
requires more research.

Currently, precise high frequency motion tracking can be
accomplished using electro-mechanical or magnetic sensing
devices [2]. These methods, however, are invasive. The sen-
sors require contact with the body, hindering the natural-
ness of interaction. As the number of sensors increases, the
workspace gets more and more tethered, while calibration of
measured DOFs gets more and more time consuming. This
study is part of a larger study and aims to improve the fidelity
of display subsystems in an immersive virtual environment,
called VGX (see Fig. 1). The goal of VGX, which is cur-
rently under investigation at NASA Ames, is to assist in train-
ing astronauts to conduct technically challenging life-science
experiments in a glovebox aboard the ISS. VGX integrates

Fig. 1 VGX: A stereoscopic display station provides a high-resolution
immersive environment corresponding to a glovebox facility

high-fidelity graphics, force-feedback devices, and real-time
computer simulation engines to achieve an immersive train-
ing environment [3,4].

To support interaction with virtual objects, the current
interface of VGX uses off-the-shelf tracking and haptic feed-
back devices, which contain cumbersome elements such as
wired gloves, tethered magnetic trackers, and haptic arma-
tures inside the workspace. The visualization system consists
of a custom stereo rendering system using LCD projectors.
The only invasive element of the display system is a pair
of polarized eye-glasses that have to be worn by the user to
get a 3D view of the inside of the glovebox. Our objective
is to enhance the display subsystem of VGX by incorporat-
ing information about the user’s head pose into the rendering
process. For head tracking, a computer-vision-based solution
has been adopted due to its non-invasiveness.

In the current implementation of our system, viewing
direction is approximated by head pose using several mark-
ers placed on the frame of a pair of polarized eye-glasses.
The use of markers does not introduce any restrictions in our
operational environment since the eye-glasses represent an
integral part of the stereo display system used in VGX. Using
markers greatly improves the robustness, precision and speed
of head-pose estimation. During rendering, perceptual level
of detail (PLOD) algorithms (i.e., LOD algorithms using cri-
teria derived from physiological aspects of human vision) are
employed. A key contribution of our work is the incorpora-
tion of head-pose estimation uncertainties in PLOD compu-
tations to account for errors in head-pose estimation. As our
experimental results illustrate, ignoring errors in head pose
estimation decreases user satisfaction. An earlier version of
this work has appeared in [5].

The rest of the paper is organized as follows: Sect. 2 pro-
vides background information and a brief review of PLOD
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methods. Section 3 describes our prototype system, opera-
tional environment and hardware components. The head pose
estimation algorithm, and the implementation details of the
PLOD system are presented in Sects. 4 and 5, respectively.
Our experimental results, including user satisfaction experi-
ments, are reported in Sect. 6. Finally, Sect. 7 concludes our
study and provides directions for future research.

2 Background and previous work

The LOD is a rendering approach where a scene is rendered
by adaptively changing the amount of detail across it. Typi-
cally, areas more visible to the user are rendered with higher
detail. LOD facilitates various tasks, such as image com-
pression and bandwidth reduction [6], simulation of visual
defects [7], or rendering optimization [1,8–10]. Depending
on the data used as input, LOD methods can be categorized
as image or geometry-based. Changes in the detail of objects
in a 3D scene can be used to further categorize geometry-
based approaches into discrete and continuous. In discrete
LOD methods, a small, finite number of LODs are created
off line for a given object. Then, depending on the distance
of the object from the viewer, a single LOD for the whole
object is rendered. Details of the object are controlled contin-
uously all over the scene depending on various criteria based
on perceptual aspects of the human vision system. The work
presented here falls in the category of continuous LOD.

At a higher level, a PLOD system can be described as the
interaction of three elements as shown in Fig. 2: (1) criteria,
(2) mechanism, and (3) error measure. Criteria encompass
those variables that affect the selection of an LOD. The mech-
anism selects a way of manipulating the geometry so that it
has the desired LOD. Finally, the error measure is used to
control and measure the model’s deviation from the original
model.

Two of the variables used as part of the criteria are the
relative size and distance of the object from the camera or
point of view of the user. Research work in experimental
psychology has introduced additional variables including:

• Contrast sensitivity the LOD is modulated depending on
the contrast that determines the maximum and minimum
spatial frequencies visible to humans. This relation is
captured by a Contrast Sensitivity Function (CSF) [11].

Criteria Mechanism Error 
Modified 

Mesh
Original 

Mesh
Optimized 

Mesh

Fig. 2 Interaction between main LOD elements

• Velocity the LOD is modulated proportionally to the rela-
tive velocity of the eyes across the visual field. The visual
system has reduced sensitivity to the details of moving
objects.

• Eccentricity the LOD is modulated proportionally to the
angular distance of the object to the viewpoint. The visual
sensitivity falls off at the visual periphery.

