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Abstract
Direct use of the hand as an input device is an attractive
method for providing natural human-computer interaction
(HCI). Currently, the only technology that satisfies the ad-
vanced requirements of hand-based input for HCI is glove-
based sensing. This technology, however, has several draw-
backs including that it hinders the ease and naturalness with
which the user can interact with the computer controlled en-
vironment, and it requires long calibration and setup proce-
dures. Computer vision has the potential to provide much
more natural, non-contact solutions. As a result, there have
been considerable research efforts to use the hand as an in-
put device for HCI. A very challenging problem in this con-
text, which is the focus of this review, is recovering the 3D
pose of the hand and the fingers as glove-based devices do.
This paper presents a brief literature review on full degree-
of-freedom (DOF) hand motion estimation methods.

1. Introduction
There has been a great emphasis lately in HCI (Human
Computer Interaction) research to create easier to use in-
terfaces by making direct use of natural communication and
manipulation skills of humans. Except for speech, the direct
sensing approach requires motion measurement of various
human body parts. The hand, which can technically be seen
as a device with more than 20 DOF, forms the most effec-
tive, general purpose, interaction tool for HCI. Skill learning
systems, surgical simulations, and robot instruction or vir-
tual environments in general are several advanced applica-
tions requiring direct sensing of hand and/or finger motion.
Common desktop applications such as Computer Aided De-
sign (CAD), film planning, 3D modelling and drawing),
have the potential to make use of this technology to enable
natural high DOF interaction, which can not be achieved
with the conventional Graphical User Interfaces (GUIs).

Currently, the most effective devices for measuring hand
motion are electro-mechanical or magnetic sensing devices
[41]. These devices are worn on the hand to measure the
kinematic parameters (i.e., location of the hand and/or the
finger joint angles). However, these devices have several
drawbacks in terms of casual use as they are very expensive,
hinder the naturalness of hand motion, and require complex

calibration and setup procedures to be able to obtain precise
measurements. Despite these problems, glove-based input
devices deliver the most complete, application independent
set of measurements in real-time. The data produced by
these devices can be easily processed to extract the artic-
ulated motion of the hand and to derive higher level features
(e.g., finger tip locations, pointing direction or force gener-
ated by a finger) to be interpreted by the application.

Computer vision on the other hand has the potential to
provide much more natural, non-contact solutions. Imple-
mentations of this idea dates back to late 70s [14] while
several real-time system prototypes have been proposed in
[25, 28, 34]. A major component of these systems is a ges-
ture recognition engine that can operate without estimating
any 3D features of hand motion [30]. Gestures enable the
user to issue commands but there is still a need for extract-
ing continuous 3D motion signals to drive dynamic virtual
interface elements, which may be as simple as a 3D mouse
pointer or as complex as the virtual copy of the hand itself
[40]. One solution that provides simple interfaces with real-
time operation speed is extracting only the desired 3D hand
motion data (fingertip positions, finger orientations and/or
global hand pose etc.) without going through a full recon-
struction of the hand state. These systems rely extensively
on posture and viewpoint restrictions to avoid critical occlu-
sions and keep the appearance of the hand in a reasonable
range. A ”point and click” interface where the hand has a
”gun-like” posture is an example of these restrictions. Ba-
sic image processing methods that can not be generalized to
arbitrary hand poses are used to extract 2D features, which
are then mapped to 3D features by fast techniques such as
stereo vision.

More recently an alternative approach which aims to re-
cover the full kinematic structure of the hand (see Figure
3), such as in glove-based devices, has received attention.
This is a very challenging problem, whose solution is not
expected to be very cheap. Since the hand is a flexible ob-
ject, its projection results in a large variety of shapes with
many self-occlusions. Nevertheless, there are several good
reasons for tackling this problem. Most importantly, full
DOF pose estimation is mandatory for advanced virtual en-
vironment applications (e.g. skill learning systems). In the
case of simpler desktop interfaces, it is possible to provide
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principled ways of extracting continuous data by simply fix-
ing the DOF (i.e., restrict hand pose) [31, 37]. It can also be
argued that 3D pose data can provide more useful features
for gesture recognition purposes as they are view indepen-
dent and directly related to the hand motion. As an example,
hand postures can be easily described using fixed values or
intervals of joint angles.

