
From Graphical Representations to Formal Specifications and Return:
Translation Algorithms in the Harmony Environment

Sergiu M. Dascalu”, Peter Hitchcock**, Narayan C. Debnath***, Andrew Klempau*
*Dept. of Computer Science ** Faculty of Computer Science *** Dept. of Computer Science

Universiv of Nevada, Reno Dalhousie University Winona State WniversiQ
Reno, NV 89557, USA H d f a , NS, Canada Winona, MN55987, USA
dascalus@cs. unr.edu peter. hitchcock@dal.ca ndebnath@winona. edu

Abstract

This paper introduces the translotion algorithms that
support the combination of semi-formal graphical
representations with formal notations in the Harmony
environment for sofhvare speciJicoion. Background
information is presented obout the Harmony approach
and details of both formalization and defornialization
processes are provided. Even though the algorithms
described ure focused on UML to Z++ translations, their
underlying principles and rules can be adapted and
reused for other combinations of modeling notafions, in
particular for combinations that involve UlML for the
graphical representation of sofiare models. Several
directions of enhuncing the existing trans Iation
algorithms are also discussed in the paper.

1. Introduction’

In software engineering, programs (software products)
should typically be built in phases: requirements
definition (determining whot the product is supposed to
do), design (indicating how the product will be built, from
what components), implementation (writing the code),
integration (putting together separate pieces of code), and
testing (verifying that the software satisfies its
requirements). After the above development phases, a
software product enters the evolution phase of its life-
cycle (or software process) [l, 21.

For defining requirements and developing designs the
software engineer needs to create software models, which
can be graphical, textual, or a combination of both.
Because laying the right foundation is highly beneficial
for any project, we have focused on the early phases of
the software process: requirements definition and design.

This work was supported in part by a grant from the
University of Nevada, Reno Junior Faculty Research Grant
Fund. This support does not necessarily imply endorsement by
the University of research conclusions.

0-7803-881 9-4/04/$20.00 02004 IEEE.

The scientific literature clearly shows that errors
discovered in later phases (e.g., implementation or
maintenance) are much more expensive to correct than in
earlier phases of the software life-cycIe [I, 2, 31. Starting
from this pragmatic consideration, we have looked at
various ways of improving the specification of a software
product and thus its overall quality.

As a matter of terminology, in this paper the word
specification is used in the sense defined by Alan Davis,
that of a document containing a description. According to
this definition, one can use terms such as requirements
specification, design specification, or test specification
[3]. Since the focus of our research is on the early stages
of the software process, software specijication refers in
this paper to software requirements and software design
specifications. Also as a matter of terminology, this paper
follows [4] to make distinction between formal, semi-
formal, and informal specification techniques. According
to [4], informal techniques “do not have complete set of
rules to constrain the models that can be created,” semi-
formal techniques have well-defined syntax and their
“typical instances are diagrammatic techniques with
precise rules that specify conditions under which
constructs are allowed and textual and graphical
descriptions with limited checking facilities,” and formal
techniques have precise syntax and semantics and “there
is an underIying model against which a description
expressed in mathematical notation can be verified”.
Furthermore, to be precise, graphical notations can be
formal, however, in this paper references are solely to the
larger group of semi-formal and informal graphical
notations.

Our initial approach for dealing with software
specification, described in detail in (51, is based on the
idea of combining informality or semi-formality (quick,
easy, but imprecise descriptions) with formality {heavy,
mathematics-based, but rigorous representations) in
describing what a system is supposed to do (or not to do).
This approach, investigated further in recent work [6,7, 8,
91, has led to several preliminary results that suggest that

2 15

there is significant potential in combining modeling
notations in sofiware specification. To support
combinations of graphical notations such as UML [IO]
with formal notations such as Z++ [I l , 121 translation
algorithms between the two types of notations are
necessary. This paper presents details of rules, principles,
and implementation solutions for such algorithms. It is
worth noting that although the translation algorithms
described in this paper are designed for the UML/Z++
combination, their underlying principles and rules are
sufficiently ‘notation-independent’ to be reused in other
similar combinations, in particular in combinations that
involve UML as semi-formal graphical notation.