• Depth of field the LOD is modulated proportionally to
the distance to the Panum’s fusional area [9]. This is used
only in connection with stereo-vision.

There are various methods for changing object geometry
in order to achieve the desired LOD determined by evaluat-
ing the criteria. In continuous LOD, polygonal simplification
algorithms are utilized. These algorithms can be grouped into
four main categories [12]:

• Sampling a dense mesh surface is sampled to obtain a low
resolution version.

• Adaptive subdivision a low resolution mesh is created
from the original one, which is then recursively subdi-
vided to create higher resolution meshes.

• Decimation vertices and faces are iteratively removed
from the mesh with resulting holes being triangulated.

• Vertex merging vertices are collapsed into a single vertex.

Measuring the error between a high resolution mesh and
a lower resolution one involves various factors. The most
obvious one is the geometric error which depends on the
number and location of the vertices, however, small geomet-
ric errors may not always translate to small visible errors
on the screen. What is really needed is a perceptually-con-
sistent error measure, an issue which is not well understood
yet. Some less obvious sources of error include color, normal,
and even texture [12]. Common error measures in the litera-
ture include vertex–vertex, vertex–plane, vertex–surface, and
surface–surface distances.

The perceptual criteria described above depend on esti-
mating eye-gaze or making certain assumptions. There exist
several systems making use of eye-gaze to guide perceptually
motivated simplifications including [1,13–15]. Both [1] and
[15] use an eye tracker to estimate eye-gaze. Computer vision
provides a non-contact method for estimating eye-gaze; how-
ever, a non-intrusive solution that can compensate for large
head motions is not available yet. In [1], the user’s head was
placed in a chin rest to avoid calculating the position of the
eyes. Only [15] tracks the head and the eyes simultaneously
using IR cameras and sensors attached to a HMD.

3 System design

The design of a VE system is closely related to the intended
application, both for performance and economical reasons.
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Our aim in this study is to build a system capable of display-
ing images to a user while the user interacts with the system.
The display being used within VGX is a stereo display where
images for each eye are alternatively projected on a screen.
The user wears a pair of polarized glasses to make each eye
view only the images intended for it. This is minimally inva-
sive compared to the use of HMDs .

Ideally, we would like to estimate the point of interest
(POI) by estimating eye-gaze exactly, in order to guide the
optimizations. Full eye-gaze estimation requires solving two
separate problems: (1) estimating the orientation of the head
and (2) estimating the orientation of the eyes within their
sockets. However, the use of polarized glasses in the VGX
environment (see Fig. 3) blocks direct view of the eyes.
Therefore, our current implementation uses head orientation
for approximating eye-gaze (e.g., [16]).

Several techniques have been proposed for head tracking
and pose estimation in human-computer interaction includ-
ing [17–19]. Since the emphasis of this work is on the integra-
tion of head pose uncertainties in the LOD computations, we
opted for a simpler and more practical approach in order to
estimate the 3D position and orientation of the head; however,
more sophisticated approaches might be more appropriate in
this context. Specifically, head orientation and location was
estimated by tracking several markers placed on the frame of
the eye-glasses in a specific configuration. The use of markers
does not introduce any restrictions in our operational envi-
ronment since the eye-glasses represent an integral part of the
stereo display system used in VGX. Using markers greatly
improves the robustness, precision and speed of head pose
estimation. Since good illumination is always important in
marker-based tracking, our solution must ensure that light-
ing does not distract the user. To deal with these issues, we
are using IR illumination in conjunction with IR reflective
markers.

Fig. 3 System setup: a camera setup; b polarized eye-glasses with
markers; c camera close-up with LEDs on

IR illumination is invisible to the human eye while com-
mon off-the-shelf CCD cameras can sense IR by simply
removing the IR filter on the lens. Our system uses two Phil-
lips TUCam webcams with their IR filters removed. An array
of IR diodes, placed around the lens of each camera, generate
IR light evenly at 800nm (see Fig. 3c). To filter out the visible
light, a high-pass filter was placed behind the lens of each
camera. In particular, the filter used was a Kodac Wratten
89c filter with a cutoff limit of 800nm. At this wavelength,
only the red sensors in the camera can pick up any signal.
The result is a grayscale image in the red channel. A sample
image captured by the system is shown in Fig. 6(a). This con-
figuration provides high quality images containing only the
markers on a dark background, facilitating the segmentation
of the markers.

In our prototype system, the cameras are fixed to the sides
of a monitor as shown in Fig. 3(a). Both cameras continuously
capture images at 30fps. The use of a stereo setting allows
for recovering the 3D positions of the markers using trian-
gulation. The cameras have been calibrated using a planar
calibration pattern [20]. Additionally, they have been syn-
chronized so that each pair of images is captured at the same
instant of time. We have implemented image acquisition and
camera synchronization using a custom application in Di-
rectShow.

