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Iterative Tensor Voting for Perceptual Grouping
of Ill-Defined Curvilinear Structures
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Abstract—In this paper, a novel approach is proposed for per-
ceptual grouping and localization of ill-defined curvilinear struc-
tures. Our approach builds upon the tensor voting and the itera-
tive voting frameworks. Its efficacy lies on iterative refinements of
curvilinear structures by gradually shifting from an exploratory
to an exploitative mode. Such a mode shifting is achieved by re-
ducing the aperture of the tensor voting fields, which is shown to
improve curve grouping and inference by enhancing the concen-
tration of the votes over promising, salient structures. The pro-
posed technique is validated on delineating adherens junctions that
are imaged through fluorescencemicroscopy. However, themethod
is also applicable for screening other organisms based on charac-
teristics of their cell wall structures. Adherens junctions maintain
tissue structural integrity and cell–cell interactions. Visually, they
exhibit fibrous patterns that may be diffused, heterogeneous in flu-
orescence intensity, or punctate and frequently perceptual. Besides
the application to real data, the proposed method is compared to
prior methods on synthetic and annotated real data, showing high
precision rates.

Index Terms—Adherens junctions, curvilinear structures, itera-
tive tensor voting (ITV), perceptual grouping.

I. INTRODUCTION

N EARLY one third of the human genome is involved in
the regulation of membrane-bound macromolecules. Ad-

herens junctions (e.g., E-cadherin) form an important subclass
that maintains tissue architecture and cell–cell interactions on
a multicellular model system. For example, it is well known
that the loss of E-cadherin increases motility and contributes
to cancer progression. However, signals associated with the ad-
herens junctions can be sequestered along neighboring cells and
form perceptual curvilinear structures. Furthermore, such a sig-
nature is widely observable in other organisms with cell wall
structures that consist of both lipid and protein (e.g., algae).
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Fig. 1. Adherens junctions exhibit complex patterns. The signal is frequently
diffused and sequestered along the cell membranes.

It is well known that perceptual grouping is present in the
human vision system as bottom-up preattentive processes that
aid in object-level delineation and recognition [1]. Fromwhen it
was initially conceived by the Gestalt psychologists [2] to now,
perceptual grouping has evolved from the passive observation
of human behavior to its inclusion in a wide-range of computer
vision applications [3]–[6]. Perceptual grouping mainly appeals
to image segmentation because of its preattentive use of local
cues, which reduces its complexity as well as reduces the neces-
sity for prior knowledge when inferring structures from images.
On the negative side, by relying on computed local cues from
images, perceptual grouping approaches can be susceptible to
scale variations and noisy measurements.
In this paper, we propose a grouping approach that explores

purely preattentive cues, such as proximity, good continuity
of image primitives, and minimization of the measurements’
sensitivity to scale and noise by employing an iterative voting
strategy to structural inference. The method proposed here
is able to infer curvilinear structures from ill-defined, noisy,
often incomplete signals, such as those found in the adherens
junctions shown in Fig. 1.

A. Previous Work

In order to illustrate applications of perceptual grouping in
the context of image structure inference and segmentation, we
begin by citing the basilar works from [7]–[9], [11], [12], [18].
Marr [7] was one of the first researchers to publish the impor-
tance of preattentive cues for image understanding. Ullman [9],
in a milestone for image completion, addressed the problem of
image edge grouping with an optimizing cost function based
on smoothness of the contour curvature. Hérault and Horaud
[12] also used an optimization approach to segment oriented
edges into figure and background. They utilized simulated an-
nealing to maximize a cost function based on proximity, contrast
and co-circularity. However, Lowes [8] was one of the first re-
searchers to document utilization of perceptual grouping as part
of the solution of a computer vision problem. In that context,
perceptual cues such as proximity, collinearity and parallelism
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were used to produce structural hypotheses for a model based
matching algorithm, thereby permitting spatial correspondences
between 2-D images and 3-D object models and, consequently,
the recognition of real-world objects. Alternatively, Parent and
Zucker [11] proposed an iterative, graph-based labeling scheme
that utilized local kernels, whose topography incorporated the
good continuity aspect of the Gestalt philosophy to detect local
organization and infer curves from images. But it was Sarkar
and Boyer [18] who combined proximity, good continuity, par-
allelism, and perpendicularity to establish pairwise relationships
between image primitives and to populate a compatibility graph
whose spectra (eigenvalues and eigenvectors) revealed curvi-
linear structures in an image. From all these approaches, it is
important to highlight the researchers’ common pursuit of the
ideal set of Gestalt principles for perceptual grouping. Also, the
set of perceptual cues was generally combined into a cost func-
tion that is presently called saliency. The terms less salient or
more salient are, therefore, applied according to a structure’s
weaker or stronger response to the saliency function.
In the context of voting as a precursor for perceptual