The remainder of this paper is structured as follows:
section 2 briefly overviews the Harmony environment,
section 3 summarizes the specification approach used in
Harmony, sections 4 and 5 discuss the translation
algorithms between Harmony’s semi-formal and formal
spaces (formalization and deformalization processes),
section 6 identifies directions of enhancing the proposed
algorithms, and section 7 finalizes the paper with several
conclusions.

2. The Harmony Environment

Harmony, whose main interface is shown in Fig. 1, is
a window-based integrated software specification

environment that presents to the user a main window with
three panes. On the left-hand side of the environment’s
main window the project pane shows the structure of the
entire project. Next, in the center of the main window, the
UUL space allows the development of various UML
model elements, including use cases, scenarios, sequence
diagrams, class diagrams, classes, and statecharts. Lastly,
on the right-hand side of the environment’s main window,
the formal space is used for editing the formal
specifications that complement the graphical UML
models of the software system being developed. Even
though Fig. 1 shows a Z+t formal specification, other
formal notations such as TLA+ (Temporal Logic of
Actions Plus) [13] or Object-Z [14, 15, 161 could be
considered as well. Harmony’s functionality includes the
capability of bi-directional (albeit partial) translation
between the UML space and the formal space.

The Harmony project [6] has been pursued recently
not only in terms of developing a new version of the
environment but also in terms of enhancing the translation
algorithms between the graphical and formal spaces. A
major aspect of this ongoing project consists in adapting
Harmony for multiple-notation software specification.
More precisely, while in the graphical space the only
notation used currently is UML, in the formal space
provisions have been made to allow plugging-in diverse
formal specification notations.

Figure 1. Harmony’s user interface

21 6

For example, a notation currently considered as
formal counterpart for UML in Harmony’s workspaces
is Object-Z. In the same line of work on combining
semi-formal representations with formal notations in
software specification, Carol Ereinkel, a recent Master
in Computer Science graduate from UNR, has worked
on an solution for combining UML and TLA+. Details
of this solution, illustrated on a cruise control
application, can be found in [17].

3. The Specification Approach in Harmony

The modeling approach that we propose,
emphasizing the combined use of semi-formal and
formal notations in software specification, relies on two
main components: a set of translation algorithms
between UML and Z++ (algorithms for formalization
and deformalizafiun), and a set of specification steps
(modeling activities). The latter define a procedural
frame in which the software is specified, while the
former are used during particular steps of this frame.

In this section, the artifacts that are produced during
the combined semi-formal and formal specification of
the system as well as the activities of the specification
process are briefly described. More details on artifacts
and steps, including justifications for selecting a specific
subset of UML constructs and for focusing on a specific
subset of modeling activities can be found in [4,7,93.

3.1. Artifacts

During the specification of the software system, a
series of diagrams are drawn, modeling constructs are
completed, including both UML and Z++ specification
of cIasses, and the formaIization and deformalization
processes are performed.

Based on a set of requirements that describe the
intended properties of the system, the following basic
artifacts are created as components of the integrated
semi-formaUforma1 model of the system: uses cases,
scenarios, sequence diagrams, class compounds, and
Z+-+ classes. While use cases, scenarios and sequence
diagrams are typical UML model elements and Z++
classes are the fundamental constructs of Z++
specifications, class compounds are new model
elements included in our approach to provide better
support for the translation of UML models into Z++
specifications. In essence, the class compound is a
simple yet practical extension of a regular UML class,
obtained by attaching the associated state diagram to the
cIass. As indicated in [SI, the pairing of the two UML
model elements, class and its associated state diagram,
although conceptually simple, is nevertheless powerful

in that it extends the fundamentat notion of
encapsulation, datu + operations, to a more general
description data + operations + allowable sequences of
operations. Moreover, it corresponds to the class
structure of forma1 specification languages such as Z++
or Object-Z, thus providing enhanced support for
formalization,