Our system contains three main modules as shown in
Fig. 4: Head Pose Estimation (HPE), PLOD, and render-
ing. The HPE module is in charge of grabbing the images
from the cameras, processing them, and estimating the posi-
tion and orientation of the head, as well as the uncertainty
associated with the estimates. This information is then pas-
sed on to the PLOD module which determines the minimal
level of detail required to render the primitives in the scene.
Using LOD information, the rendering module draws the
scene on the screen in a way consistent with the user’s point
of view. The renderer used in our system is fairly standard
and employs back face culling, frustum culling, and clipping
to reduce computational load.

4 HPE module

This module takes as input a pair of images and processes
them to estimate head-pose. This is performed by estimating
head position and orientation vectors from the recovered 3D
locations of the markers P0 to P4 as shown in Figs. 5 and
3b. A critical issue in head pose estimation is the accurate

HPE 
Module 

PLOD 
Module 

Rendering
Module 

Stereo  

Images 

Head Pose & 

 Uncertainty

LOD 
Screen 

Fig. 4 Main components of our system
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P0 P1 P2 

P4 P3 

Fig. 5 Marker arrangement on the frame of the polarized eye-glasses

localization of the markers. Estimating the locations of the
marker centers precisely is quite difficult since each marker
occupies a few pixels only due to the relatively low resolution
of the images captured by our system. Slight segmentation
errors could also affect correct marker localization. Since
errors in marker localization could affect head pose estima-
tion seriously, our system models the uncertainties in head
pose estimation and incorporates this information in the LOD
computations to minimize error effects.

The HPE module includes three main stages: (1) marker
extraction and identification, (2) head pose estimation, and
(3) uncertainty estimation. The first stage segments the pix-
els associated with each marker and identifies each marker
uniquely; the second stage uses stereo reconstruction to esti-
mate the 3D locations of the markers and estimates head
pose; the last stage computes the uncertainty in head pose.

4.1 Marker extraction and identification

Using IR illumination along with IR reflective markers allows
for fast and robust marker detection and extraction. A sample
image is shown in Fig. 6(a); as it can be observed, background
information has already been suppressed due using a filter

Fig. 6 Image processing pipeline: a input image, b marker segmen-
tation (threshold value used: 100), c smoothed image (9x9 Gaussian
filter), and d marker centers

that blocks visible light. This allows detecting and extracting
the markers using simple thresholding as shown in Fig. 6(b).
The threshold value was experimentally set to 100. The thres-
holded image is then smoothed using a 9 × 9 Gaussian filter
to eliminate noise as shown in Fig. 6(c). Sharp blobs with
small area are then discarded since they correspond to reflec-
tions on the surface of the glasses. The special arrangement of
the markers, as shown in Fig. 5, allows for identifying them
uniquely in each image. A detailed description of our marker
extraction and identification algorithm is provided below:

(1) Threshold input image to segment markers.
(2) Smooth image and remove small, sharp blobs.
(3) Calculate the center or each marker using a weighted

sum of pixel locations and their intensity.
(4) Find the three markers that lie on a line.
(5) The marker in the middle of the trio will be P1. The

other two markers would be P0 and P2, however, their
order must be determined. Let us denote them by Pa

and Pb.
(6) Calculate the distance of the remaining two markers

from Pa . Let us denote the closest and farthest markers
as P′

a and P′
b, respectively.

(7) If the sign of the cross product (Pa −P1)× (P′
a −P1) is

positive, then Pa is P0, P′
a is P3, Pb is P2 and P′

b is P4;
otherwise, Pb is P0, and P′

b is P3, Pa is P2, P′
a is P4.

4.2 Pose estimation

The use of off-the-shelf cameras with IR illumination has
some drawbacks. The poor resolution of the webcams results
in small marker images, on average totaling about 35 pixels.
Apart from the small marker image size, the combination
of sensor noise, lighting conditions and image processing
all contribute to missing some pixels; particularly around
the marker boundary. Traditional methods for pose estima-
tion use the known geometry of the markers to recover their
pose, for example, by fitting an ellipse to the marker image
[21]. These methods are sensitive to missing pixels, espe-
cially around the marker’s boundary, giving poor results.
Here, we opted for a simpler but more practical approach
using the more stable marker image centroid, however, one
could consider using more sophisticated approaches.

Once the markers have been extracted and identified in
both images, the centers of corresponding markers (i.e. the
projections of the same marker in the each image) can be tri-
angulated to compute their 3D coordinates. To estimate the
pose of the head, we need to compute its position and ori-
entation in 3D. Head position is taken as the 3D position of
marker P1, that is, the marker in the middle of the eye-glasses
(see Figs. 3(b), 5).