grouping, many methods have been developed. For example,
Hough [25] introduced the notion of parametric clustering in
terms of well-defined geometry, which was later extended to
the generalized Hough transform [30]. Sarkar and Boyer [15]
introduced a technique that infers structures in an image after
voting for the most promising ones from a pool of structural
hypotheses. Parvin et al. [26] developed an iterative voting
system that employs funneling kernels to refine paths along low
curvature regions in images. Guy and Medioni [23] proposed
a general purpose approach (later revisited and formalized as
the tensor voting framework [24]) that uses deformable unities
to reveal perceptual structures. Tong and Tang [35] proposed
an adaptive tensor voting for improved gap filling and contour
closure. Their three-pass tensor voting approach promoted
improvements in gap filling over the classical tensor voting. An
iterative version of the tensor voting framework is described by
Fischer et al. [32], who demonstrated how re-voting improves
the orientation estimation at the input primitives and, therefore,
the overall curve inference result. Loss et al. [33] described a
scheme for figure-ground segmentation based on tensor voting
that gradually eliminates background elements after multiscale
voting iterations. They demonstrated the improvements caused
by re-voting for figure characterization in cluttered scenarios.
In general, voting operates as a function of continuity and

proximity, which can occur at multiple scales (e.g., points, lines,
parallel lines, etc.). One of the main advantages of voting frame-
works is their reliance on relative simple models, which con-
siderably reduce the number of free parameters and the overall
complexity.

B. Motivation

Inference of curvilinear structures from image primitives is
particularly relevant to biomedical image analysis. In this field,
many detection and recognition methods rely on good markers
delineating the objects of interest (e.g., [20]–[22]). However, in-
herent technical and biological variations affect signal quality in
different ways. For example, adherens macromolecules, respon-
sible for tissue architecture, can provide morphological indices

that quantify the loss of tissue organization and cellular mor-
phology as a result of stress conditions.
From the point of view of image segmentation, traditional

perceptual grouping of curvilinear structures strongly relies on
1) good contrast between lines and background, 2) well behaved
structural definition of the lines, and 3) a good assumption of the
lines’ scale. However, with optical resolution, adherens junc-
tions can be ill-defined and, therefore, inconsistent with all the
above assumptions. For example, they may have nonuniform
intensity, be punctate (e.g., perceptual with gaps), be diffused at
certain locations, and have distinct widths and lengths (Fig. 1).
This significant amount of heterogeneity can happen as a re-
sult of the natural variation of chemical binding between the
molecules and the staining reagent, or other technical and bio-
logical variables.
For these very reasons, a requirement for grouping ill-defined

curvilinear structures should not assume 1) rigid models (e.g.,
[25], [30]), or 2) a precomputed set of image primitives (e.g.,
[9], [31], [32]), or 3) segments solely extracted from boundaries
(e.g., [15], [33], [36]). In addition, due to the continuous re-
finement required to better detect heterogeneous, low signal-to-
noise contours, noniterative approaches are mostly unsuitable
(e.g., [24], [35]).

