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Abstract 

This paper introduces the translotion algorithms that 
support the combination of semi-formal graphical 
representations with formal notations in the Harmony 
environment for sofhvare speciJicoion. Background 
information is presented obout the Harmony approach 
and details of both formalization and defornialization 
processes are provided. Even though the algorithms 
described ure focused on UML to Z++ translations, their 
underlying principles and rules can be adapted and 
reused for other combinations of modeling notafions, in 
particular for combinations that involve UlML for the 
graphical representation of sofiare models. Several 
directions of enhuncing the existing trans Iation 
algorithms are also discussed in the paper. 

1. Introduction’ 

In software engineering, programs (software products) 
should typically be built in phases: requirements 
definition (determining whot the product is supposed to 
do), design (indicating how the product will be built, from 
what components), implementation (writing the code), 
integration (putting together separate pieces of code), and 
testing (verifying that the software satisfies its 
requirements). After the above development phases, a 
software product enters the evolution phase of its life- 
cycle (or software process) [l,  21. 

For defining requirements and developing designs the 
software engineer needs to create software models, which 
can be graphical, textual, or a combination of both. 
Because laying the right foundation is highly beneficial 
for any project, we have focused on the early phases of 
the software process: requirements definition and design. 
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The scientific literature clearly shows that errors 
discovered in later phases (e.g., implementation or 
maintenance) are much more expensive to correct than in 
earlier phases of the software life-cycIe [I, 2, 31. Starting 
from this pragmatic consideration, we have looked at 
various ways of improving the specification of a software 
product and thus its overall quality. 

As a matter of terminology, in this paper the word 
specification is used in the sense defined by Alan Davis, 
that of a document containing a description. According to 
this definition, one can use terms such as requirements 
specification, design specification, or test specification 
[3]. Since the focus of our research is on the early stages 
of the software process, software specijication refers in 
this paper to software requirements and software design 
specifications. Also as a matter of terminology, this paper 
follows [4] to make distinction between formal, semi- 
formal, and informal specification techniques. According 
to [4], informal techniques “do not have complete set of 
rules to constrain the models that can be created,” semi- 
formal techniques have well-defined syntax and their 
“typical instances are diagrammatic techniques with 
precise rules that specify conditions under which 
constructs are allowed and textual and graphical 
descriptions with limited checking facilities,” and formal 
techniques have precise syntax and semantics and “there 
is an underIying model against which a description 
expressed in mathematical notation can be verified”. 
Furthermore, to be precise, graphical notations can be 
formal, however, in this paper references are solely to the 
larger group of semi-formal and informal graphical 
notations. 

Our initial approach for dealing with software 
specification, described in detail in (51, is based on the 
idea of combining informality or semi-formality (quick, 
easy, but imprecise descriptions) with formality {heavy, 
mathematics-based, but rigorous representations) in 
describing what a system is supposed to do (or not to do). 
This approach, investigated further in recent work [6,7,  8, 
91, has led to several preliminary results that suggest that 
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there is significant potential in combining modeling 
notations in sofiware specification. To support 
combinations of graphical notations such as UML [IO] 
with formal notations such as Z++ [ I l ,  121 translation 
algorithms between the two types of notations are 
necessary. This paper presents details of rules, principles, 
and implementation solutions for such algorithms. It is 
worth noting that although the translation algorithms 
described in this paper are designed for the UML/Z++ 
combination, their underlying principles and rules are 
sufficiently ‘notation-independent’ to be reused in other 
similar combinations, in particular in combinations that 
involve UML as semi-formal graphical notation. 

The remainder of this paper is structured as follows: 
section 2 briefly overviews the Harmony environment, 
section 3 summarizes the specification approach used in 
Harmony, sections 4 and 5 discuss the translation 
algorithms between Harmony’s semi-formal and formal 
spaces (formalization and deformalization processes), 
section 6 identifies directions of enhancing the proposed 
algorithms, and section 7 finalizes the paper with several 
conclusions. 