To compute head orientation, we associate a 3D coordi-
nate system with it using three vectors as shown in Fig. 7.
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Ψ=V x Ξ

Ξ=P0-P1/ ||P0-P1|| 
V: View Direction 

V x  Ψ

Fig. 7 The coordinate system representing head orientation

The first vector V, which determines the POI on the display,
is the average of the normals associated with the three main
triangles formed by the markers as shown in Fig. 5 (i.e., (i)
P0, P1, P3, (ii) P1, P2, P4, and (iii) P1, P3, P4). The
second vector �, is taken to be the unit vector along P0 −P1.
The third vector �, is computed as the cross product of the
other two. Using this information, it is possible to define an
orthogonal frame using V × �. Currently, only the viewing
vector V is used in the LOD computations. In the future,
we plan to combine head orientation with eye orientation to
compute eye gaze exactly as mentioned in Sect. 3.

The head-pose estimate obtained using the procedure
above is considered to be a mean estimate for uncertainty
modeling purposes. The main factors affecting the accuracy
of the mean estimate include: (1) distance to the camera (i.e.,
affects the resolution of markers), (2) viewing direction with
respect to the camera (i.e., affects the resolution of the mark-
ers), and (3) segmentation and camera calibration errors. The
purpose of uncertainty estimation is to model the error in head
pose estimation and incorporate it in the LOD computations.

4.3 Uncertainty estimation

In general, uncertainty estimation is a useful component of
any computer vision system. A common method in model-
ing uncertainty is by error propagation [22], that is, propa-
gating pixel-wise errors, originating from camera calibration
and feature extraction errors, to 3D estimates. For simple
tasks, such as local depth or orientation estimation [23], it is
possible to derive analytic expressions for uncertainty; how-
ever, in our case we are dealing with global estimates that
yield complex nonlinear equations. We have devised a sim-
pler approach based on sampling that simulates error propa-
gation in the three main processing stages. First, each marker
is represented by a “cloud” of points corresponding to the pix-
els comprising each marker. Then, each cloud is uniformly
sub-sampled to obtain a set of head-pose estimates. The var-
iation of the resulting estimates from the mean estimate (i.e.,
see Sect. 4.2) is modeled as a multi-variate Gaussian distri-
bution which is used in the LOD computations.

4.3.1 Marker representation

Ideally, the 3D location of each marker can be estimated
by triangulating the 2D centers of each marker in the stereo

image. Since accurate 2D marker center localization is prone
to errors, we have devised a strategy to account for errors
in head pose estimation. Specifically, given a pair of cor-
responding regions in the two images (i.e., projection of the
same marker) we represent each marker as a “cloud” of points
corresponding to the pixels contained in each region as shown
in Fig. 8. Then, we form pairs of points, one from each image,
to estimate the 3D coordinates of the marker. Since we do
not know the correct correspondences, one could form all
possible correspondences, which would yield to a “cloud” of
3D points for each marker. This, however, has high computa-
tional requirements. Fortunately, many of the hypothesized
corresponding pairs can be ruled out quickly using the epi-
polar constraint [24] and structural constraints.

To take advantage of the epipolar constraint, we thresh-
old the distance between the viewing rays starting from each
camera optical center and passing through the corresponding
pixels. This represents the reconstruction error (see Fig. 9).
In ideal conditions, the rays should intersect and the distance
should be zero; however, this is not the case in practice due
to calibration and pixelization errors (see Fig. 9). The thresh-
old was determined empirically by analyzing the reconstruc-
tion error histogram as shown in Fig. 10. In particular, the
smallest error occurs between corresponding pixels which is

Fig. 8 Representing markers as clouds of points

Fig. 9 Illustration of the reconstruction error
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Fig. 10 Several reconstruction error histograms: the first peak of the
histogram was used to determine the reconstruction error threshold

represented by the first peak in Fig. 10. For this reason, the
reconstruction error threshold was set to 2.0 mm.

Although the epipolar constraint is very effective in rul-
ing out many invalid correspondences, it can not eliminate
all of them. To further reduce the number of invalid cor-
respondences we apply structural constraints by eliminating
topologically inconsistent pairings. Specifically, since all the
markers have the same shape, we do not allow a point close
to the boundary of a marker in one image to be paired with
a point close to the center of a marker in the other image.
To implement this criterion, we compare the distances of the
points to marker centers. If the difference of the distances
is greater than a threshold, then the pair is discarded. To set
the value of this threshold, we used the average difference
calculated over several frames.