C. Approach

Our work builds upon Guy and Medioni’s Tensor Voting
Framework [24] and the Iterative Voting Framework by Parvin
et al. [26] in order to produce an efficient method to enhance
and infer perceptually interesting curvilinear structures in
images. By coupling tensor and iterative voting fundamentals,
we leverage advantages of both methods to produce better
results than those achieved by them individually. The main
novelty of our method lies in the extension of the tensor voting
framework to gradually refine curvilinear structures at different
scales. Iterative funneling of tensor fields is shown to achieve
better definition of pixel orientation and connectivity. This
funneling operation gradually increases the concentration of
the votes’ energy over promising areas, eventually improving
the inference of curvilinear structures.
In one classical tensor voting approach, thresholding is ap-

plied to the resulting saliency map, thus removing tensors with
low saliency. The remaining tensors are then assumed to be part
of the salient structures [29]. When voting is performed on a
sparse basis (i.e., image primitives are extracted prior to tensor
voting), a second pass of dense tensor voting, called densifica-
tion, is sometimes used [24]. However, in the method proposed
here, we impose a set of consecutive tensor voting passes, all in a
dense fashion, after thresholding out tensors with low saliency
in a conservative manner. Instead of densification, each itera-
tion of the proposed approach aims at refining the previous one,
where magnitude and orientation might have been disturbed by
frequent low-saliency background noise. These steps resemble
the ones performed in [19], where a second pass of the Hough
transform voting pass is introduced to fix or refine the elements’
orientation, and in [11], where a relaxation-like iterative process
seeks convergence and consistence of the inferred structures.
Note that the benefits of conservative elimination of tensors with
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low saliency from the tensor voting application were investi-
gated and explored in [33].
In order to assess the improvements yielded by the iterative

tuning of tensor voting, we performed experiments involving
synthetic configurations and real microscopic images. Synthetic
data were used to help us analyze and predict the behavior of
the method on structures with different degrees of punctation,
width, curvature and junctions. Experiments onmicroscopic im-
ages aim at evaluating the method on real scenarios, providing
proof of its actual potential and effectiveness.
Components of this paper have already appeared in two other

versions as conference papers by the same authors: an introduc-
tion to an earlier version of the method, along with some pre-
liminary results focusing particularly on its application from a
biological point of view, is in [16]; and a slightly longer version
appeared in [17]. In this paper, however, we provide a deeper
and more detailed description of the improved technique, be-
sides quantitative analysis on synthetic data, and comparisons
with other approaches to the same problem.
The remaining of this paper is organized as follows: Section II

describes the tensor voting and the iterative voting frameworks,
along with their applications to perceptual grouping of linear
structures. Section III introduces ourmethod, extending the con-
cepts of the tensor and the iterative voting frameworks. Exper-
imental results are shown in Section IV, and conclusions are
presented in Section V.

II. VOTING FRAMEWORKS

A. Tensor Voting Framework

In the framework proposed in [24]1, perceptual grouping is
achieved by vote casting between primitives of an image. Such
primitives are represented by tensors, mathematical entities
whose capability for encoding magnitude and orientation make
tensor voting particularly efficient for detection of perceptually
organized structures, such as edges, lines and regions. In 2-D,
tensors are represented analytically as second order nonnega-
tive definite matrices, or geometrically as ellipses, shaped by
the tensors eigenvalues’ magnitude and eigenvectors’ direc-
tions. Initialized with an arbitrary size, shape, and orientation,
input tensors are deformed due to the accumulation of votes
cast by other neighboring tensors.
Votes are tensors composed of magnitude and orientation,

which encode the Gestalt principles of proximity, smoothness
and good continuation. The tensor’s size and shape are given
by its eigenvalues ( ; ), while its orien-
tation is given by the respective eigenvectors ( ). For
example, consider two tensors, positioned at and ,
in the coordinate system, as shown in Fig. 2. How can
the vote from be cast onto subject to smoothness
and proximity as stated before? The simplest way is to model
smoothness and proximity as curvature and arc length, respec-
tively. Let be the distance between the two positions, and be
the angle between the tangent of the osculating circle at
and a line that connects to . The arc length and cur-
vature are given by and , respec-
tively. Without any prior knowledge, the path defined by an os-

1Tensor voting is a patented framework.