2. The Harmony Environment 

Harmony, whose main interface is shown in Fig. 1, is 
a window-based integrated software specification 

environment that presents to the user a main window with 
three panes. On the left-hand side of the environment’s 
main window the project pane shows the structure of the 
entire project. Next, in the center of the main window, the 
UUL space allows the development of various UML 
model elements, including use cases, scenarios, sequence 
diagrams, class diagrams, classes, and statecharts. Lastly, 
on the right-hand side of the environment’s main window, 
the formal space is used for editing the formal 
specifications that complement the graphical UML 
models of the software system being developed. Even 
though Fig. 1 shows a Z+t formal specification, other 
formal notations such as TLA+ (Temporal Logic of 
Actions Plus) [13] or Object-Z [14, 15, 161 could be 
considered as well. Harmony’s functionality includes the 
capability of bi-directional (albeit partial) translation 
between the UML space and the formal space. 

The Harmony project [6]  has been pursued recently 
not only in terms of developing a new version of the 
environment but also in terms of enhancing the translation 
algorithms between the graphical and formal spaces. A 
major aspect of this ongoing project consists in adapting 
Harmony for multiple-notation software specification. 
More precisely, while in the graphical space the only 
notation used currently is UML, in the formal space 
provisions have been made to allow plugging-in diverse 
formal specification notations. 

Figure 1. Harmony’s user interface 
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For example, a notation currently considered as 
formal counterpart for UML in Harmony’s workspaces 
is Object-Z. In the same line of work on combining 
semi-formal representations with formal notations in 
software specification, Carol Ereinkel, a recent Master 
in Computer Science graduate from UNR, has worked 
on an solution for combining UML and TLA+. Details 
of this solution, illustrated on a cruise control 
application, can be found in [17]. 

3. The Specification Approach in Harmony 

The modeling approach that we propose, 
emphasizing the combined use of semi-formal and 
formal notations in software specification, relies on two 
main components: a set of translation algorithms 
between UML and Z++ (algorithms for formalization 
and deformalizafiun), and a set of specification steps 
(modeling activities). The latter define a procedural 
frame in which the software is specified, while the 
former are used during particular steps of this frame. 

In this section, the artifacts that are produced during 
the combined semi-formal and formal specification of 
the system as well as the activities of the specification 
process are briefly described. More details on artifacts 
and steps, including justifications for selecting a specific 
subset of UML constructs and for focusing on a specific 
subset of modeling activities can be found in [4,7,93. 

3.1. Artifacts 

During the specification of the software system, a 
series of diagrams are drawn, modeling constructs are 
completed, including both UML and Z++ specification 
of cIasses, and the formaIization and deformalization 
processes are performed. 

Based on a set of requirements that describe the 
intended properties of the system, the following basic 
artifacts are created as components of the integrated 
semi-formaUforma1 model of the system: uses cases, 
scenarios, sequence diagrams, class compounds, and 
Z+-+ classes. While use cases, scenarios and sequence 
diagrams are typical UML model elements and Z++ 
classes are the fundamental constructs of Z++ 
specifications, class compounds are new model 
elements included in our approach to provide better 
support for the translation of UML models into Z++ 
specifications. In essence, the class compound is a 
simple yet practical extension of a regular UML class, 
obtained by attaching the associated state diagram to the 
cIass. As indicated in [SI, the pairing of the two UML 
model elements, class and its associated state diagram, 
although conceptually simple, is nevertheless powerful 

in that it extends the fundamentat notion of 
encapsulation, datu + operations, to a more general 
description data + operations + allowable sequences of 
operations. Moreover, it corresponds to the class 
structure of forma1 specification languages such as Z++ 
or Object-Z, thus providing enhanced support for 
formalization, 

In our approach, we have considered mechanisms 
fur grouping logically related artifacts in addition to 
those provided by the UML. Specifically, with respect 
to the model elements employed in our approach, UML 
provides use case diagrams for gathering related use 
cases and class diagrams for grouping connected 
classes. In order to provide better support for 
formalization, we have introduced supplementary 
structuring mechanisms in the form of groups (e.g., 
scenario groups) and collections (e.g., use case 
collection, which is the set of all use case diagrams 
included in the system model). 

