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ABSTRACT

We present a new approach for shape metamorphism, which
is a process of gradually changing a source shape (known)
through intermediate shapes (unknown) into a target shape
(known). The problem, when represented with implicit
scalar function, is under-constrained, and regularization is
needed. Using the � -Laplacian equation (PLE), we gen-
eralize a series of regularization terms based on the gradi-
ent of the implicit function, and we show that the present
methods lack additional constraints for a more stable solu-
tion. The novelty of our approach is in the deployment of
a new regularization term when ����� which leads to the
infinite Laplacian equation (ILE). We show that ILE min-
imizes the supremum of the gradient and prove that it is
optimal for metamorphism since intermediate solutions are
equally distributed along their normal direction. Applica-
tions of the proposed algorithm for 2D and 3D objects are
demonstrated.

1 Introduction

Application of shape metamorphosis has the potential of go-
ing beyond simple animation and interpolation. Ultimately,
one can envision using metrics computed during shape in-
terpolation for comparative analysis and matching. Further-
more, if morphing can be performed efficiently, then the
gradual transition between initial and final shape can be sub-
sampled for distributed rendering. Metamorphosis is often
referred to as the process of smooth topological transition
between two objects. Metamorphosis is different from in-
terpolating function values at different grid points because
new shapes are reconstructed from two known shapes, and
it is different from the shape evolution problem because ini-
tial and final solutions are known.

Lazarus and Verroust [8] provide an excellent survey
and evaluation of 3D morphing techniques. Some of these
techniques are initiated from the association of vertices and
�
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triangles between source and target meshes. Other meth-
ods use implicit functions obtained by linear interpolation
of shape transformation of three-dimensional images. Our
method is more aligned with the application of evolution
equation [3] or distance field manipulation (DFM) [3, 8]. In
DFM, the distance transformations from initial to final ob-
jects are represented as regular functions, while intermedi-
ate implicit functions are approximated by linear interpola-
tion between corresponding distance transformations. Each
intermediate shape is then extracted as the zero-crossing of
the corresponding intermediate function [9, 10, 11, 13]. Al-
though DFM has been widely used, it has not been suffi-
ciently questioned. For example: (1) Why does the distance
transformation work? (2) Are there alternative methods?
(3) If there is an alternative method, then is the distance
transformation the optimal field function? This paper par-
tially focuses on these questions by exploring an entirely
new approach.

Here we propose a new approach for metamorphosis of
shapes. With the � -Laplacian equation (PLE), we general-
ize a series of regularized terms based on the gradient of the
implicit function. We show that present methods are subsets
of our formulation that limit the solution to the metamor-
phosis problem. The novelty of our approach is in the de-
ployment of a new regularization term when ���	� , which
leads to the infinite Laplacian equation (ILE) that minimizes
the supremum of the gradient. This approach is optimal
for the metamorphosis problem since the shapes are equally
distributed along the gradient trajectory. We also show that
while DFM is efficient and simple, it is only an approxi-
mate solution to the ILE and can be used as the initial value
to solve the equation. We also show that the metamorphosis
technique can be used for multiscale shape representation.

Section 2 outlines two-dimensional representation and
the proposed new regularization framework. Section 3 out-
lines the corresponding numerical solution and compares
the behavior of the energy function to the standard gradient-
based regularization. In Section 4, we extend the method to
three dimensions. Section 5 provides experimental results
and the application of the proposed methods to multi-scale
shape representation. Section 6 concludes the paper.



2 The p-Laplacian Equation and Regularization
Terms

In this section, we study the PLE and derive different reg-
ularization terms from this equation. We then establish the
relationships among curve evolution, energy minimization,
regularization terms, PLE, and ILE. Our study first focuses
on two-dimensional curves, and is then extended to three-
dimensional surfaces.

2.1 The Problem

Let � be a deformable closed curve such that ���������	��

���������
denotes a family of the evolved curves with known bound-
ary condition at ������������� and ����������� � . Our aim is
to reconstruct a representation between ��������������� �!� so
that the sequence of intermediate curves is smooth and con-
tinuous in time. Let "$# be the inside-outside function of a
closed curve � # , %&�'�(��� such that

"$#)��*&��+��,� -. /102��� if ��*&��+�� is inside � #��� if ��*&��+�� is outside � #��� if ��*&��+�� is on �3# (1)

We then define the “Metamorphosis Region” 4 as45�6� � �7� � �,�98���*&��+���: " � �;*���+��)" � ��*&��+��=<'�?> (2)