In this paper, we provide a brief review addressing the
problem of full DOF hand pose estimation. It should be
mentioned that there are several reviews on hand modelling,
pose estimation, and gesture recognition [49, 48, 47, 13, 30,
45], the latest of which cover studies up to 2000. However,
none of these surveys address the full motion estimation
problem in detail as they mainly concentrate on alternative
solutions and on the problem of recognizing hand gestures.

It should be mentioned that hand pose estimation has
close relationship with human body pose estimation or the
pose estimation of articulated objects in general. Human
body pose estimation is a more intensive research field.
Many algorithms used in hand tracking have a lot of sim-
ilarities to algorithms proposed previously for human body
pose estimation. However, there are also many differences
in operation environments and related applications. We have
limited the content of this paper to studies directly address-
ing the problem of hand-pose estimation. A recent survey
on human body pose estimation along with pointers to older
surveys can be found in [44].

In the next section, we define the problem of full DOF
hand pose estimation and provide a categorization of the al-
gorithms that have appeared in the literature. Hand mod-
elling is an important issue to be considered for any model-
based method and it is reviewed in Section 3. In Section 4,
we consider the problem of feature extraction in the context
of hand-pose estimation. In Sections 6, 7, and 5 we discuss
in detail methods falling into different categories. In Sec-
tion 8, we provide a summary of the systems reviewed and
their capabilities. Finally, our conclusions are provided in
Section 9.

2. Problem and Solutions

The dominant motion observed in hand image sequences is
articulated motion; however, there is also some elastic mo-
tion but recovering it does not have any major practical use
in the majority of applications. Therefore, full DOF hand
pose estimation corresponds to estimating the kinematic pa-
rameters of the skeleton of the hand. One exception to this
common practice is given in [9], where the entire surface
of the hand is modelled using principal component analy-
sis (PCA). Such a representation requires further processing
to extract useful higher level information such as pointing
direction.

There are two main categories of solutions shown in Fig-

ure 1: (1) Model based tracking, (2) Single frame pose es-
timation. The majority of the studies reviewed in this study
employ the model-based tracking method, which has been
used in many studies for tracking various types of objects
in 2D or 3D [23]. A block diagram of a generic system
is shown in Figure 2. The framework requires a geometric
model of the hand to be constructed off-line. In a general
setting, model-based visual pose estimation corresponds to
a search in the state space to find the parameters that mini-
mize the matching error between groups of model features
and groups of features extracted from the input images. A
tracking engine helps to narrow down the search space using
a prediction based on the dynamical model of the system.
In the first frame, a prediction is not available therefore a
separate initial state estimation procedure is required. Most
systems solve this problem manually or by assuming a sim-
ple known initial configuration (e.g a stretched hand with
no occlusion). Prediction is performed by using the history
of the hand states and requires identifying a system model.
Modelling the non-linear dynamics of the hand motion is not
an easy problem [51], therefore, first or second order linear
dynamics, that assert smooth state or velocity changes, are
assumed. Many systems rely on a local search around the
prediction to produce the best estimate at that frame. How-
ever, the existence of local minima and discontinuities in the
matching error or discontinuities in hand motion does not
allow this type of tracker to work well on long sequences
[7, 10]. An alternative solution is keeping track of multiple
hypotheses, which in principle requires determining all the
local maxima in the matching error. These systems imple-
ment Bayesian filtering or some approximations using par-
ticle filters or grid based methods.

Full DOF Hand Pose Estimation Algorithms 
Single Frame Model Based Tracking 

Single Hypotheses Multiple Hypotheses • Global Search 
• Template matching 
• Inverse kinematics 
• 2D-3D Mapping 

• Local Search 
• Optimization 
• Force Models 

• Bayesian Filtering 
• Particle Filters 
• Grid based filters 

 
Figure 1: Different approaches to hand pose estimation.