In our approach, we have considered mechanisms
fur grouping logically related artifacts in addition to
those provided by the UML. Specifically, with respect
to the model elements employed in our approach, UML
provides use case diagrams for gathering related use
cases and class diagrams for grouping connected
classes. In order to provide better support for
formalization, we have introduced supplementary
structuring mechanisms in the form of groups (e.g.,
scenario groups) and collections (e.g., use case
collection, which is the set of all use case diagrams
included in the system model).

A summary of the artifacts used in the Harmony
approach, together with their abbreviations (included for
easier referencing) is provided in Table I. Note that in
this table the term class description (CLS) stands for the
regular UML class and class stare diagram (CLSTD)
stands for the regular UML state diagram associated
with the class. Together, they make the class compound,
i.e., COMP = CLS + CLSTD. Class compounds are
included in class diagrams and one or more class
diagrams make up the class diagram collection CDC of
the system model.

3.2. Modeling Activities

The steps of the specification approach that we
propose can be described briefly as follows (this is a
simplified representation of the suggested procedural
frame). Details are available in [5, 71, where in addition
to the regular flow of modeling activities summarized
below examples of “irregular” sequencing of activities
are given. Of course, as it is aIways the case in software
development, iterations of steps and refinements of
artifacts are necessary. Note that in the following basic
(“regular”) flow of modeling activities the deformali-
zation step i s not included because it is less frequently
used. Also, note that the integrated system model (SM)
obtained can be described concisely as:

SM = UMLsM + ZPPsM

where the UML part of the system model is:

UML~M = UCC + SCC + SQC + CDC

and the formal (Z t t) part of the system model is:

ZPPsM = ZSPEC.

217

Table I. Artifacts and their abbreviations
-~ ~ ~ ~

Element Abbreviation

Use case uc
r - ~

Use case diagram UCD

Use case collection ucc
Scenario

Scenario group

sc
SCG

[Scenario collection SCC I
Sequence diagram

Seq. diagram collection

SQD

SQC

Class description

Class state diagram

Class compound

I Class diagram I CD I

CLS

CLSTD

COMP

~ ~

Class diagram collection

Z++ ctass

1 I Z++ specification ZSPEC I

CDC

ZPPC

Table II. Modeling steps
-

Definition of use cases, leading to the creation of
&e UCC.

Step 2

Step 3

Elaboration of scenarios (“instances of use
cases”), grouped in SCGs and making up the SCC
part of the integrated model of the system.

Construction of class diagrams, in which a rough
sketch of the system’s class structure is obtained.

Step 4

Step 5

Step 6

Step 7

specification of the sequence diagrams, in which
components of the SQC part of the model are
developed.

Elaboration of class compounds, in which class
descriptions and class state diagrams are detailed
(the system structure sketched in Step 3 evolves
into the detailed CDC part of the model).

Formalization of UML class diagrams, involving the
generation of the system’s Z++ specification.

Enhancement of the Z++ specification, performed
by developers with expertise in formal methods.
The ZSPEC part of the system model is
completed.

4. Formalization: Translation Algorithms
from UML to Z++

Regarding the translation processes between UML
models and their corresponding Z++ specifications
described in [53, we should note that emphasis is placed

on the “direct”, UML to Z++ translation, whose purpose
is to increase the rigor of the system’s description and
help both developers and their customers gain a better
insight of the system under construction. However, in
order to make formal specifications easier to
understand, during the integrated modeling of the
system the “reverse translation,” from Ztt to UML, is
also considered. The first type of translation,

formalizution, applies both to UML class diagrams,
which capture structural aspects of the system, and to
UML state diagrams, which describe the system’s
dynamics. The second translation, deformalization,
produces WML classes from the information contained
in Ztc specifications.