4.3.2 Error modeling

The purpose of this step is to model the errors in head pose
estimation which affect the location of the POI on the screen.
Specifically, head pose uncertainty can be expressed in terms
of orientation and position errors. Since position depends
only one marker (i.e., P1), it is straightforward to model
position uncertainty given a cloud of points. In fact, it is
possible to estimate it analytically using error propagation
techniques such as the ones reported in [23]. Our initial exper-
iments, however, indicated that errors in orientation esti-
mates are much more important in the context of our appli-
cation that errors in position estimates. For example, when
the user moves farther away from the display, slight orienta-
tion changes could cause large shifts in the POI. Therefore,
we have ignored the uncertainty in head position and have
estimated only the uncertainty in orientation.

Orientation estimates depend on the location of all five
markers, each of which are represented by a cloud of points
as described in Sect. 4.3.1. Any combination of 5 pixels,
one from each cloud, produces an orientation estimate. A

straightforward way to model orientation uncertainty is by
considering all possible combinations; however, this would
increase computational load. To keep computational require-
ments low, we uniformly sub-sample each cloud of points and
form all possible combinations among the samples, yield-
ing a “cloud” of orientation estimates. The reason for using
uniform sampling is because, mathematically, each point in
the cloud can yield a valid pixel in the marker images. The
resulting orientation estimates are then coded as unit vectors
in the head orientation frame using spherical coordinates as
shown in Fig. 11. In spherical coordinates, two angles, (φ, θ),
are sufficient to represent each orientation sample since all
the vectors are taken to be unit vectors. Orientation uncer-
tainty is modeled by fitting a Gaussian distribution centered
at the viewing direction. Assuming that φ and θ are indepen-
dent of each other, the sample covariance of the points on
the (φ, θ) plane represents a maximum likelihood estimate
of the parameters of the Gaussian distribution [25].

4.4 HPE validation using a magnetic tracker

To test the accuracy of head pose estimation, the output of our
system was compared to the readings of a magnetic tracker.
Specifically, we used a Flock of Birds (FoB) magnetic tracker
by Ascension Technology Corporation to obtain ground truth
data. FoB is capable of handling up to 144 measurements
per second with a static accuracy of 1.8mm in position and
±0.5◦ in orientation. To use the magnetic tracker for vali-
dation, we first calibrated it with our vision-based system in
order to find the transformation between the cameras’ coor-
dinate system and the one corresponding to the magnetic
tracker. This involved placing a marker on the FoB and tak-
ing about 200 samples using the stereo rig and the FoB. We
used the registration method reported in [26] to find the trans-
formation matrix. It is worth noting that, some errors still
exist in registering the two coordinate systems since physical

V 

φ 

θ

Ψ 

Sample 
orientation

Fig. 11 Orientation uncertainty with respect to the mean expressed in
terms of the angles θ and φ
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constraints prevent us from placing the marker at the exact
measurement point of the FoB magnetic tracker. This intro-
duces a slight offset (i.e., about 4.89mm) between the data
taken from the camera and those reported by the FoB. After
the offset had been removed, the root mean-square error was
measured to be 3.65, 2.65 and 3.39 mm in X, Y and Z axes,
respectively, which is very close to the tracker’s accuracy
of 1.8 mm. Similar results were obtained in the other two
axes (see Fig. 12). The root mean-square orientation error in
(x, y, z) was θerr = (8.85◦, 16.31◦, 6.88◦). Orientation errors
were due to the large area covered when collecting the data
sets. This caused the face to move far from the cameras from
time to time which affected the marker images.

5 PLOD module

As shown in Fig. 2, a PLOD system contains three main
elements: criteria, mechanism, and error measure. In our

prototype system, we employed an adaptive subdivision
algorithm as the mechanism to generate an optimized mesh.
Specifically, a base model, corresponding to the lowest pos-
sible resolution, is constructed off-line. During rendering,
the polygonal primitives in the model are recursively subdi-
vided as needed. We used the algorithm reported in Junkins
et. al. [10]; the main difference between that implementation
and our implementation is that we incorporate perceptual
information to the culling functions. Subdivision has some
limitations in terms of its ability to capture the details of the
original shape, especially at sharp corners and creases, but it
is also fast, easy to implement, and memory efficient. Also, it
eliminates the need for an error loop and allows for separating
system performance from mechanism performance.

The basic processing step in the PLOD module is deter-
mining the desired LOD level for selected triangles in the
base model. To gain performance, the rendering and PLOD
modules were not separated as shown in Fig. 4; instead, they
were highly coupled. When drawing the scene, the rendering

Fig. 12 Comparison of head’s location obtained using vision-based and magnetic-based head tracking a x-coordinate; b y-coordinate; c z-coor-
dinate
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module discards as many triangles as possible by determining
their visibility. Only those triangles that need to be drawn are
passed to the PLOD module in order to determine the level
of detail which corresponds to the number of subdivisions
needed. The computation of the desired LOD depends on
several factors including contrast, eccentricity, velocity, and
spatial frequency.