A summary of the artifacts used in the Harmony 
approach, together with their abbreviations (included for 
easier referencing) is provided in Table I. Note that in 
this table the term class description (CLS) stands for the 
regular UML class and class stare diagram (CLSTD) 
stands for the regular UML state diagram associated 
with the class. Together, they make the class compound, 
i.e., COMP = CLS + CLSTD. Class compounds are 
included in class diagrams and one or more class 
diagrams make up the class diagram collection CDC of 
the system model. 

3.2. Modeling Activities 

The steps of the specification approach that we 
propose can be described briefly as follows (this is a 
simplified representation of the suggested procedural 
frame). Details are available in [5, 71, where in addition 
to the regular flow of modeling activities summarized 
below examples of “irregular” sequencing of activities 
are given. Of course, as it is aIways the case in software 
development, iterations of steps and refinements of 
artifacts are necessary. Note that in the following basic 
(“regular”) flow of modeling activities the deformali- 
zation step i s  not included because it is less frequently 
used. Also, note that the integrated system model (SM) 
obtained can be described concisely as: 

SM = UMLsM + ZPPsM 

where the UML part of the system model is: 

UML~M = UCC + SCC + SQC + CDC 

and the formal ( Z t t )  part of the system model is: 

ZPPsM = ZSPEC. 
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Table I. Artifacts and their abbreviations 
-~ ~ ~ ~ 

Element Abbreviation 

Use case uc 
r -  ~ 

Use case diagram UCD 

Use case collection ucc 
Scenario 

Scenario group 

sc 
SCG 

[ Scenario collection SCC I 
Sequence diagram 

Seq. diagram collection 

SQD 

SQC 

Class description 

Class state diagram 

Class compound 

I Class diagram I CD I 

CLS 

CLSTD 

COMP 

~ ~ 

Class diagram collection 

Z++ ctass 

1 I Z++ specification ZSPEC I 

CDC 

ZPPC 

Table II. Modeling steps 
- 

Definition of use cases, leading to the creation of 
&e UCC. 

Step 2 

Step 3 

Elaboration of scenarios (“instances of use 
cases”), grouped in SCGs and making up the SCC 
part of the integrated model of the system. 

Construction of class diagrams, in which a rough 
sketch of the system’s class structure is obtained. 

Step 4 

Step 5 

Step 6 

Step 7 

specification of the sequence diagrams, in which 
components of the SQC part of the model are 
developed. 

Elaboration of class compounds, in which class 
descriptions and class state diagrams are detailed 
(the system structure sketched in Step 3 evolves 
into the detailed CDC part of the model). 

Formalization of UML class diagrams, involving the 
generation of the system’s Z++ specification. 

Enhancement of the Z++ specification, performed 
by developers with expertise in formal methods. 
The ZSPEC part of the system model is 
completed. 

4. Formalization: Translation Algorithms 
from UML to Z++ 

Regarding the translation processes between UML 
models and their corresponding Z++ specifications 
described in [53, we should note that emphasis is placed 

on the “direct”, UML to Z++ translation, whose purpose 
is to increase the rigor of the system’s description and 
help both developers and their customers gain a better 
insight of the system under construction. However, in 
order to make formal specifications easier to 
understand, during the integrated modeling of the 
system the “reverse translation,” from Ztt to UML, is 
also considered. The first type of translation, 

formalizution, applies both to UML class diagrams, 
which capture structural aspects of the system, and to 
UML state diagrams, which describe the system’s 
dynamics. The second translation, deformalization, 
produces WML classes from the information contained 
in Ztc specifications. 