Single frame pose estimation on the other hand attacks
the problem without making any strong assumptions on
time coherence, resulting in a harder problem. However,
its solution can lead to algorithms for initialization or re-
initialization for tracking based systems. Another motiva-
tion for the existence of these systems is the very fast motion
capability of the hand and fingers even in a casual manipula-
tion process [40]. The images of consecutive frames can be
very different making time coherence assumptions useless.
Global search on a large database of templates, inverse kine-
matic solutions based on fingertip positions, and full bottom
up approach where 2D features are mapped directly to the
state space are some techniques in this category.
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Figure 2: Model based tracking.

3. Hand Modelling
The kinematic model of the hand has more than 20 DOF
resulting in a very high dimensional problem. The bones
in the skeleton form a system of rigid bodies connected to-
gether by joints with one or more degrees of rotation free-
dom as shown in Figure 3. The pose of the hand is repre-
sented by a state vector composed of angular DOFs, which
is often called thelocal state, and the six DOFs of the palm
frame, which is often called theglobal state. The length of
the links between joints are assumed to be fixed and can be
estimated separately through a calibration procedure. From
an application point of view, capturing the motion of all
the bones is not necessary and moreover not very feasible,
therefore, several approximations regarding angular DOF of
joints are made.

A 27 DOF model that was introduced in [18] and has
been used in many studies is shown in Figure 3. The
CMC joints are assumed to be fixed, which quite unreal-
istically asserts that the palm is modelled as a rigid body.
The fingers are modelled as serial kinematic chains attached
to the palm at anchor points located at MCP joints. The
IP, DIP and PIP joints of the fingers are only capable of
flexion-extension motion. All five MCP joints have an extra
abduction-adduction capability. The TM, which is the main
source of flexibility for the thumb, is assumed to be a saddle
joint with 2 DOF. Standard robotics techniques provide ef-
ficient representations and fast algorithms for various calcu-
lations related to the kinematics or dynamics of the model.
Adding an extra twist motion to MCP joints [3, 4], introduc-
ing one flexion/extension DOF to CMC joints [26] or using
a spherical joint for TM [15] are some examples of varia-
tions of the kinematic model.

Full DOF hand pose estimation systems extensively rely
on a-priori information on the shape of the hand; therefore,
the kinematic model is augmented with shape information,
which can be obtained using an off-line calibration proce-
dure. However, computational efficiency does not allow the
use of very complex shape models. In many studies, the
hand model needs to be projected many times on the input
image(s) to obtain features that can be compared with ob-

served features. Visibility calculations to avoid occlusions
add extra complexity to the projection calculations. These
problems have motivated the use of rough shape models
composed of simple geometric primitives attached to each
link or joint of the hand skeleton. In [37], the primitives
used are quadrics. Using projective geometry properties of
quadrics, fast algorithms for projecting the quadrics and cal-
culating their visibility are given. In [50], an even more eco-
nomical view-dependent model called ”cardboard model”
was presented. When viewed from a direction orthogonal
to the palm, the hand is modelled as the union of rectan-
gles attached to each link and the palm. A visibility map is
used to handle the visibility calculations. It should be clear
that the accuracy of these hand shape representations affect
the precision of the pose estimates. Therefore, some stud-
ies employ more realistic models. In [15], for example, the
skeletal model is covered by a B-spline surface whose con-
trol points are attached to the links in the model. In another
study [3], a deformable skin model was implemented using
computer graphics techniques.
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Figure 3: Hand Model

An important issue that can help pose estimation algo-
rithms is the issue of joint angle constraints. Active motion
of the hand (i.e., motion without external forces) is highly
constrained, which is not reflected in the kinematic model.
A first attempt to capture natural hand motion constraints is
complementing the kinematic model withstatic constraints
that reflect the range of each parameter anddynamic con-
straints that reflect the joint angle dependencies [18, 15].
Based on biomechanics studies, certain closed form con-
straints can be derived. An important static constraint is the
relationθDIP = 2

3θPIP between the PIP and DIP angles
that helps to decrease the DOF by 4. Other constraints come
technically in the form of inequalities.