For both types of iranslation process the focus has
been on those parts of formalization and deformalization
that can be performed automatically, a detailed set of
translation principles and a translation algorithm based
on these principles being proposed for each process.
Following are additional details on the two translation
processes included in Harmony:

Formalization. This includes formalization of UML
CIUSS diagrams and formalization of UML skate
diagrams. In order to formalize UML class diagrams
in Z++ a set of rules for developing well-formed
class diagrams (including rules for classes and rules
for relationships) and a set of translation principles
(e.g., for translation of types, attributes, operations,
and classes) have been proposed. These rules and
principles have guided the design of an algorithm for
formalizing class diagrams, AFCD, described in I S]
in terms of formal input, formal output, and pseudo-
code. AFCD was also implemented in Java. The
formalization of UML state diagrams is based on a
number of constraints on the contents of the state
diagrams and a number o f translation principles for
states and transitions. An algorithm for formalizing
state diagrams, AFSD, described also in terms of
formal input, formal output, and pseudo-code has
also been designed. Examples of translations rules
between UML and Z* used in AFCD are shown in
Fig. 2. Pseudocode descriptions of AFCD imple-
mentations solutions are illustrated in Fig. 3.

0 Deformalization. For the reverse translation
process, Z* to UML, several principles for
assigning types and generating UML attributes,
operations, classes, relationships, and state diagrams
from a Z++ specification, as well as an outline of the
ADF algorithm for deformalization have also been
presented in [5] .

Principles and guidelines for formalizing object-
oriented semi-formal models were proposed by Lano

218

- _
The name of each regular class is unique within
the class diagram.

The name of each parameterized class is the
Same as the name of its binding classes but is
distinct from the names of all other classes that
belona to the class diaaram.

- .-

The name of each binding class is the same as
the name of the parameterized class it binds and
the name of other binding classes that instantiate
this parameterized class, but is distinct from the
names of all other classes that belong to the class
diagram.

Each parameterized class and each binding class
has at least one class parameter.

Each formal class parameter and each actual
class parameter is given only as a name.

Each instantiating class has the same number of
parameters as the parameterized class it binds.

Each attribute has a name and, optionally, a type,
a visibility, an initial value, and a property.

The name of each attribute of a class is distinct
from the names of all attributes and operations
that belong to the same class.
The visibility of an attribute IS one of the following:
public. protected, or private.

The property of an attribute is either changeable
or frozen.

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.t3)

(6.14)

(6.15)

(6.16)

Figure 2. Examples of rules used in the
UML to Z++ translation algorithm AFCD

and Haughton [l I , 121. They represent the starting point
for the semi-formal to formal translation process we
have developed, but it should be noted that Lano and
Haughton’s work was concerned with the formalization
in Z+ of OMT models, so we have adapted and
extended their approach to UML models. Also, we have
attempted to provide a new description of formalization,
through detailed sets of principles and algorithms, and
have additionally tackled the reverse translation, which
was not considered by Lano and Haughton.

Additional reference for the formalization processes
we suggested has been provided by the work of Kim
and Carrington on formalizing UML models in Object-
Z [14, 151. In particular, their formal Z description of
UML class diagram constructs, preliminary to the
translation procedure from UML to Object-2, has
helped us define and organize the rules for well-formed
UML class diagrams presented,

The formalization of UML models applies only to
the core elements of the language (class diagrams,
classes, relationships, and state diagrams) but, as shown
in studies published by authors who have worked on
similar approaches, these constructs provide good
insight into the system and allow formal reasoning
about its properties [14, 181.