For both types of iranslation process the focus has 
been on those parts of formalization and deformalization 
that can be performed automatically, a detailed set of 
translation principles and a translation algorithm based 
on these principles being proposed for each process. 
Following are additional details on the two translation 
processes included in Harmony: 

Formalization. This includes formalization of UML 
CIUSS diagrams and formalization of UML skate 
diagrams. In order to formalize UML class diagrams 
in Z++ a set of rules for developing well-formed 
class diagrams (including rules for classes and rules 
for relationships) and a set of translation principles 
(e.g., for translation of types, attributes, operations, 
and classes) have been proposed. These rules and 
principles have guided the design of an algorithm for 
formalizing class diagrams, AFCD, described in I S ]  
in terms of formal input, formal output, and pseudo- 
code. AFCD was also implemented in Java. The 
formalization of UML state diagrams is based on a 
number of constraints on the contents of the state 
diagrams and a number o f  translation principles for 
states and transitions. An algorithm for formalizing 
state diagrams, AFSD, described also in terms of 
formal input, formal output, and pseudo-code has 
also been designed. Examples of translations rules 
between UML and Z* used in AFCD are shown in 
Fig. 2. Pseudocode descriptions of AFCD imple- 
mentations solutions are illustrated in Fig. 3. 

0 Deformalization. For the reverse translation 
process, Z* to UML, several principles for 
assigning types and generating UML attributes, 
operations, classes, relationships, and state diagrams 
from a Z++ specification, as well as an outline of the 
ADF algorithm for deformalization have also been 
presented in [ 5 ] .  

Principles and guidelines for formalizing object- 
oriented semi-formal models were proposed by Lano 
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- _  
The name of each regular class is unique within 
the class diagram. 

The name of each parameterized class is the 
Same as the name of its binding classes but is 
distinct from the names of all other classes that 
belona to the class diaaram. 

- .- 

The name of each binding class is the same as 
the name of the parameterized class it binds and 
the name of other binding classes that instantiate 
this parameterized class, but is distinct from the 
names of all other classes that belong to the class 
diagram. 

Each parameterized class and each binding class 
has at least one class parameter. 

Each formal class parameter and each actual 
class parameter is given only as a name. 

Each instantiating class has the same number of 
parameters as the parameterized class it binds. 

Each attribute has a name and, optionally, a type, 
a visibility, an initial value, and a property. 

The name of each attribute of a class is distinct 
from the names of all attributes and operations 
that belong to the same class. 
The visibility of an attribute IS one of the following: 
public. protected, or private. 

The property of an attribute is either changeable 
or frozen. 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.t3) 

(6.14) 

(6.15) 

(6.16) 

Figure 2. Examples of rules used in the 
UML to Z++ translation algorithm AFCD 

and Haughton [l I ,  121. They represent the starting point 
for the semi-formal to formal translation process we 
have developed, but it should be noted that Lano and 
Haughton’s work was concerned with the formalization 
in Z+ of OMT models, so we have adapted and 
extended their approach to UML models. Also, we have 
attempted to provide a new description of formalization, 
through detailed sets of principles and algorithms, and 
have additionally tackled the reverse translation, which 
was not considered by Lano and Haughton. 

Additional reference for the formalization processes 
we suggested has been provided by the work of Kim 
and Carrington on formalizing UML models in Object- 
Z [14, 151. In particular, their formal Z description of 
UML class diagram constructs, preliminary to the 
translation procedure from UML to Object-2, has 
helped us define and organize the rules for well-formed 
UML class diagrams presented, 

The formalization of UML models applies only to 
the core elements of the language (class diagrams, 
classes, relationships, and state diagrams) but, as shown 
in studies published by authors who have worked on 
similar approaches, these constructs provide good 
insight into the system and allow formal reasoning 
about its properties [14, 181. 

- UML to Z++ translation of a ciass diagram 

ZPPSZPPSpec) 
procedure CDTranslate(C0:ClassDiagram; 

begin - process classes 

- process relationships 

-- apply hiding operations on Z++ classes 

TranslateClasses(CD;fPP S): 

TranslateRelationships(GD:ZPPS) 

ResolveVisibility(;ZPPS) 
end CDTranslate; 

- Translation of classes 
procedure TranslateClasses(CO:ClassDiagram; 

2PPS:ZPPSpec) 

-- inspect all classes in the class diagram 
fori = 0 to N-1 do 
- translate regular and parameterized 

if (CD.C[i].ctype I= bind) then 
-- classes only (ignore binding classes) 