Examples of 4 in two dimensions are shown in Figure 1.
We restrict the metamorphosis to 4 , i.e., ���@���BADC . As �
changes from 0 to 1, ������� changes from �E� to � � contin-
uously and smoothly, and sweeps every point in 4 . Since
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Figure 1: 45�;F��G��F � � : (a) doubly connected region, (b) mul-
tiply connected region, (c) intersection, and (d) isolated ob-
jects.

the metamorphosis is time dependent and constrained un-
der the initial and final surfaces, these intermediate curves
can be expressed as the level curves of an implicit function.
Then the problem becomes to find a function HI�;*���+�� , de-
fined in 4 , such that ���@��� is determined by HI�;*���+��J�K� .
Formally, suppose HI�;*���+G� is the time at which the curve
crosses a given point �;*���+G� . Then function H satisfies�������,�L8G�;*���+G��: HI�;*���+G�,�M��> (3)

Equation (3) gives an implicit representation of the curves.
Thus, our problem is:

Find HI�;*���+G���N�;*���+G��
O4 , such that HI�P� � �,�Q�(��HI�P� � �R�S� .

2.2 A New Regularization Term

The problem of reconstructing H3��*&��+�� is certainly under-
constrained. However, since we changed the problem
from curve metamorphosis to functional interpolation, well
known mathematical tools, such as regularization, can be
leveraged. A majority of the existing regularization tech-
niques attempt to minimize an integral such as T�UV:NWSHR: orT UX:�W!HR: � [1, 4, 12]. The idea behind these approaches is
to minimize the global variation of H . Yet, this formulation
has no control on the local property of H . In other words,
the global variation may be small, but locally H may change
sharply. Consider the following energy function:Y �1Z U :NWSHR: []\?*]\?+ (4)

Present regularized methods assume either ^J�!����_ , which
provides little local control; however, our approach general-
izes them. The corresponding Euler equation of (4) is given
by: \?%P`a�b:�WcHE: [(d � WcH]�=�'� (5)

where \?%6` is the diverge operator. Equation (5) is called
the � -Laplacian equation (or � -harmonic function in some
literature). When ^ � � , we haveWe�b:NWSHR: �,f WJH:�WcHE: �1� (6)

It was shown that when ^ � � , we are actually minimizing
the super norm of :�WgHE: [7]. Rewriting equation (6), we
have: H �h H h�h i _GH h H�j?H h j i H �j H�j�j �1� (7)

2.3 Equal Importance Criteria

This section outlines the rationale for optimality of the
supremum as the norm for regularization. Our argument
is based on the equal importance criterion [5, 6]. This
criterion asserts that every point in 4 is equally impor-
tant and contributes similarly to the reconstruction process.
Any other assumption means that we need to know some
additional information about the curve. Equation (6) im-
plies that along each trajectory of the gradient of H , the
magnitude of the gradient is a constant. The interpolated
curves ������� are then equally distributed along their normal
direction, or simply each point advances at its own constant
speed. In the absence of any information about the defor-
mation process, once can only assume that the curves ���@���
are equally distributed. Thus, in view of time or distance
between curves, which is our only clue about the curve,
all points are equally important. Comparative analysis of
our approach indicates that our method generates a more
smooth family of curves. The aim is to minimize supremum
of the maximum. Although the overall integral of :kWXHR: may
be larger, the supremum is smaller in our approach and the
gradient is more likely to concentrate at a smaller range.



Thus, the speed of the moving curve is in a smaller range
and the whole curve changes more smoothly with time.

Introducing the notation �V�;H � � H �h H h�h i _�H h H j H h j iH �j H j�j , our problem now becomes

Find HI�;*���+G���N�;*���+G�=
J4 , such thatHI�P� � �R�1����H3�6� � � �S�G���?^3\��J��H]�,�1�
3 Numerical Solution of ILE

Many numerical methods can be used to solve Equation (7),
and at least a weak solution is guaranteed. Our approach
uses a variation of gradient decent with a good initial con-
dition for efficient convergence.

3.1 Initialization with the Distance Transform

Let us define � # as the signed distance transformation of� # ��% � ����� , where � # ��*&��+�� is the distance from ��*&��+�� to
the nearest point on � # , and the distance is set to a negative
number if ��*&��+�� is inside � # and positive otherwise. For
each point � (shown in Figure 2), there should be a gradi-
ent trajectory � passing through it such that it intersects � �
and � � at � � and � � , respectively. Since the normal of these
two curves and the gradient of H are in the same direction,
��� � � at � � and ��� � � at � � , where � represents perpen-
dicular. We can approximate the curve � passing through
� , by drawing two line segments � �
	 � � �&�G� � ��	 � �D� � , to
create ��	 � � ��	 � . Let 
 denote the length of � from � � to � � .
Hence, 
��g: ��	 � �R: i : ��	 � �E: . The preceding formulation indi-
cates that : ��	 � �R:��90��]� � �]� , : ��	 � �E: ��� � � �]� . Since H changes
linearly from 0 to 1 along � , HI� � � can be approximated by:HI� � � � : ��	 � �E:: � 	 � �E: i : � 	 � �E: � 0�� � � �]�

� � � �]��0�� � � �]� (8)
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Figure 2: Computing HI�;*���+G� from distance transformation.