Fig. 2. Two tensors and their geometrical relationship to produce the vote
expressed by (1) (figure redrawn from [34]).

culating circle provides the minimum energy since its curvature
is kept constant. The vote at position is thus given by (1)
[24]

(1)

Here, is the vector normal to the tangent of the same os-
culating circle at , which points to the center of the
circle. It can be calculated by . The scale
factor is the only free parameter in this expression and de-
termines the extension of the voting neighborhood. The param-
eter is a function of the scale and has been optimized at

to control the decay at high cur-
vature areas (for instance, where two orthogonal lines meet to
form a rounded corner) [24].
Depending on the nature of the input primitives, prior infor-

mation about their orientation can also be used when available.
The tensor voting framework was designed to offer two possible
voting configurations: one that concentrates the votes according
to the input orientation (Fig. 3(a)–stick field), and another one
that casts votes radially (Fig. 3(b)–ball field), respectively. The
voting fields are the composition of all votes that can be cast
from a tensor located in the center of the field to its neighboring
tensors. Their extension is controlled by and, for practical
reasons, the fields are usually truncated past 99% decay. In ad-
dition, the stick field is limited to exist only at , as
beyond this angle the osculating circle ceases to represent the
smoothest path between the tensors. A somewhat similar kernel
topography is also found in [9] and [13].
The tensor deformation imposed by accumulating the

strength and orientation of the votes eventually reveals behav-
ioral coherence among image primitives. The vote accumulation
is simply tensor addition (e.g., summation of matrices), which
can be algebraically represented by ,
where is the resulting tensor at location , after re-
ceiving the votes from its neighboring tensors at
locations . Each kind of structure is expected to produce
tensors of a particular shape: for example, very elongated
tensors (high ) for lines, and more rounded ones
(low ) for regions. Fig. 4 exemplifies how a set of
input primitives are encoded as tensors, whose deformations
resulting from accumulated votes reveal an underlying salient
linear structure.



1506 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 30, NO. 8, AUGUST 2011

Fig. 3. Tensor voting fields. (a) Stick field: when an estimate of the initial ori-
entation is known, and (b) ball field: when orientation information is unknown.

Fig. 4. Example of perceptual grouping through tensor voting. A set of (a) input
primitives are (b) encoded as tensors, whose (c) resulting deformations reveal
a curve.

The voting process can also be either sparse or dense. Sparse
voting restricts tensors to cast votes only on other encoded input
tensors, while dense voting extrapolates the input configuration
allowing tensors to cast votes everywhere within their neighbor-
hood. Tensor voting has been shown to be robust to considerable
amounts of noise and does not depend on critical thresholds.

B. Iterative Voting

The framework proposed in [26] and [38] also uses spatial
voting to detect radial symmetry and to group curvilinear
patterns. Similar to the tensor voting framework, each pixel
propagates its structural likelihood within its neighbors by vote
casting. Here, however, the propagated information is based on
either spatial curvature or gradient features and a set of precom-
puted Gaussian kernels with a preferred topography to elucidate
desirable saliency. The kernels’ topography was devised to
incorporate the Gestalt principles of proximity and continuity.
The iterative voting includes a funneling modification of the
kernels as iterations progress. The funneling process is aimed at
concentrating the voting energy over emerging promising areas
by gradually reducing the kernel’s aperture. For each pixel at
position , its vote casts to the neighboring pixels by

otherwise
(2)

where , and
is a scale parameter that regulates the extent and decay of

the function’s influence. is the limiting cone that ex-
tends longitudinally up to a radius which is a function of , and
transversally of an angle . At each iteration, is reduced by

Fig. 5. The iterative voting kernel’s topography (only one side is shown) as a
function of . The voting energy is funneled as iterations progress.

. Fig. 5 illustrates at consecutive iterations (i.e., with
different ) bound by .
Iterative voting is as follows: at iteration , the kernel , with

, is placed over a voting pixel , and ori-
ented along the pixel’s direction. Each neighboring pixel
receives the corresponding vote , and accumulates its
magnitude. At the first iteration, gradient or curvature is used
to estimate the direction at . At any consecutive iteration

, the orientation at is recomputed so that it points at
its adjacent neighbor with the maximum magnitude (i.e., accu-
mulated votes). Since a better estimation of the structural local-
ization and local orientation are produced after each iteration,
the kernels have their energy gradually funneled from initially
diffused to eventually very focused. Note that changes linearly
with .

III. ITERATIVE TENSOR VOTING

We build upon the Tensor Voting and the Iterative Voting
frameworks in order to leverage advantages from both methods,
and produce a robust method to group perceptually punctate
patterns (e.g., sequestered macromolecules between neigh-
boring cells). The approach is based on progressive funneling
of the stick tensor voting field (Fig. 3), which enhances the
concentration of the votes over salient features, as observed in
[26] for the Iterative Voting. The input to our method is the
image itself (i.e., an intensity map), and the output is the in-
ferred salient curvilinear structures. This approach is compared
with two prior methods to demonstrate superior performance
on images whose structures 1) may be highly punctate, 2) are
surrounded by clutter, and 3) have nonuniform and diffused
intensities.