The very intricate structure of the hand does not allow
expressing all the constraints in a closed form. Moreover,
the natural motion of the hand may follow more subtle con-
straints which have nothing to do with structural limitations
[20]. These problems have motivated learning-based ap-
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proaches which yield hand state representations in much
lower dimensional spaces. In [20], PCA was applied to a
large amount of joint angle data collected using a glove-
based sensor to construct a 7-dimensional space. The data
was approximated in the reduced dimensional space as the
union of linear manifolds. Maintaining the training samples
[22], constructing template databases from these samples
[39, 2] or learning the dynamics of hand motion [51] are
other means of incorporating the constraints in the search
process.

During the pose estimation process, the shape parameters
(e.g. lengths of links, size of volumetric primitives) of the
hand model are kept fixed and only the joint angles and the
global hand position are estimated. The fixed parameters
can affect the performance of the model-based estimation
method; therefore there is a need for user specific measure-
ment (i.e., hand calibration) of the fixed parameters. This
problem is mostly solved manually in the literature. There
are only a few studies that elaborate on this problem. In [15],
a semi-automatic hand calibration procedure is described.
Several landmarks on the hand are found manually in im-
ages taken from different views and a spline-based model
is fit to the landmark points. In [36], the lengths of links
are estimated together with the kinematic model parameters
over a sequence. In [5] the image of an open hand and an-
thropological ratios between finger segments were utilized.

4. Feature Extraction and Matching

The hand creates images that are very difficult to analyze in
general. High level features such as fingertips, fingers, joint
locations, and the links between joints are are very desir-
able but also very difficult to extract in a bottom-up manner.
The algorithms that require direct extraction of high level
features often rely on markers to extract fingertip joint loca-
tions or some anchor points on the palm [18, 5, 11]. Assum-
ing a clutter-free background, it is possible to extract some
high level features without any markers. [27] uses a marker-
less fingertip extraction algorithm based on Gabor filters and
a special neural network architecture (LLM-net). In [24],
contour analysis was performed to detect the intersections
of the fingers and the palm.

The majority of studies rely on low-level features that are
utilized in matching error calculations during the model fit-
ting phase. The calculation of the matching error requires:
(1) extracting a set of features from the input images, (2)
projecting the model on the scene (or back-projecting the
image features in 3D), and (3) establishing a correspondence
between groups of model and image features. The projec-
tion of the model features may be computed on the fly or
pre-generated and stored in a database. The model features
can also be used to drive the feature extraction process. De-
pending on the amount of occlusion, it is possible to extract

high-level features in this case [31].
Contours or edges are somewhat universal features that

can be used in any model-based technique [23]. Often, a
volumetric model of the hand is projected on the images to
calculate the contours of projection. The distance between
samples of the contour and the closest edge in the normal di-
rection is used for measuring error [21, 22, 37, 22, 9]. Edge-
based features require very simple background to be effec-
tive. Distance transforms of edges help to calculate more
robust error measures. Chamfer matching was used in sev-
eral studies [42, 38, 39, 2] demonstrating good performance
in cluttered backgrounds. In [38, 42, 39], the edge-based
measure was further augmented with color-based measure-
ments. The likelihood of the segmentation asserted by the
model projection was calculated using background and skin
color models as a measure of similarity. In [2], a proba-
bilistic line matching algorithm was proposed. Combining
edges with optical flow and shading assuming uniform static
background was proposed in [24]. Silhouette is another fre-
quently used feature [22, 21, 16, 26]. The overlapping area
of silhouettes is taken to be a measure of similarity. In [26],
the normalized correlation of the distance transform of sil-
houettes was utilized. Silhouettes can be combined with
edge-based measures to increase robustness [21, 22].