Depth of field, mentioned in Sect. 2, was not accounted
for because we are not using a stereoscopic display to render
the images and we are not estimating eye-gaze vectors in our
current implementation. Since all the features depend on the
current view of the scene, they were computed on the fly at
each frame. Once the features were calculated, a contrast sen-
sitivity model [11] was employed to determine the desired
LOD. An important processing step, specific to this study, is
the incorporation of uncertainty head orientation estimates
in the LOD computations. Although it is possible to make
use of uncertainty information with respect to any feature,
we determined that the most effective and critical one was
eccentricity.

In the next section, we present the uncertainty-based
eccentricity computations. Then, we summarize the rest of
the processing steps including computation of other features
and LOD determination.

5.1 Eccentricity and uncertainty

A triangle’s eccentricity is defined to be the angle in degrees
of the arc between the user’s head position, the triangle’s geo-
metric center and the user’s POI in the screen (see Fig. 13).
To calculate it, the triangle’s centroid is projected to the
near plane and transformed to screen plane coordinates. The
screen plane should not be confused with screen coordinates,
which are measured in pixels; it is a 3D plane that represents
the physical display and contains the POI. The POI corre-
sponds to the intersection of the screen plane with the ray
emanating from the head position, along the viewing direc-
tion. In head coordinates, as shown in Fig. 7, the eccentricity

Fig. 13 Visual interpretation of a triangle’s eccentricity

corresponds to the angle between the V axis (i.e. the viewing
direction) and the vector between the head position and the
triangle’s projection. LOD is inversely proportional to eccen-
tricity, that is, eccentricity increases as the LOD decreases.

In the presence of uncertainty, the location of the POI is
described in terms of a 2D Gaussian defined on the (φ, θ)

plane as discussed in Sect. 4.3.2. To make use of uncertainty
information, a triangle’s projection is shifted towards the ori-
gin (i.e., along the viewing direction), proportionally to the
probability that the projection itself is the POI. This “pseudo-
shift” causes a triangle to have higher level of detail by mov-
ing it closer to the POI proportionally to uncertainty. For-
mally, let � denote the covariance matrix of the Gaussian,
and P denote the (φ, θ) coordinates of the triangle’s pro-
jection on the screen plane. Then, the uncertainty-corrected
coordinate P′ is obtained as follows:

P′ =
(

1 − ePT �−1P
)

P (1)

5.2 Contrast, velocity and spatial frequency

Velocity is defined as the relative velocity of the triangle with
respect to the head. Velocity information can be computed by
keeping a short history of head pose estimates. To compute
spatial frequency and contrast, the projection of the trian-
gle has to be computed. Spatial frequency is given by the
inverse of the diameter of the triangles’ projection. Contrast
is defined as follows:

C = Lmax − Lmin

Lmax + Lmin
(2)

where Lmin and Lmax denote the relative minimum and max-
imum luminance levels inside the projection of the triangle
[11]. To calculate the luminance levels, the triangle is ren-
dered and the pixels are read back from the frame buffer.
The advantage of this approach is that it takes lighting into
account. If a triangle is under a shadow, the LOD will be
lower than the case of a triangle being under a bright light.
The disadvantage is that reading data from the frame buffer
is an expensive operation, especially when a large number of
triangles must be processed. To mitigate this problem, only a
10 × 10 pixel region around the triangle’s centroid was used
for contrast calculations.

5.3 A Triangle’s level of detail

A triangle’s LOD was set to the highest level that a user can
perceive to avoid unnecessary details and guarantee fidelity.
The limit on perception comes from CSF (see Sect. 2). This
function takes several variables that affect perception and
produces the contrast levels at which the user stops perceiv-
ing. Figure 14 shows the visibility limit as a function of spatial
frequency and contrast. The contrast threshold is the mini-
mum contrast needed for a feature to become visible to the
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Fig. 14 Contrast sensitivity function showing the relationship between
contrast and spatial frequency with human perception

human eye. Increasing the spatial frequency (i.e., by making
triangles smaller) or reducing the contrast, can make features
disappear. Eccentricity and velocity change the shape of the
CSF curve and these relations are captured by the following
equation [11]:

C(αmax, ν, e)

= (250.1 + 299.3| log10(ν/3)|3)να2
max10−5.5αmax(ν+2)/45.9

1 + 0.29e
(3)

where ν, e, αmax denote the velocity, eccentricity, and max-
imum visible spatial frequency respectively. Using the CSF
equation, it becomes possible to predict CSF under given
eccentricity and velocity values. Once the contrast, veloc-
ity, and eccentricity of a triangle are known, inversion of the
equation leads to the maximum spatial frequency required
to draw the triangle. Given the maximum frequency value
αmax and the measured spatial frequency α of the triangle,
the desired LOD level, or equivalently the number of sub-
divisions that needs to be applied on the triangle, can be
calculated as follows:

L O D =
⌈

log2

(αmax

α

)⌉
(4)

The base of the logarithm in Equation 4 is related to the
subdivision algorithm employed [10] with each subdivision
approximately doubling the spatial frequency.