A. Image Encoding

The first step is the construction of a voting space. We start
by encoding every pixel in the image as an unoriented tensor.
In tensor voting, an unoriented tensor has a perfect circular
shape or, analytically speaking, has . This dense en-
coding enables the method to be completely independent of pre-
computations of any sort, such as curvature or gradient, which
would force the method to rely on the quality of the image’s
sparse representation and potentially impair the solution from
the beginning. Assuming that the signal of interest has brighter
intensity than its counterpart background, a tensor at location

in the image is encoded to have a size proportional to
the pixel intensity (e.g., ). If this assump-
tion does not correspond with the images under analysis, ad-
justments must be made in this encoding in order to guarantee
that the signal of interest is input as a larger tensor. For instance,

, where is the intensity of the color
white in the image (usually 1 or 255), for a dark signal on bright
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background. The tensor direction and can be chosen
arbitrarily, as it does not influence the ball tensor voting in any
sense. An input tensor at location is thus

B. Voting Iterations

After the voting space is constructed, a tensor voting pass is
executed using the ball field [Fig. 3(b)]. The ball field is the only
option here because no initial tensor orientation is known. Note,
though, that disregarding the initial uncertainty about each pixel
orientation, the ball field casts a vote with magnitude and ori-
entation, which allows the tensors to start their characteristic
structural deformation. Moreover, it should be noted that since
all the pixels in the image were encoded, the voting cast is dense
by nature (e.g., all tensors cast and receive votes). The deforma-
tion caused by locally accumulating all votes from the ball field
tensor voting pass reveals, although still inaccurately, the pres-
ence of perceptual structures in the image, or lack thereof. The
resulting tensor’s magnitude ( ) and direction ( , )
are obtained by recomputing its eigen-decomposition. From the
vote casting perspective, curvilinear structures are characterized
by an unbalanced distribution of elements along one main direc-
tion. For this reason, in contrast to other structures, whose ten-
sors tend to deform more evenly due to the influence from dif-
ferent directions, curvilinear structures produce elongated ten-
sors. Therefore, tensors from curvilinear structures are likely to
be evidenced within the stick saliency map [e.g., image formed
by computing at each location ]. Following the
same reasoning, one can note that junctions (a spot in the curve
where two or more curves intersect) receive votes from pos-
sibly multiple directions, deforming more evenly than curvi-
linear structures. In order to assure completeness of the grouped
curvilinear structures, the ball saliency map [e.g., image formed
by computing at each location ] is summed to the re-
sulting saliency map.
Our protocol then proceeds with iterative dense tensor voting,

which aims at gradual refinement of the previous iterations. A
thresholding step is introduced prior to each iteration so that the
tensors that did not deform as expected for curvilinear structures
(e.g., high ) are removed. This thresholding is very con-
servative and aims at removing elements with extremely low
saliency to enhance the processing speed. Therefore, only ten-
sors whose saliency is higher than a threshold value are
encoded. Since the tensors are guaranteed to have a more or less
accurate orientation (unoriented tensors are thresholded), con-
secutive iterations are performed with stick fields [Fig. 3(a)].
Note that the voting employed is still dense, so every site re-
ceives a vote, even if not initially inputted. Each iteration refines
the previous one, where the tensors’ magnitude and orientation
seem to have been disturbed by the low-saliency but frequent
background noise, as well as the often noisy properties found in
ill-defined signals.
An interesting observation, inspired by the funneling progres-

sion of kernels proposed in [26] and [38], is that the stick fields
are gradually modified (e.g., the field aperture is reduced) as

Fig. 6. The ITV kernel’s topography (only one side is shown) as a function
of . The magnitude and orientation of votes vary within the kernel, while the
kernel’s energy funnels as iterations progress.

