
Dynamic Record Blocking:
Efficient Linking of Massive Databases in MapReduce

W.P. McNeill
Intelius Data Research

Bellevue, WA 98004, USA
bmcneill@intelius.com

Hakan Kardes
Intelius Data Research

Bellevue, WA 98004, USA
hkardes@intelius.com

Andrew Borthwick
Intelius Data Research

Bellevue, WA 98004, USA
aborthwick@intelius.com

ABSTRACT
Record Linkage is the task of identifying which records in a
database refer to the same entity. A standard machine learn-
ing approach to this problem is to train a model that assigns
scores to pairs of records where pairs scoring above a thresh-
old are said to represent the same entity. However, it is too
expensive to make pairwise comparisons among all records
in large databases. “Blocking” is the process of grouping
similar-seeming records into blocks that a machine learning
component then explores exhaustively. In many blocking ap-
proaches, records are grouped together into blocks by shared
properties that are indicators of duplication. However, when
dealing with very large data sources, it is nearly impossible
to determine any fixed set of properties at training time that
will be optimal for the Zipfian distribution of values for these
properties that we will encounter at run time. In this paper,
we propose a novel Dynamic Blocking algorithm which au-
tomatically chooses the blocking properties in a data-driven
way at execution time to efficiently determine which pairs
of records in a data set should be examined as potential du-
plicates without creating the same pair across blocks. We
demonstrate the viability of this algorithm for large data
sets. We have scaled this system up to work on billions of
records on an 80-node Hadoop cluster.

1. INTRODUCTION
A challenge for builders of databases whose information is

culled from multiple sources is the detection of duplicates,
where a single real-world entity gives rise to multiple records
(see [10] for an overview). Online citation indexes need to
be able to navigate the different capitalization and abbrevi-
ation conventions that appear in bibliographic entries. Gov-
ernment agencies need to know whether a record for “Robert
Smith” living on “Northwest First Street” refers to the same
person as one for a “Bob Smith” living on “1st St. NW”.
A standard machine learning approach to this problem is to
train a model that assigns scores to pairs of records where
pairs scoring above a threshold are said to represent the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
This article was presented at the 9th International Workshop on Quality in
Databases (QDB) 2012.
Copyright 2012

same entity. Transitive closure is then performed on this
same-entity relationship to find the sets of duplicate records.
Comparing all pairs of records is quadratic in the number of
records and so is intractable for large data sets. In practice
only a subset of the possible pairs is referred to the ma-
chine learning component and others are assumed to repre-
sent different entities. So a “Robert Smith”-“Bob Smith”
record pair may be scored while a “Robert Smith”-“Barack
Obama” pair is dismissed. This risks a false negative error
for the system if the “Robert Smith” and “Barack Obama”
records do in fact refer to the same person, but in exchange
for this the system runs faster. The term of art for this pro-
cess is blocking, because it groups similar-seeming records
into blocks that a pairwise comparator then explores ex-
haustively.

This paper describes the blocking strategy used to deploy
a massive database of personal information for an online
people search company. This database distills a heteroge-
neous collection of publicly available data about people into
coherent searchable profiles. This distillation process can be
framed as a duplicate detection task. We have developed a
novel blocking procedure that in addition to the standard
performance/recall tradeoff is tailored to 1) scale to very
large data sets and 2) robustly handle novel data sources.
The first of these is necessary because we map billions of
input records to hundreds of millions of people in the real
world. This is only possible with distributed computing, and
the need to distribute the work informs the design. The sec-
ond is necessary because we are acquiring new and diverse
sources of information all the time, so the hand-crafting of
the blocking procedure by experts can become a bottleneck.
We call this technique dynamic blocking because the block-
ing criteria adjust at run-time in response to the composi-
tion of the data set. We want blocking to be a mechanical
process, not an art.