5.4 Summary of steps

The operation of the PLOD system can be summarized by
the following processing steps which are applied on all the
visible triangles in the base model:

(1) locate triangle’s centroid;
(2) project and transform the centroid to the screen plane;
(3) calculate angular offset with respect to the POI;
(4) calculate corrected eccentricity using Eq. (1);
(5) calculate spatial frequency by projecting the vertices of

the triangle;
(6) render triangle;
(7) read back a 10×10 region around the triangle’s centroid

to determine the contrast using Eq. (2);
(8) compute velocity;
(9) use contrast, velocity and eccentricity and Eq. 3 to find

the maximum spatial frequency;
(10) using maximum frequency, find the triangle’s LOD

using Eq (4).

6 Subject tests

Our testing procedure aims to measure the benefits of using
uncertainty corrections in a perceptually optimized display
system. In our tests, users were shown a terrain (see Fig. 15)
where the rendering optimizations were applied. To control
the POI on the screen, the user moves his/her head around.
At the same time, the user tries to qualitatively assess the
fidelity of the simulation by classifying perceived satisfac-
tion in one of the following three categories: low, medium, or
high. At the end of the experiment, we counted the number
of users that perceived an increase, decrease or no change in
satisfaction and expressed the result as a percentage.

We used three test cases corresponding to different views
of the same terrain (i.e., Fig. 15a–c). The test cases differ
from each other in the angle and distance to the model in
order to see different sections of it. The idea is to find con-
sistent results with varying geometry. The first test case (i.e.,
Fig. 15a) shows an overview of the terrain from afar and cov-
ering the whole image. The second test case (i.e., Fig. 15b)
offers a close view of the terrain from the left with a moun-
tainous landscape dominating the picture. The last test case
(i.e., Fig. 15c) contains a mix of plains (foreground) and
mountains (background).

Each case had different characteristics such as number of
triangles, display resolution, and terrain roughness. Each case
was displayed under three scenarios, with different optimiza-
tions enabled. The first scenario does not involve uncertainty
information as part of LOD computations. The second sce-
nario uses a fixed covariance matrix, corresponding to the
maximum variance measured in our experiments. The result
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Fig. 15 Terrain view used for
testing: a test case 1; b test case
2; c test case 3

is an expanded high definition area in the image. By expand-
ing this area, the user is less likely to notice triangles changing
resolution in the periphery. The last scenario uses an adaptive
covariance matrix, updated at each frame.

The image shown in Fig. 16 is a view of the terrain from
Fig. 15(b), rendered in wireframe mode, with perceptual opti-
mizations on and an adaptive covariance matrix. It should be
noted that the triangles closer to the POI, marked with a cross-
hair, are rendered with higher LOD. Also, the LOD regions
do not follow an elliptical pattern because they are affected
by the contrast level of the textured triangles and the relative
velocity to the head.

Our experiments were performed using 19 subjects. Com-
parisons between different scenarios were performed and the
increase/decrease in user satisfaction between test scenarios
was recorded. The results are shown in Tables 1, 2, 3, 4.
Table 1 shows the averages over all test cases, while Tables 2,
3, 4 report specific results for each test case separately.

Table 1 Satisfaction comparison between test scenarios across all test
cases

All cases Increase No change Decrease Total
(%) (%) (%) (%)

Fixed vs. none 63.16 29.82 7.02 100.00

Variable vs. none 26.32 54.39 19.30 100.00

Variable vs. fixed 8.77 33.33 57.89 100.00

Table 2 Satisfaction comparison between test scenarios for test case 1

Case 1 Increase No change Decrease Total
(%) (%) (%) (%)

Fixed vs. none 52.63 47.37 0.00 100.00

Variable vs. none 21.05 52.63 26.32 100.00

Variable vs. fixed 10.53 21.05 68.48 100.00

Table 3 Satisfaction comparison between test scenarios for test case 2

Case 2 Increase No change Decrease Total
(%) (%) (%) (%)

Fixed vs. none 63.16 31.58 5.26 100.00

Variable vs. none 21.05 63.16 15.79 100.00

Variable vs. fixed 0.00 42.11 57.89 100.00

Table 4 Satisfaction comparison between test scenarios for test case 3

Case 3 Increase No change Decrease Total
(%) (%) (%) (%)