TranslateCiass(CD,CD.C[i];ZPPS) 
endif; 

end for; 

begin 

end Translateclasses; 

- Translation of an individual class 
procedure TranslateClass(CD:CIassDiagram, 

C:UMLClass; 2PPS:fPPSpec) 
-- Z++ class to be created 

begin 
2C:ZPPClass; 

- create corresponding Z++ class 
AppendClass(C.name; ZPPC, ZC); 

- if UML class is generic transfer formal 
if (C.ctype==para) then - class parameters to Z++ class 

TransferCParams(C; ZC) 
endif; 

-- process parents and fill EXTENDS clause 
ProcessParents(CD,C; ZC); 

-- formalize attributes 
TranslateAttributes(CD.C; ZPPS,ZC); 

- formalize operations 
TranslateOperations(Ci3,C; ZPPS,ZC); 

--fill FUNCTIONS, OWNS, and ACTIONS 
PlaceAttributes( ;E); 

-- fill FUNCTIONS, OWNS, and ACTIONS 
PlaceOperations( ;ZC); 

end TranslateClass; - work done on this class 

Figure 3. Examples of pseudo-code 
descriptions for the translation algorithm AFCD 

5. Deformalization: Translation Algorithms 
from Z++ to UML 
In what regards the reverse translation, from Z++ 

specifications to UML constructs, it should be noted 
that it has a secondary role in the modeling process, its 
purpose being to make easier the interpretation of the 
integrated model by developers and users not trained in 
formal methods. This feature may or may not be used 
within a particular modeling context, but its inclusion in 
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the proposed approach allows a form of “reverse 
engineering,” from formal specifications to semi-formal 
graphical descriptions. In practice, it is thus possible to 
have certain Z++ specifications developed first and then 
their class structure propagated into the UML space. 
This allows an improved communication between 
developers skilled in formal methods and developers 
and users that favor the graphical representation of the 
system. The deformalization option is not a regular 
feature in integrated approaches and its practical utility 
is smaller than that of formalization. Several principles 
for translating Z++ classes into corresponding UML 
classes are shown in Fig. 4. 

will have a oorresponding class C in UML. If the Z++ class C 
has an associated hiding class Ii-C in Z++, the list of hidden 
features used in the hiding operation that defines H-C will be 
employed to assign the visibility private to the corresponding 
features (attributes and operations) of the UML class C. 

Each generic class G in Z++ will be translated to a generic 
class G in UML, the names of the formal class parameters of 
the Z++ class G being used as names for the formal class 
parameters of the UML class G. 

A binding UML class G[actualgarams] will be created 
whenever a type G[actualgarams] is encountered in the Z++ 
specification, with G matching the name of an existing 
generic class G in Z++ and the number of actual parameters 
actualgarams equal to the number of the formal 
parameters of the Z++ class G (however, the names of the 
actual_params should not be the same with the names 
formalgarams of the generic class). 

The attributes and the operations of each regular or 
parameterized UML class will be obtained as indicated in [5], 
based on the inspection of the corresponding Z++ class. 

Figure 4, Examples of principles used in the Z++ to 
UML translation algorithm ADF 

6. Analysis 

Several notes regarding the application of the 
proposed AFCD, AFSD, and ADF algorithms for 
formalization and deformalization are necessary. 

First of all, while the focus in this paper was on 
those aspects of translations between UML and Z+t that 
can be automated, it is necessary to mention that the 
proposed algorithms are intended only to serve as aids 
during the modelling process, and not to substitute the 
human developer. In fact, we can hardly stress enough 
the importance of the human factor in the process of 
formalization (and, generally, in the development 
process), the quality of the software product depending 
essentially on the skills and motivation of its developers. 
Also, while we assign a prominent role in the modeling 
process to the activities of formalization and 
deformalization, the emphasis is not that much on 

automated translations between UML and Z++, but on 
the combined, efficient use of the two notations, 

In practical terms, the current algorithms need be 
further refined in several aspects. In particular, in 
conjunction with the new Harmony environment, whose 
design incorporates the mechanics of translation 
presented in this paper, the following issues need to be 
addressed. 