Use of 3D features is limited to a few studies. In [6], a
stereo camera was used to get a dense 3D reconstruction of
the scene, then the hand was segmented by simply thresh-
olding the depth map. The depth map enables dealing with
cluttered backgrounds as long as the hand is the closest ob-
ject to the stereo camera. For each point in the reconstruc-
tion, the distance to the closest 3D model point is used as
a measure of error. In [3, 4], an active sensor was utilized
to get 3D depth data. Skin color was used for segmenting
the hand. Points on the hand model surface were paired
with points in the reconstruction and the distance between
them was used for calculating the error. In [43, 8], the vi-
sual hull [17], which is an approximate 3D reconstruction
based on silhouettes, was used. A marker-based 3D feature
generation method was used in [19, 18] to triangulate the
2D fingertip and palm markers using multiple cameras. A
drawback of 3D reconstruction is the additional computa-
tional cost. However, 3D information is valuable data that
can help eliminate problems due to self-occlusions which
are inherent in image-based approaches [6].

5. Single Frame Pose Estimation

Without any hand motion constraints or multiple views, sin-
gle frame pose estimation problem has multiple solutions,
therefore, using these systems over image sequences might
not be possible without complementing them with some
form of tracking.

One approach is to perform a global search over a
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database of templates labelled with the pose parameters.
In [39], the problem was addressed as an object detection
problem using the structure of the tree-based filter given
in [42, 38] (see Section 7). The algorithm is equivalent to
traversing the tree without any priors to make a classifica-
tion decision based on the template matching results. In
[2], the problem was formulated as an image database in-
dexing problem. Advanced database indexing techniques
were utilized for fast chamfer matching and probabilistic
line matching over the whole database. For fully uncon-
strained motion, database search is expected to be very ex-
pensive. Both systems demonstrate unconstrained global
hand pose estimation that could be used for initialization
and gesture recognition purposes.

Fingertip locations are often used for single frame pose
estimation. Calculating the joint angles given the finger-
tip locations is closely related to the classical inverse kine-
matics problems. Without any motion constraints, however,
there exist multiple solutions. Extensive use of hand model
constraints helps regularize the problem. For example, the
whole finger flexion can be reduced to 1 DOF by relating
PIP, DIP and MCP flexion angles [18, 5, 27]. A model fit-
ting procedure, mainly used for hand animation purposes,
was proposed in [18]. This system employs markers on the
fingertips and the palm and multiple cameras to estimate the
locations of these features in 3D. Starting from an arbitrary
pose, the skeletal tree is hierarchically updated to reach the
extracted fingertip locations. In a more recent marker-based
work [5], a single image was used to estimate the pose. In-
stead of model fitting, closed form solutions were derived to
calculate the angles from 2D marker positions under ortho-
graphic projection. In [27], a neural network architecture,
called PSOM, was trained to construct a mapping from the
2D fingertip positions to joint angles.

In [32], a more general approach was proposed: learning
a mapping from a 2D feature space to the state space. The
fingertip-based algorithms described above can be seen as a
special case of this approach. Instead of fingertips, they used
rotation and scale invariant moments of the hand silhouette.
The mapping was implemented using a machine learning ar-
chitecture (Specialized Mapping Architecture (SMA)) with-
out applying any extra hand motion constraints. SMA is ca-
pable of generating multiple hypotheses [33].

6. Single Hypothesis Tracking

The most common approach to fitting a model to the ex-
tracted features is to use standard optimization techniques.
In [31], the error based on joint links and finger tips was
minimized using Newton’s method augmented with a sta-
bilization algorithm [23]. Stabilization was used to deal
with the existence of singularities, which can deteriorate
the performance of differential methods in general [7]. In