the voting iterations proceed and the orientation estimations be-
come continuously more accurate. This funneling process is a
key aspect of our algorithm. It gradually reduces the diffusion
of votes and concentrates the votes only over promising lines,
producing better, enhanced results. Fig. 6 illustrates their topog-
raphy for five exemplar iterations. Given a voting scale and
field aperture , the iterative tensor vote from a pixel at a
neighboring location can then be computed by (3).
Again, from Fig. 2 ’s distance and angle , is the arc

length and is the curvature. is the vote direction and
is the limiting cone that, as in the Iterative Voting, extends lon-
gitudinally up to a radius which is a function of , and transver-
sally of the angle . is the same as in the tensor voting frame-
work

if
otherwise

(3)
The iterations can be stopped after 1) a predetermined number

of times, 2) the quantized aperture of the voting field is small
enough, producing the same field as in a previous iteration, or
3) .

C. Curve Inference

Iterative voting produces a saliency map where curvilinear
structures are highly enhanced. Lines can be segmented from
the saliency maps using any standard morphological thinning
or nonmaxima suppression technique, exploring magnitude and
direction of the resulting saliency map. The outcome of this
process is an image whose curvilinear structures are inferred.
Fig. 7 depicts the entire process.

D. Application to Segmentation of Adherens Junctions

Fig. 8 shows an example of the adherens junctions imaged
at 40 magnification and the intermediate results of tensor
voting. It is clear that the proposed method regularizes and
enhances punctate signals iteratively. In this context, the fun-
neling process groups pixels belonging to the cellular structure
with improved precision. The first iteration, produced by the
ball voting, results in a diffused pattern. However, this is the
initial condition where oriented stick tensor fields brings focus
to the promising parts of the signal.
Figs. 9 and 10 show in more detail the nature of the im-

aged cell adherens junctions and sample results from the ITV
iterations.
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Fig. 7. Inference of curvilinear structures by ITV. The primary theme is the
feedback loop for refinement of the voting aperture.

Fig. 8. Grouping of adherens junctions through ITV. (a) Original signal. (b)
Result of first iteration. (c) and (d) Examples of intermediate iterations. (e)
Grouped curvilinear structures. (f) Inferred structures.

IV. EVALUATION

In this section, we demonstrate the performance of the itera-
tive tensor voting (ITV) for grouping of perceptual curvilinear
structures, where validation has been performed on synthetic

Fig. 9. Close view of grouping through ITV. (a) Original signal. (b) First iter-
ation (ball voting). (c)Final iteration (at ).

and annotated real data. The annotated data correspond to sam-
ples that have been imaged through fluorescence microscopy.

A. Synthetic Data

1) Experimental Design: In order to test ITV’s applicability
and limitations, a set of synthetic configurations were created.
The synthetic data (top row) were generated to emulate a va-
riety of spatially distributed signals, which are found in real
data. Such a variety corresponds to the geometry of signal for-
mation, density of punctation, signal width, and signal intensity.
Figs. 11 and 12 show samples of synthetic data that have been
used for this study. The first column of Fig. 11 shows the pro-
totype geometry and signal composition through a 1) straight
line, 2) circle, 3) figure eight-shaped object with an X-junc-
tion, in addition to a 4) figure B-shaped object with a T-junc-
tion and a Y-junction. The data set has 48 images: four figures
3 widths 4 punctation densities. All images are 256 256

pixels with the intensity in the range of . The processing
parameters are , , ,

, .2

2) Qualitative Analysis: Fig. 13 shows the performance of
ITV on three synthetic configurations. The first and last rows
show the original configuration and the inferred curvilinear
structure, respectively. The intermediate rows demonstrate
stages of ITV. Rows 2–5 show saliency maps at different
iterations, namely, ball voting and stick voting at ,

and . The results combine highly salient pixels
from ITV’s stick or ball saliency maps. This is important for
better preservation of junctions, whose conflicting orientations
locally reduce the stick saliency (i.e., ) and increase
the ball saliency (i.e., ), as mentioned in Section III. It is
clear that ITV can evolve from a punctate pattern to a strong
filament. In this context, the dense voting allows pixels to be
interpolated, thus, playing an important role in gap filling.
The synthetic data also allowed us to analyze ITV’s sensi-

tivity to punctation. Fig. 14 shows ITV’s inferred structure as a
function of the punctation density. In general, one can observe
that ITV performs fairly well in all cases where the punctate
density is higher or equal to 0.05 [Fig. 14(b)–(d)].
The highly punctate patterns of Fig. 14(a) can cause noisy in-
ference of contours with potential gaps.
3) Quantitative Analysis: We compared ITV’s performance

quantitatively on the synthetic data set and compared it with
its two precursory approaches: tensor voting (TV) and iterative
voting (IV). For TV, and . For IV,