Fixed vs. none 73.68 10.53 15.79 100.00

Variable vs. none 36.84 47.37 15.79 100.00

Variable vs. fixed 15.79 36.84 47.37 100.00

Table 1 shows that using a fixed covariance matrix to
represent uncertainty has a positive impact on performance
with 63% increase in user satisfaction. Only 7% of the time
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Fig. 16 The terrain, in
wireframe mode (test case 2),
rendered with perception
optimizations and adaptive
uncertainty

subjects perceived worse performance compared to not
having uncertainty optimizations enabled. The results using
adaptive covariance matrices were a bit different; the major-
ity of subjects experienced an improvement or no change
while almost 20% reported worse performance compared
to using no uncertainty. Comparing adaptive with fixed
uncertainty, the former performs up to 57% worse. A sim-
ilar trend was observed in all three cases as shown in
Tables 2, 3, 4).

A closer inspection of our experimental results revealed
that the main reason for the under-performance of the adap-
tive uncertainty approach was the jitter in the estimation of
the covariance matrix. This translated into LOD oscillations
for some of the triangles at the visual periphery, where these
oscillations are more likely to be noticed. We think that the
cause for the jitter in the calculation of the covariance matri-
ces was the random sampling strategy used to sub-sample
the clouds of points (see Sect. 4.3.2).

The sub-sampling rate is an important parameter in this
processing step. In our experiments, it was determined exper-
imentally as the minimum fraction of points for which the
covariance matrix was relatively constant. Figure 17 shows
the variance of orientation angles as a function of the sub-
sampling rate. As the sub-sampling rate increases, the
standard deviation of the orientation estimates saturates to a
constant value at a range of less than 0.2◦. We used a sampling

Fig. 17 Horizontal (� ) and vertical (	) angle variances as a function
of the sub-sampling rate

ratio of 0.3 in our experiments; however, very small pertur-
bations in the correlation matrix entries result in noticeable
oscillations in LOD.

Ideally, we would need to use a fraction much closer to 1,
however, such a high value would severely degrade user satis-
faction due to lags in frame updating. A straightforward solu-
tion to this problem would be increasing processing power
to minimize lag. Moreover, replacing the uniform distribu-
tion assumption during sub-sampling with a more realistic
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Fig. 18 Wireframe mode of
terrain rendered at level 0: a test
case 1, b test case 2, c test case 3

distribution that depends on the geometry of the markers
might help in minimize jitter effects without major increases
in computational load.

Although it is not evident from the above trends, the effect
of dynamically changing resolutions was accentuated in test
case 2. If we look at the responses received, test case 2 had
the worst perceived results compared to the other two tests.
The reason is the combination of the LOD and the high relief
of the terrain section displayed. A terrain section with high
relief will present abrupt transitions at the lower levels which
are precisely the ones selected by the perceptual algorithm
in test case 2. Figure 18(b) corresponds to test case 2 and
should be compared to the other two test cases in Fig. 18(a),
(c). The high relief and relative size of the triangles should
be noted in this case.

As expected, using PLOD increased rendering speed con-
siderably compared to rendering the scene at the highest
LOD. Specifically, the frame rate increased from 5 fps to
15 fps on a Pentium 4 2.56 MHz processor with 1 GB of
RAM. The savings from rendering extra triangles were used
to compensate for the computational cost of implementing
the PLOD system by increasing the frame rate. In general,
higher frame rates have a positive impact on user quality
perception. This did not have an effect on the experiments
because the test cases were explicitly designed with static
content to avoid distracting the user and making him shift
his POI.

7 Conclusions

We have presented a PLOD-based display system for VEs
using modest off-the-shelf components. The system was built
using a modular design that combines a computer-vision-
based head-pose estimation module, a PLOD module, and
a rendering module. A key contribution of this study was
the incorporation of head pose estimation uncertainties in
the LOD computations. Subject tests performed to quantify
the impact of uncertainty in perceptual optimizations indi-
cated improvements in user satisfaction. A significant frame
rate increase was also observed compared to rendering the
scenes with no optimizations. For future research, we plan
to improve our system by considering more sophisticated
approaches for head tracking and pose estimation as well as
estimating eye-gaze more accurately, that is, combining the
orientation of the head with the orientation of the eyes in their
sockets. For this, we plan to attach tiny, IR-illuminated, cam-
eras on the frame of the eye-glasses, looking at the reflection
of the eyes on the inside of the eye-glass. Also, we plan to
eliminate the undesired jitter effect in the computation of the
covariance matrix by investigating different sampling strat-
egies and smoothing algorithms. Finally, we plan to inves-
tigate the issue of uncertainty estimation in more detail, for
example, by considering non-uniform sampling schemes for
error estimation as well as the effect of non-random errors
such as calibration errors.
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