[11], the same technique was applied using fingertip and
joint markers. Silhouette-based error measures were min-
imized using Nelder Mead Simplex (NMS) in [29], and Ge-
netic Algorithms (GAs) and Simulated Annealing (SA) in
[26]. Specifically, the NMS algorithm was modified to ac-
count for closed form hand model constraints in [29]. In [9],
PDM and contour-based edge correspondences were uti-
lized with a weighted least square minimization procedure.
The weights were calculated based on the edge strength.
In [22], a two stage model fitting algorithm was proposed
based on NMS: a coarse stage that constraints the sim-
plex to pass through sample points collected using a glove-
based sensor (See Section 3) followed by a fine tuning stage
where the simplex can evolve without constraints. Finally, a
marker-based system used stereo cameras to extract the 3D
locations of a number of markers on the palm and fingertips
and applied GAs to estimate the orientation of the palm [19].
The state of the fingers was estimated using inverse kine-
matics and regression techniques. In a recent system [4],
Stochastic Gradient Descent (SGD) along with depth fea-
tures was proposed. A small number of points on the model
surface were selected randomly at each iteration to reduce
computational cost and escape local minima. Hand model
constraints were carefully taken into consideration by using
an additional step at each iteration. The resulting algorithm
is called SMD (Stochastic Meta Descent).

An alternative approach to model fitting utilizes physi-
cal force models. In this approach, the matching error is
used to create forces to be applied on the surface of the ar-
ticulated model. Then, the motion of the model caused by
the forces is calculated and the model parameters are up-
dated. In [6], the forces were derived using the Iterative
Closest Point (ICP) algorithm for registering the model with
a 3D reconstruction obtained using stereo. As the stereo re-
construction is not a full reconstruction, some modifications
were made to the ICP algorithm. Another 3D system de-
scribed in [43] uses the visual hull of the hand to derive
a force model. Using the parts of the model lying outside
the visual hull, forces are applied on the link of the skeletal
model to push these parts inside the visual hull.

In [46], a ‘divide and conquer’ approach was proposed.
First, the global motion of the hand was estimated, followed
by the estimation of the joint angles. This procedure was
applied iteratively until convergence. As it is not possi-
ble to accurately segment the palm region from the images,
outliers are expected. Therefore robust estimation methods
were utilized for estimating the pose of the palm. In [21], the
ICP algorithm was used assuming orthographic projection.
The closest edges to the model contours were used to es-
tablish correspondences and a factorization method was ap-
plied to calculate the 3 DOF planar global motion. In [21],
the NMS algorithm was utilized for estimating the global
pose.
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Kalman filter has also been used for solving the sin-
gle hypothesis tracking problem. In [37], the Unscented
Kalman Filter (UKF) was used for tracking. UKF applies
a deterministic weighted sampling of the Gaussian posterior
to be able to track a non-linear system. In [36], the Ex-
tended Kalman Filter (EKF) was used where the EKF out-
put was modified by introducing closed form hand motion
constraints.

7. Multiple Hypotheses Tracking

The basic idea of multiple hypotheses tracking is to keep
multiple pose estimates along the sequence. Keeping mul-
tiple hypotheses increases the chances of reaching the true
global minimum. This idea is best captured by the Bayesian
filtering framework that keeps a probability distribution of
the states conditioned on the observations up to the current
frame [1]. Many systems in this category provide an ap-
proximation to the Bayesian formulation and mainly aim to
keep some samples in state space that capture the modes of
the posterior.

Particle filtering [1] is a well known technique for im-
plementing a recursive Bayesian filter using Monte Carlo
simulations. In [21], importance sampling is utilized for fin-
ger pose tracking. The piecewise linear parametrization of
the hand configuration space was used (see Section 3) to
drive the importance distribution to satisfy this requirement.
The success of importance sampling relies on the choice of
the importance distribution from which random samples are
drawn. The importance distribution should guarantee that
the samples drawn have high probability of occurrence (i.e.,
large weights). They demonstrated that it is possible to track
the fingers by keeping an order of magnitude less samples
than that of the more conventional condensation algorithm
[12]. A problem with particle filters is the requirement on
the number of samples to be kept and tested. The most ex-
pensive part of a tracking system is the error calculation,
therefore, repeating this operation on large amount of sam-
ples (i.e., [21] reports using 100 samples) is not desirable.