- UML to Z++ translation of a ciass diagram

ZPPSZPPSpec)
procedure CDTranslate(C0:ClassDiagram;

begin - process classes

- process relationships

-- apply hiding operations on Z++ classes

TranslateClasses(CD;fPP S):

TranslateRelationships(GD:ZPPS)

ResolveVisibility(;ZPPS)
end CDTranslate;

- Translation of classes
procedure TranslateClasses(CO:ClassDiagram;

2PPS:ZPPSpec)

-- inspect all classes in the class diagram
fori = 0 to N-1 do
- translate regular and parameterized

if (CD.C[i].ctype I= bind) then
-- classes only (ignore binding classes)

TranslateCiass(CD,CD.C[i];ZPPS)
endif;

end for;

begin

end Translateclasses;

- Translation of an individual class
procedure TranslateClass(CD:CIassDiagram,

C:UMLClass; 2PPS:fPPSpec)
-- Z++ class to be created

begin
2C:ZPPClass;

- create corresponding Z++ class
AppendClass(C.name; ZPPC, ZC);

- if UML class is generic transfer formal
if (C.ctype==para) then - class parameters to Z++ class

TransferCParams(C; ZC)
endif;

-- process parents and fill EXTENDS clause
ProcessParents(CD,C; ZC);

-- formalize attributes
TranslateAttributes(CD.C; ZPPS,ZC);

- formalize operations
TranslateOperations(Ci3,C; ZPPS,ZC);

--fill FUNCTIONS, OWNS, and ACTIONS
PlaceAttributes(;E);

-- fill FUNCTIONS, OWNS, and ACTIONS
PlaceOperations(;ZC);

end TranslateClass; - work done on this class

Figure 3. Examples of pseudo-code
descriptions for the translation algorithm AFCD

5. Deformalization: Translation Algorithms
from Z++ to UML
In what regards the reverse translation, from Z++

specifications to UML constructs, it should be noted
that it has a secondary role in the modeling process, its
purpose being to make easier the interpretation of the
integrated model by developers and users not trained in
formal methods. This feature may or may not be used
within a particular modeling context, but its inclusion in

219

the proposed approach allows a form of “reverse
engineering,” from formal specifications to semi-formal
graphical descriptions. In practice, it is thus possible to
have certain Z++ specifications developed first and then
their class structure propagated into the UML space.
This allows an improved communication between
developers skilled in formal methods and developers
and users that favor the graphical representation of the
system. The deformalization option is not a regular
feature in integrated approaches and its practical utility
is smaller than that of formalization. Several principles
for translating Z++ classes into corresponding UML
classes are shown in Fig. 4.

will have a oorresponding class C in UML. If the Z++ class C
has an associated hiding class Ii-C in Z++, the list of hidden
features used in the hiding operation that defines H-C will be
employed to assign the visibility private to the corresponding
features (attributes and operations) of the UML class C.

Each generic class G in Z++ will be translated to a generic
class G in UML, the names of the formal class parameters of
the Z++ class G being used as names for the formal class
parameters of the UML class G.

A binding UML class G[actualgarams] will be created
whenever a type G[actualgarams] is encountered in the Z++
specification, with G matching the name of an existing
generic class G in Z++ and the number of actual parameters
actualgarams equal to the number of the formal
parameters of the Z++ class G (however, the names of the
actual_params should not be the same with the names
formalgarams of the generic class).

The attributes and the operations of each regular or
parameterized UML class will be obtained as indicated in [5],
based on the inspection of the corresponding Z++ class.

Figure 4, Examples of principles used in the Z++ to
UML translation algorithm ADF

6. Analysis

Several notes regarding the application of the
proposed AFCD, AFSD, and ADF algorithms for
formalization and deformalization are necessary.

First of all, while the focus in this paper was on
those aspects of translations between UML and Z+t that
can be automated, it is necessary to mention that the
proposed algorithms are intended only to serve as aids
during the modelling process, and not to substitute the
human developer. In fact, we can hardly stress enough
the importance of the human factor in the process of
formalization (and, generally, in the development
process), the quality of the software product depending
essentially on the skills and motivation of its developers.
Also, while we assign a prominent role in the modeling
process to the activities of formalization and
deformalization, the emphasis is not that much on

automated translations between UML and Z++, but on
the combined, efficient use of the two notations,

In practical terms, the current algorithms need be
further refined in several aspects. In particular, in
conjunction with the new Harmony environment, whose
design incorporates the mechanics of translation
presented in this paper, the following issues need to be
addressed.