Equation (8) has a drawback that, when �E� and � � inter-
sect each other at � , we get � � � � �,0��]��� � � � � and a zero
divisor. Alternatively, the two-dimensional isocurve repre-
sentation, ���;*���+��	�������2< ��<L� , can be expressed as:

����*&��+��	���R�M��� � �;*���+G� i ���=0 ����� � �;*���+G� (9)

Note that this is exactly the DFM, and isocurve ���;*���+��	���E�� is located at ���;*���+��,� 0�� � ��*&��+��
� � ��*&��+���0�� � ��*&��+�� (10)

which is exactly the curve that we reconstructed in (8).
Thus, DFM is an approximation of the ILE solution in
the sense described above. Equation (9) is preferred over
equation (8) because it works for any ��� and � � even if� � �!� � . Thus, the method treats any curve and topolog-
ical changes naturally and cannot fail. Let �
< � < � in
equation (10) then � � �;*���+���� ���;*���+G�
< � . We know that
� � ��*&��+���� � ��*&��+�� <S� in and only in 4 . Thus, the isocurve
���;*���+(����� � � is guaranteed to be inside the region C ,���@����A C ��� < ��<1� .
3.2 The Iterative Approach

The solution of ILE can be obtained iteratively by:H���� � �QH�� 0����V�;H�� � (11)

where � is the step size and ` indicates the iteration number.
Although the approach converges only to a local minimum,
the solution is acceptable if we start from a good initializa-
tion. The whole algorithm can be summarized as:
1) Initialize H , with the boundary condition H3�6� � � �����H3�6� � �R�c� .
2) Initialize 4 with the distance transform.
3) Update all the points inside C with equation (11).
4) Compute  "! �R:�WSHR: .
5) Repeat 2 to 3 until a local minimum of  "! �R:�W HR: is
reached, and
6) Find the interpolated curves ���@���O� 8���*&��+���: H3��*&��+������> .
4 Extension to Three-Dimensional Surfaces

The extension to three-dimensional objects is through
rewriting the ILE as:H �h H h�h i H �j H jNj i H �h H"#$# i _GH h H j H h j i _�H j H"#�H j # i _�H j H h H"# h �Q�

(12)
An exact representation of the distance transform in 3D

is compute-intensive; however, a quick approximation [2] is
sufficient for smooth interpolation. The distance transform
is computed in two passes over the bounding volume where
the volume is represented as a dense 3D array, whose values
are initialized with initial and final surfaces.

5 Applications and Experimental Results

In this section, experimental results corresponding to the
application of proposed techniques to 2D and 3D objects
are shown. In every experiment, the first curve is the source
curve and the last scurve is the target curve, while others are
interpolated intermediate curves. Figures 3 show the results
computed by the variational approach where H is initialized
by DFM. We then update the implicit function until a local
minimum is reached. Finally, the level curves at different
heights are extracted. Figure 3 shows interpolation of a fish
shape to a panda. The image size is 162 by 161 where 8
curves have been inserted. In this experiment, �
� ��%��'& .



In this experiment, �O� ��%���� and the regularization step is
chosen to be a small value of 0.001. The distance transfor-
mation is computed by the methods proposed by Borgefors
[2]. Figure 4 shows eight snapshots corresponding to trans-
formation of a diseased cortex to a normal one. In this case,
corresponding MRI images were segmented and the white
matter in the cortex was automatically delineated. Figure 5
shows another eight snapshots corresponding to the trans-
formation of a Buddha to a bunny.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Interpolating fish and panda.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Morphing from a diseased brain to a normal one

6 Conclusion

We proposed a � -Laplacian-based solution to the shape
morphing problem. Our method finds natural and smooth
shapes that are equally distributed along the normal direc-
tion. This is optimal when no information about the defor-
mation process exists, and the best thing we can do is to

(a) (b) (c)

(d) (e) (f)

Figure 5: Morphing from Buddha to a bunny.

assign the generated shapes fairly. The PDE is derived from
a new regularization term that ensures the local smoothness.
A numerical method was developed to construct and com-
pute an optimal solution. At the same time, we showed
that DFM is an efficient and simple approximation to the
ILE, which can handle any curve with arbitrary topological
changes.
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