2. CONTRIBUTIONS AND PRIOR WORK
Even though there are many different blocking approaches

such as traditional [19], Canopy Clustering [14], sorted neigh-
borhood [11], Q-gram based [3], string map [12], Suffix Array
[2], and numerous other approaches [1],[8],[9],[15], [18],[20]
that have been proposed in recent years, the basic idea is
generally to define a set of key fields from the data to deter-
mine which records will be in which block(s).

In this paper, we propose a scalable dynamic blocking
approach that builds on work presented in [5], but never
previously described in any scholarly venue. That work con-
tained the fundamental idea of dividing oversized blocks into

smaller sub-blocks. The system described in this paper ex-
tends this algorithm in a number of ways, including adapting
it to run in a scalable, distributed computing environment,
introducing pair deduplication, and a distinction between
“top-level blocks” and “sub-blocks”.
In traditional blocking (described in [19], where it is used

to link a database of 4 billion with a database of 100 mil-
lion), each record is compared only against records that
share the same blocking key value, for example, only com-
paring records with same date of birth. In this approach,
blocking keys are chosen to be as general as possible to span
all the records and to keep recall high, but as specific as
possible to considerably reduce the number of pairwise com-
parisons. According to a comprehensive analysis of blocking
algorithms in [7], traditional blocking is one of the fastest
approaches, however, there are several drawbacks. First, it
is not able to handle typos in the data. For example, if
the first-name in a record is written as “Andriw”, instead
of “Andrew”, this record will not be compared with other
“Andrew” records when using first-name as a blocking key.
Second, the hand-crafting of the blocking key selection be-
comes a challenge when working with heterogeneous data
sources and the size of each block is dependent on the fre-
quency distributions of the block key values. For instance,
there might be just ten “Andrew Borthwick” records in the
database while there are millions of “John Smith” records.
There will be a lot of unnecessary comparisons in the “John
Smith” block as there are thousands of “John Smith’s” in
real life. Third, the same pair of records might be compared
multiple times, both from blocks that are duplicates or sub-
sets of each other and from the pair appearing in multiple,
partially overlapping blocks.
Similar to traditional blocking, the sliding window ap-

proach (first described in [11] and used in [17]) identifies
sets of individuating record properties as “blocking keys”
according to which individual records may be ordered. A
sliding window of a fixed size is moved along this list and
pairs lying within that window are sent along to the linkage
component. We note that a fixed sliding window might be
too large when a name that is rare in the U.S. like “Hakan
Kardes” is used as a blocking key, while being too small for
a more common name like “William McNeill”, a problem
avoided by Dynamic Blocking.
Canopy clustering [14] quickly calculates a distance be-

tween all record pairs that share a blocking key. These dis-
tances are used to group records into blocks called canopies,
and distance thresholds may be tuned to allow some records
to appear in multiple canopies. Our Dynamic Blocking ap-
proach shares with this technique the strategy of allowing
sets of records to overlap. However, dynamic blocking can
be applied to data sets like the one we have, where there is no
obvious quickly-calculable distance metric between records
and the number of records makes even a fast calculation for
all pairs intractable for common blocking keys like “William
McNeill”. Note that [14] tests their method on a database
of 2000 person records whereas this work is executed on
datasets sized in the billions of records.
Dynamic Blocking contrasts with [16], first of all in scale

where [16] reports results on only 140K records. Dynamic
Blocking shares with [16] an objective of trading off recall
with efficiency, but in contrast to [16], does not require train-
ing data. Labeled training data is impractical for our ap-
plication because data distributions may vary widely across

different runs of our system and labeled data may not be
representative of the actual run-time process. We use the
term “Dynamic” blocking because in contrast to prior work,
the blocking criteria are adjusted at run time rather than
being fixed at training time as in [4] and [16]. Similarly,
[18] describes a novel approach of dynamically combining
matched records, ⟨a, b⟩, detected in one block in all other
blocks where ⟨a, b⟩ are found, but uses blocking criteria that
are fixed for a given run.