2Threshold values are computed from the maximum saliency at each iteration
to remove tensors with lower saliency.
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Fig. 10. Progressive refinement of the voting landscape (tensors’ largest com-
ponents) by ITV. (a) original image. (b) First iteration (ball voting). (c) Four
iterations (at ). (d) Final iteration (at ).

Fig. 11. Synthetic data with fixed punctate density (0.09 )
changing as a function of line width. (a) Prototype signal. (b) Three pixel-wide
punctate signal. (c) Five pixel-wide punctate signal. (d) Seven pixel-wide
punctate signal.

, , , ; All
parameters, including ITV’s, were defined by visual inspection
of sample results, and used across all images in the data set
and throughout the experiments in this paper. The percentage
of mismatches between the methods’ inferred structure and the

Fig. 12. Synthetic data with fixed width (five pixels) changing as a function of
punctation density. (a) 0.03 . (b) 0.05 . (c) 0.07

. (d) 0.09 .

Fig. 13. Progressive refinement and final delineation of the synthetic data by
ITV. First row: punctate signals. Second row: ball voting results. Third to fifth
rows: intermediate results with stick fields. Last row: inferred structures over
initial signal.

prototype signal at the correspondent width is used for quality
assessment of the results.
Fig. 15 provides comparative results of each method on a

dataset. Our analysis indicates that ITV provides more con-
sistent results than its precursory approaches. A more detailed
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Fig. 14. Qualitative analysis of ITV’s sensitivity to signal punctation. (a) 0.03
. (b) 0.05 . (c) 0.07 . (d) 0.09
. ITV performs fairly well at 0.05 and above

(b)–(d).

Fig. 15. Qualitative comparisons between methods. Sample results produced
by (a) IV, (b) TV, and (c) ITV. ITV produces smoother and more consistent
curves than its precursory methods.

analysis of the visual results indicate that TV was incapable
of closing big gaps along the contour. Although increasing the
scale for tensor voting could potentially facilitate gap closure,
it would also compromise the high frequency features, such as
sharp corners and junctions. On the other hand, each iteration
of ITV allows the curve to grow progressively and eventually
close the gap. Furthermore, due to the highly punctate aspect
of the signals, IV seems to fail to update the kernel’s orienta-
tion, producingmisaligned fragments along the figure’s contour.
Whereas, ITV’s iterations allow the pixels’ orientation to con-
verge slowly (i.e., with low ) and robustly towards the correct
solution, producing smoother curves. Table I summarizes the re-
sults obtained by each method according to the signal width and
punctation density.

TABLE I
QUANTITATIVE RESULTS FOR SYNTHETIC DATA

B. Annotated Images

In this section, we evaluated the performance of ITV against
manually annotated images. In this context, samples were
stained for their adherens junctions, and then imaged with a
40 magnification objective.3 The data set consisted of 274
1344 1024 images, 14 of which were annotated by two cell
biologists. These images were selected for annotation for their
diversity and not their similarity, in order to capture important
biological and technical heterogeneity.4 5 The annotations
served as representatives in human performance and as a base-
line for algorithmic comparisons. Subsequently, the remainder
of this section is dedicated to the evaluation of the performance
of ITV, both qualitatively and quantitatively.
From a qualitative perspective, ITV generates contours with

high agreement with human annotations. However, it does not
properly represent nor detect junctions. Fig. 17 illustrates a
sample of results, where the left and right columns, respec-
tively, show the original images and human annotations that are
overlaid with computed representation. The red and green con-
tours represent the two annotations, while the white contours
are the ITV results. Fig. 18 shows substandard performance of
ITV at junctions. The rationale is that tensors, at the junction,
do not deform in an elongated fashion.
Next, a quantitative analysis is performed where precision

and recall rates are computed from the (mis)matches between
human annotations and automatic detected contours. In this con-
text, precision measures the probability of a detected contour to
determine a true adherens junction. Recall measures the proba-
bility of an adherens junction to be correctly detected. In order
to account for digital displacement of the contours, matches
were evaluated at different versions of the annotation, with each
of them being dilated by a factor that varied between 1 to 20
pixels.6 Fig. 19 shows the precision and recall rates obtained
from averaging matching rates between the two annotations. In
this section, HA refers to the Human Annotation, the perfor-
mance achieved by the specialists, which was computed by av-
eraging reciprocal (mis)matches between the annotations. Ad-