First, while the AFCD applies to class diagrams, for
practical purposes it is necessary to allow the
formalization of a single class or of a selected group of
classes. The solution for this is to allow the AFCD to
continue to operate within the context of the class
diagram and to visually mark in the generated Z++
specification all the references made from within the
group of formalized classes to classes outside this group
(e.g., by including a comment listing the names of
referenced but not formalized classes). This would
allow the developer to decide if additional classes need
to be formalized.

Second, also regarding the AFCD, its application to
two or more related class diagrams need to be
considered. This is not so much an issue of the
algorithm itself as it is an issue of combining and
representing the related class diagrams in the
environment that uses the AFCD. The problem resides
in classes included in one diagram that are in
relationships with classes from another class diagram.
The suggested solution is to attach a descriptor to the
class indicating the relationships in which the class is
involved, irrespective of the class diagram.

Third, the combined use of the AFCD and of the
AFSD can also be improved. At this point in time,
AFCD is applied first, followed by the AFSD, the latter
algorithm only appending information in a Z++ class
created by the former. The AFSD can be extended
without dfficulty to create itself the target Ztt class
and, more generally, the operations of both algorithms
can be integrated in a single formalization algorithm.
Since the same translation principles apply and the data
structures used by the algorithms is already in place this
integration should be straightforward.

Fourth, regarding the AFSD, its extension to
composite and concurrent states is a topic that deserves
further investigation. The first thing in such extension is
to create an enumerated type for each composite state in
the state diagram, with an attribute of this type
describing the current local state. Then, more complex
descriptions of transitions are necessary. Parallel
executions can be expressed via the 1 1 operator available
in RTL [19], used in the HISTORY clause of Z++ class.

Finally, the combined use of the three algorithms,
AFCD, AFSD, and ADF, is to be considered in an
integrated environment. The main issue is the “update
problem,” which arises when a model is switched back

220

and forth between the two spaces, graphical and formaI.
The solution, similar to the one used in version control
systems, is to let the developer decide on committing the
changes. To help his or her decision, things to be added
can be marked in a specific way (e.g., with an indicator
such as >>> meaning in or new information) and things
to be removed in an another way (e.g., with <<<
meaning out or information to be discarded).

7. Conclusions

This paper has introduced the main principles, rules,
and implementation solutions for translation algorithms
between the graphical models developed using UML in
the semi-formal space of the Harmony environment and
the corresponding Z++ specifications in the formal
space of this environment, Examples of applying the
algorithms for software modeling are available in 15, 71
and more applications are currer.tly being developed by
the authors.

It is useful to note that even though the algorithms
have been focused on UML to Z s t translations, they
can be easily adapted and reused in other combinations
of notations involving semi-fomal representations (in
particular, UML) and formal object-oriented languages
(for example, Object-Z). As such, they could provide
support for newer CASE tools such as the one described
in this paper.

The benefits of developing and enhancing the
algorithms presented stem primarily from their
increased support for automated translation between the
two components of a combined graphical (semi-formal)
and formal integrated software model. As such,
adjusting the levels of informality and, respectively,
formality in a software specification becomes easier.
This could have significant advantages in practice
because different software development applications
may have different priorities (for example, time to
market, product reliability, product maintainability),
which can be better accommodated by a software
specification approach based on combination of
modeling notations.

8, References

[I] Sommerville, I., Sofbvare Engineering, 7* edition,
Addison-Wesley, 2004.

[21 Pressman, R., Softwnre Engineering: A Practitioner’s
Approach, 6Ih edition, McGraw-Hill, 2004.

[31 Davis, A., Sofmare Requirements: Objects, Functions &
Stutes, Prentice Hall, 1993.