Consequently, this paper (together with [5]) makes the fol-
lowing contributions: 1) We demonstrate a novel, highly ac-
curate blocking algorithm that can be used on datasets sized
in the billions, an order of magnitude previously only acces-
sible to simplistic algorithms like traditional blocking and
sliding window. 2) Dynamic Blocking is simultaneously sen-
sitive to differential frequencies of blocking keys (“William
McNeill” vs. “Hakan Kardes”), while not requiring training
data. 3) Although [16] executes in MapReduce, our algo-
rithm is tailored to use MapReduce on datasets four orders
of magnitude larger than what they consider. 4) We present
a novel algorithm for ensuring that each pair of records is
compared only once, even though that pair might be present
in multiple blocks.

3. DYNAMIC BLOCKING

3.1 System Overview
The process starts by collecting billions of personal records

from three sources of U.S. personal records to power a ma-
jor commercial People Search Engine. The first source is
derived from US government records, such as marriage, di-
vorce and death records. The second is derived from pub-
licly available web profiles, such as professional and social
network public profiles. The third type is derived from com-
mercial sources, such as financial and property reports (e.g.,
information made public after buying a house). Example
fields on these records might include name, address, birth-
day, phone number, (encrypted) social security number, job
title, and university attended. Note that different records
will include different subsets of these example fields.

After collection and categorization, the Record Linkage
process should link together all records belonging to the
same real-world person. That is, this process should turn
billions of input records into a few hundred million clusters
of records (or profiles), where each cluster is uniquely asso-
ciated with a single real-world U.S. resident.

Our system follows the standard high-level structure of
a record linkage pipeline [10] by being divided into four
major components: 1) data cleaning 2) blocking 3) pair-
wise linkage and 4) clustering. First, all records go through
a cleaning process that starts with the removal of bogus,
junk and spam records. Then all records are normalized
to an approximately common representation. Finally, all
major noise types and inconsistencies are addressed, such
as empty/bogus fields, field duplication, outlier values and
encoding issues. At this point, all records are ready for
subsequent stages of Record Linkage. The blocking step,
which is the focus of this paper, groups records by shared
properties to determine which pairs of records should be ex-
amined by the pairwise linker as potential duplicates. Next,
the linkage step assigns a score to pairs of records inside
each block using a high precision machine learning model
whose implementation is described in detail in [6]. If a pair

.

.

..Smith

.

.

.

.

.

.

.

..Smith ∩ 1971

.

.

.

.

.

..Smith ∩ 1971 ∩ Robert

.Smith ∩ 1971 ∩ Robert ∩ Seattle

. ..Smith ∩ 1971 ∩ Seattle .

..Smith ∩ Robert

.Smith ∩ Robert ∩ Seattle

. ..Smith ∩ Seattle

Figure 1: The root node of this tree represents an oversized block for the name Smith and the other nodes
represent possible sub-blocks. The sub-blocking algorithm enumerates the tree breadth-first, stopping when
it finds a correctly-sized sub-block.

scores above a user-defined threshold, the records are pre-
sumed to represent the same person. The clustering step
first combines record pairs into connected components and
then further partitions each connected component to remove
inconsistent pair-wise links. Hence at the end of the entire
record linkage process, the system has partitioned the input
records into disjoint sets called profiles, where each profile
corresponds to a single person.
The blocking step is described in detail below.