Semi-parametric particle filters making use of model fit-
ting algorithms provide solutions with less number of sam-
ples. The samples representing the modes of the posterior
are kept and used to initiate model fitting procedures. In [3],
the SMD algorithm was utilized resulting in an 8 particle
tracker while [22] uses the two stage NMS algorithm with
30 particles.

Another approach to implementing the Bayesian track-
ing is grid-based filtering [1]. A grid-based approach is fol-
lowed in [38] by partitioning the state space using a regular
multi-resolution grid. Then, the posterior is approximated to
be piecewise constant over the nodes of the multi-resolution
tree. For each node of the tree, a template, generated using
an artificial hand model, is stored. During tracking, the tree

is traversed in a depth-first order to update the probabilities.
However, it is possible to skip children nodes of low resolu-
tion having low probability masses. The tree is constructed
using a piecewise linear function that approximates the hand
motion data collected using a glove-based device. In a later
study [42], alternative tree construction methods were pro-
posed and the hand dynamics were captured by keeping a
histogram of the tree node transitions in the training data.

Another study that follows a template matching approach
is given in [35]. Silhouette contour features and some scale
and rotation invariant features were generated using an arti-
ficial hand model and stored in a database. During tracking,
several hypotheses were kept and the neighborhood around
each hypothesis was searched to find the best matching tem-
plate and establish new hypotheses. Once the best match
from the database had been found, it was further refined us-
ing a model fitting algorithm.

8. Summary and Discussion

The key characteristics of the hand pose estimation sys-
tems reviewed in this study are summarized in Table 1.
The first column provides the reference number while the
other columns provide the key characteristics of each sys-
tem. Specifically, we report: 1) the effective number of
DOF that the system targets (i.e., the final DOF after possi-
ble degree reduction due to constraints), 2) the number and
type of cameras used, 3) the ability of the system to operate
in a cluttered background, 4) the features used, 5) the ap-
proach used to enforce hand model constraints, 6) the type
of the system according to the taxonomy used in this study,
7) systems using a database of templates, 8) details of the
algorithm, and 9) observed restrictions in the experimental
evaluation.

One of the key issues in evaluating system performance
is the availability of ground-truth data. Obtaining ground
truth data for 3D hand pose estimation is a difficult prob-
lem. Some studies report results on synthetic data [26, 32,
21, 43], while others project the hand model on the input im-
age(s) to show how well the projection(s) match the image
data. If we discard very limited motions, the most common
assumption when testing a system is keeping the palm paral-
lel to the camera (i.e., facing the camera). The main reason
for this assumption is to avoid self-occlusions which are dif-
ficult to handle using a single camera. This is confirmed in
[32] where it was shown that the pose estimation error of
their system is increasing with palm rotation.

It is worth mentioning that among the studies reviewed,
there are only two real-time systems. The first of them is
the rather old DigitEyes system [31]. It works at 10Hz on
an image processing board and can track 3 fingers in 5 DOF
motion and the hand in 3 DOF planar motion. The second
is the template matching system given in [35]. It is imple-
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mented using a PC cluster consisting of 6 PCs and operates
at 30Hz. Some tracking results under severe occlusion have
been demonstrated using this system.

9. Conclusions
In this paper, we have reviewed a number of studies address-
ing the problem of full hand motion estimation. The exis-
tence of an expensive but high speed system is quite encour-
aging [35]. However, the lack of an implementation that
is part of a real world system indicates that there is still a
lot of open theoretical questions. Model-based vision seems
to have good potential; however, it has two main deficien-
cies: (1) high processing requirements, (2) lack of automatic
model calibration algorithms. These systems do not have
the potential to run real-time on today’s desktop computers
but, on the other hand, they do have a place in advanced
virtual environment applications, which can afford more ex-
pensive systems.

The general trend in these systems is building single
camera systems. However, there is also an inevitable ten-
dency to avoid occlusions by keeping the global hand pose
fixed with respect to the camera. Multiple camera systems
and 3D features are not explored very well. Although these
systems are more expensive, they can provide better ways
to handle occlusions and can lead to more accurate hand
tracking systems for advanced tasks such as virtual object
manipulation.
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