[41 Fraser, M.D., Kumar, K., and Vaishnavi, V.K.,
“Strategies for Incorporating Formal Specifications in
Software Development,” Communications of the ACM,
37 (IO), October 1994, pp. 74-85.

[51 Dascalu, S.M., Combining Semi-Fonnai and Formal
Notations in SoJlure Specification: A n Approach to
Modelling Time-Constrained Systems, PhD thesis,
Dalhousie University, Halifax, NS, Canada, 2001.

61 Dascalu, S.M., and Hitchcock, P., “Harmony: An
Environment for the Combined Use of UML and Z++ in
Software Specification,” in Parsons, J., and Sheng, 0.
(editors), Procs. of the I F h Workshop on Information
Technologies and Systems (WITS 2001), New Orleans,
LA, Dec. 2001, pp. 103-108.

[71 Dascalu, S.M., and Hitchcock, P., “An Approach to
Integrating Semi-formal and Formal Notations in
Software Specification,” Prom of SAC 2002, the ACM
Symposium on Applied Computing, Madrid, Spain,
March 2002, pp. 1014-1020.

81 Dascalu, S.M., and Hitchcock, P., “Towards Enhanced
Description of Objects’ Behavior: The Class Compound
Model Element,” Procs. of the 2002 Inti. Conference 011
&$ware Engineering Research Qnd Practice, Las
Vegas, NV, June 2002, pp. 240-245.

91 Dascalu, S.M., Hitchcock, P,, and Vert, G., “Combining
Graphical Representations and Formal Notations in
Software Specification: A Case Study,” Procs. of the
2003 in{(. Con$ on Sufiare Engineering Research and
Practice, Las Vegas, vol. 11, pp. 483-489.

101 OMG’s UML Resource Page, Object Management
Group web site, www.omg.orghm1 (September 2004).

I I] Lano, K., and Haughton, H., “Object-Oriented Specifi-
cation Languages in the Software Life Cycles,” in Lano,
K., and Haughton, H. (eds.), Object-Oriented Specif;-
cation Case Studies, Prentice Half, 1994, pp.55-79.

[121 Lano, K., Formal Object-Oriented Developmeni,
Springer-Verlag, 1995.

1131 Lamport, L., Specifjiing Sysrems: The TU+ Language
and Tools for Harhvare and SoftwcIe Engineers,
Addison-Wesley, 2003.

[14] Kim, S.-K., and Carrington, D., “A Formal Mapping
between UML Models and Object-Z Specifications,” in
Bowen, J.P., Dunne, S., Galloway, A., and King, S .
(editors), Inti. Con$ o f B and Z Users 282000, LNCS-
1878, Springer-Verlag, Berlin, Feb. 2000, pp. 2-2 1 .

[I51 Kim, S.-K., and Carrington, D., “An Integrated
Framework with UML and Object-Z for Developing A
Precise and Understandable Specification: The Light
Control Case Study.” Procs. of the 7th Asia-Pacific
Software Eng. ConJ ASPEC 2000, pp. 240-248.

[I61 Mahony, B., and Dong, J.S., “Timed Communicating
Object Z,” IEEE Transactions on Software Engineering
26 (2), Feb. 2000, pp. 150-176.

[17] Freinkel, C., An Approach ro Combining WML and
T U + in Sofiare Specification, MSc thesis, University
of Nevada, Reno, USA, Dec. 2003. Available as of
September 2004 at www.cs.unr.edu/ paw2.O/techreports/

[18] Howerton, W., and Hinchey, M.G., “Using the Right
Tool for the Job,” Prom ofthe 6th IEEE inti. Conf on
fhe Engineering of Complex Computer Systems, Sep.

[19] Jahanian, F. and Mok, A.K., “Safety Analysis o f Timing
Properties in Real-Time Systems, ” IEEE Trunsactions
on Sofnyare Engineering 12(9), Sep. 1986, pp. 890-904.

TRCS-2003-0001 .pdf

2000, pp. 105- 1 15.

22 1

http://www.cs.unr.edu