First, while the AFCD applies to class diagrams, for 
practical purposes it is necessary to allow the 
formalization of a single class or of a selected group of 
classes. The solution for this is to allow the AFCD to 
continue to operate within the context of the class 
diagram and to visually mark in the generated Z++ 
specification all the references made from within the 
group of formalized classes to classes outside this group 
(e.g., by including a comment listing the names of 
referenced but not formalized classes). This would 
allow the developer to decide if additional classes need 
to be formalized. 

Second, also regarding the AFCD, its application to 
two or more related class diagrams need to be 
considered. This is not so much an issue of the 
algorithm itself as it is an issue of combining and 
representing the related class diagrams in the 
environment that uses the AFCD. The problem resides 
in classes included in one diagram that are in 
relationships with classes from another class diagram. 
The suggested solution is to attach a descriptor to the 
class indicating the relationships in which the class is 
involved, irrespective of the class diagram. 

Third, the combined use of the AFCD and of the 
AFSD can also be improved. At this point in time, 
AFCD is applied first, followed by the AFSD, the latter 
algorithm only appending information in a Z++ class 
created by the former. The AFSD can be extended 
without dfficulty to create itself the target Ztt class 
and, more generally, the operations of both algorithms 
can be integrated in a single formalization algorithm. 
Since the same translation principles apply and the data 
structures used by the algorithms is already in place this 
integration should be straightforward. 

Fourth, regarding the AFSD, its extension to 
composite and concurrent states is a topic that deserves 
further investigation. The first thing in such extension is 
to create an enumerated type for each composite state in 
the state diagram, with an attribute of this type 
describing the current local state. Then, more complex 
descriptions of transitions are necessary. Parallel 
executions can be expressed via the 1 1  operator available 
in RTL [19], used in the HISTORY clause of Z++ class. 

Finally, the combined use of the three algorithms, 
AFCD, AFSD, and ADF, is to be considered in an 
integrated environment. The main issue is the “update 
problem,” which arises when a model is switched back 
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and forth between the two spaces, graphical and formaI. 
The solution, similar to the one used in version control 
systems, is to let the developer decide on committing the 
changes. To help his or her decision, things to be added 
can be marked in a specific way (e.g., with an indicator 
such as >>> meaning in or new information) and things 
to be removed in an another way (e.g., with <<< 
meaning out or information to be discarded). 

7. Conclusions 

This paper has introduced the main principles, rules, 
and implementation solutions for translation algorithms 
between the graphical models developed using UML in 
the semi-formal space of the Harmony environment and 
the corresponding Z++ specifications in the formal 
space of this environment, Examples of applying the 
algorithms for software modeling are available in 15, 71 
and more applications are currer.tly being developed by 
the authors. 

It is useful to note that even though the algorithms 
have been focused on UML to Z s t  translations, they 
can be easily adapted and reused in other combinations 
of notations involving semi-fomal representations (in 
particular, UML) and formal object-oriented languages 
(for example, Object-Z). As such, they could provide 
support for newer CASE tools such as the one described 
in this paper. 

The benefits of developing and enhancing the 
algorithms presented stem primarily from their 
increased support for automated translation between the 
two components of a combined graphical (semi-formal) 
and formal integrated software model. As such, 
adjusting the levels of informality and, respectively, 
formality in a software specification becomes easier. 
This could have significant advantages in practice 
because different software development applications 
may have different priorities (for example, time to 
market, product reliability, product maintainability), 
which can be better accommodated by a software 
specification approach based on combination of 
modeling notations. 

8, References 

[ I ]  Sommerville, I., Sofbvare Engineering, 7* edition, 
Addison-Wesley, 2004. 

[ 21 Pressman, R., Softwnre Engineering: A Practitioner’s 
Approach, 6Ih edition, McGraw-Hill, 2004. 

[ 31 Davis, A., Sofmare Requirements: Objects, Functions & 
Stutes, Prentice Hall, 1993. 

[ 41 Fraser, M.D., Kumar, K., and Vaishnavi, V.K., 
“Strategies for Incorporating Formal Specifications in 
Software Development,” Communications of the ACM, 
37 (IO), October 1994, pp. 74-85. 