3Detailed information about the experimental design and imaging protocol
can be found in [38].
4Statistically speaking, each image consists of over 150 cells, and every cell

can be considered as an independent test tube.
5The only instruction given to the biologists was to trace adherens junctions

they could perceive from the image. No constraints regarding closed contours
or any other higher level inference was imposed.
620 pixels served as the upper bound for being the actual average width ob-

served for the signals analyzed.
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Fig. 16. Grouping and delineation of adherens junctions by ITV. Left: original
signal. Center: grouped signal. Right: inferred adherens junctions.

ditionally, NC indicates the performance for negative curvature
maxima (i.e., negative value of the maximum principal curva-
ture). NCIV stands for iterative voting initialized with NC, and
NCTV for tensor voting initialized with NC. Lastly, TV refers
to tensor voting (ball voting only).
An analysis of the matching rates in Fig. 19 revealed that

ITV developed the closest recall-precision curve to HA. It also
showed that ITV had similar improvement rates to those pro-
duced by the specialists, presenting similar decay across the
dilation factor. Furthermore, comparing the rate of agreement
(RA) between the methods and HA, we can conclude that ITV
had the highest agreement with the specialists, showing 91%
precision and 94% recall rates of agreement (Table II). RA was
obtained from averaging the sum of differences of results—pre-
cision ( ) or recall ( )—from each dilated version ( or

Fig. 17. Human delineation of adherens junctions versus ITV. Left: patches
of the original images. Right: delineation by ITV (white) and the specialists
(red/green).

, where is the dilation factor) of the annotation and the
method being evaluated. Equation (4) shows how is com-
puted for . For its counterpart , is replaced by .
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Fig. 18. Contour junctions are the main sources for misdetection. Left: location
near junctions evidenced. Right: delineation by ITV (white) and the specialists
(red/green).

Fig. 19. Recall versus precision plot of the overall performance as a function of
the dilation factor. Comparison between human annotation (HA), negative cur-
vature maxima (NC), iterative voting initialized with NC (NCIV), tensor voting
initialized with NC (NCTV), tensor voting (TV), and the ITV are shown. ITV
not only performs better than the other methods but also produces a 91% rate of
agreement with HA in precision and 94% in recall.

is the maximum dilation factor 20. A detailed analysis of
these performances shows that any postprocessing of NC and

TABLE II
RATE OF AGREEMENT FOR PRECISION ( ) AND RECALL ( )

BETWEEN THE METHODS AND THE HUMAN ANNOTATION

TV improved their results (compare, for instance, NCIV and
NCTV with NC, and ITV with TV). However, one can notice
that the initialization played an important role in all methods.
TV had a better recall rate than NC, meaning it better resembled
the human annotation. Therefore, another conclusion is that TV
served as better input than NC

(4)

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced the ITV method to group ill-de-
fined visual signals along a curvilinear structure. This method
coupled the tensor and iterative voting frameworks to leverage
advantages from both methods. As a result, complex patterns
along a curvilinear path could be perceptually grouped and
delineated. Results on inference of adherens junctions (i.e.,
membrane-bound macromolecules) were validated through
comparison with synthetic and annotated real data by expert
cell biologists. Quantitatively, the method was shown to pro-
duce 1) superior results when compared with prior techniques,
and 2) delineations comparable to annotations produced by
specialists. In particular, our method achieved precision and
recall rates of 91% and 94%, respectively. One limitation is
that junctions (e.g., T-junctions, X-junctions) are not well
characterized, which will be the subject of future efforts. An
ad hoc junction detector, for example, can be feasibly added
through the analysis of the ball saliency map produced by
tensor voting. In addition, we plan to extend our method to
confocal microscopy to infer this class of signals in 3-D.
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