[ 51 Dascalu, S.M., Combining Semi-Fonnai and Formal 
Notations in SoJlure Specification: A n  Approach to 
Modelling Time-Constrained Systems, PhD thesis, 
Dalhousie University, Halifax, NS, Canada, 2001. 

61 Dascalu, S.M., and Hitchcock, P., “Harmony: An 
Environment for the Combined Use of UML and Z++ in 
Software Specification,” in Parsons, J., and Sheng, 0. 
(editors), Procs. of the I F h  Workshop on Information 
Technologies and Systems (WITS 2001), New Orleans, 
LA, Dec. 2001, pp. 103-108. 

[ 71 Dascalu, S.M., and Hitchcock, P., “An Approach to 
Integrating Semi-formal and Formal Notations in 
Software Specification,” Prom of SAC 2002, the ACM 
Symposium on Applied Computing, Madrid, Spain, 
March 2002, pp. 1014-1020. 

81 Dascalu, S.M., and Hitchcock, P., “Towards Enhanced 
Description of Objects’ Behavior: The Class Compound 
Model Element,” Procs. of the 2002 Inti. Conference 011 
&$ware Engineering Research Qnd Practice, Las 
Vegas, NV, June 2002, pp. 240-245. 

91 Dascalu, S.M., Hitchcock, P,, and Vert, G., “Combining 
Graphical Representations and Formal Notations in 
Software Specification: A Case Study,” Procs. of the 
2003 in{(. Con$ on Sufiare Engineering Research and 
Practice, Las Vegas, vol. 11, pp. 483-489. 

101 OMG’s UML Resource Page, Object Management 
Group web site, www.omg.orghm1 (September 2004). 

I I ]  Lano, K., and Haughton, H., “Object-Oriented Specifi- 
cation Languages in the Software Life Cycles,” in Lano, 
K., and Haughton, H. (eds.), Object-Oriented Specif;- 
cation Case Studies, Prentice Half, 1994, pp.55-79. 

[ 121 Lano, K., Formal Object-Oriented Developmeni, 
Springer-Verlag, 1995. 

1131 Lamport, L., Specifjiing Sysrems: The TU+ Language 
and Tools for Harhvare and SoftwcIe Engineers, 
Addison-Wesley, 2003. 

[14] Kim, S.-K., and Carrington, D., “A Formal Mapping 
between UML Models and Object-Z Specifications,” in 
Bowen, J.P., Dunne, S., Galloway, A., and King, S .  
(editors), Inti. Con$ o f B  and Z Users 282000, LNCS- 
1878, Springer-Verlag, Berlin, Feb. 2000, pp. 2-2 1 .  

[I51 Kim, S.-K., and Carrington, D., “An Integrated 
Framework with UML and Object-Z for Developing A 
Precise and Understandable Specification: The Light 
Control Case Study.” Procs. of the 7th Asia-Pacific 
Software Eng. ConJ ASPEC 2000, pp. 240-248. 

[I61 Mahony, B., and Dong, J.S., “Timed Communicating 
Object Z,” IEEE Transactions on Software Engineering 
26 (2), Feb. 2000, pp. 150-176. 

[17] Freinkel, C., An Approach ro Combining WML and 
T U +  in Sofiare Specification, MSc thesis, University 
of Nevada, Reno, USA, Dec. 2003. Available as of 
September 2004 at www.cs.unr.edu/ paw2.O/techreports/ 

[18] Howerton, W., and Hinchey, M.G., “Using the Right 
Tool for the Job,” Prom ofthe 6th IEEE inti. Conf on 
fhe Engineering of Complex Computer Systems, Sep. 

[19] Jahanian, F. and Mok, A.K., “Safety Analysis o f  Timing 
Properties in Real-Time Systems, ” IEEE Trunsactions 
on Sofnyare Engineering 12(9), Sep. 1986, pp. 890-904. 

TRCS-2003-0001 .pdf 

2000, pp. 105- 1 15. 

22 1 

http://www.cs.unr.edu