3.2 Blocks and Subblocks
How might we subdivide a huge number of records? We

could start by grouping them into sets of the same first and
last name. This would go a long way towards putting to-
gether records that represent the same person, but it would
still be imperfect because people may have nicknames or
change their names. To enhance this grouping we could
consider a different kind of information like social security
number. Fraud, error, and omission renders SSN imper-
fectly individuating; however, it will still help us put to-
gether records for, say, women who change their name when
they get married. With a handful of keys like this we can
build redundancy into our system to accommodate different
types of error, omission, and natural variability. The blocks
of records they produce may overlap, but this is desirable
because it gives the clustering a chance to join records that
blocking did not put together.
These blocks will vary widely in size. We may have a small

set of “Barack Obama” records which can then be passed
along immediately to the linkage component. However, we
may have a set of millions of “Robert Smith” records which
still needs to be cut down to size. One way to do this is
to find other properties to further subdivide this set. The
set of all Robert Smiths who have the same middle name
is smaller than the set of all Robert Smiths, and intuitively
records in this set will be more likely to represent the same
person. Additionally we could block together all the Robert
Smiths with the same phone number, or birthday, or who
live in the same city. As with the original blocks, overlap
between these sub-blocks is desirable. We do not have to be
particularly artful in our choice of sub-blocking criteria: any
property that seems like it might be individuating will do.
As long as we have an efficient way to search the space, we
can let the data dynamically choose different sub-blocking
strategies for each oversize block.
More formally, this process can be understood in terms of

operations on sets. In a set of N records there are 1
2
N(N−1)

unique pairs, so an enumeration over all of them is O(N2).
The process of blocking divides this original set into k blocks,

each of which contains at most a fixed maximum of M
records. The exhaustive comparison of pairs from these sets
is O(k), and the constant factors are tractable if we choose
a small enough M .

Call the elements in these sets records. An individual
record can be thought of as a set of properties, where a
property maps a field (e.g. City or First Name) to a value
(e.g. Seattle or Robert).1 It is possible to define a total or-
dering on properties. For instance we can alphabetize them.
Define a block to be a set of records that share one or more
properties in common and represent blocks as tuples of the
form ⟨block key , records⟩ where records is the set of records
in the block and block key is the set of properties those
records have in common. A block key is a unique informa-
tive name of a set of records. Blocks whose keys contain
multiple properties are the intersections of the blocks who
have those individual properties as keys. If we have a to-
tal orderings of properties we can define a total ordering on
block keys by sorting them lexicographically.

We select a small number of top level properties like name
and social security number to do the initial blocking, and
a broader set of sub-blocking properties which are used to
subdivide oversized sets. The latter may be a superset of
the former. Blocks whose keys consist of a single top-level
property are called top-level blocks and blocks that are the
result of further subdivision are called sub-blocks.

The algorithm that creates the blocks and sub-blocks takes
as input a set of records and a maximum block size M . All
the input records are grouped into blocks defined by the top-
level properties. Those top-level blocks that are not above
the maximum size are set aside. The remaining oversized
blocks are partitioned into sub-blocks by sub-blocking prop-
erties that the records they contain share, and those prop-
erties are appended to the key. The process is continued
recursively until all sub-blocks have been whittled down to
an acceptable size.

The records in a given block will contain a set of sub-
blocking properties, and a complete enumeration of the pos-
sible sub-blocks requires enumerating the power set of this
property set—intersecting the same-birthday sets with the
same-phone number sets and intersecting all those with the
same-city sets and so forth. We need an efficient way to

1In practice it may be useful to think of properties as func-
tions of the fields actually present in the record. For exam-
ple, a record may contain separate entries for first and last
name but we may prefer to work with a property that is a
combination of the two. Or a record may contain a phone
number, but we may prefer to work with a property that is
just the first three digits.

conduct this exploration, bailing out as soon as possible. To
this end, we use the ordering on block keys to define a bi-
nomial tree where each node contains a list of block keys
and is the parent of nodes that have keys that come later
in the ordering appended to the list. Figure 1 shows a tree
for the oversize top-level set Smith with sub-block keys for
birth year 1971 < first name Robert < city Seattle.
With each node of the tree we can associate a block whose

key is the list of blocks keys in that node and whose records
are the intersection of the records in those blocks, e.g. the
Smith ∩ 1971 ∩ Seattle node represents all the records for
people named Smith who were born in 1971 and live in Seat-
tle. Because the cardinality of an intersected set is less than
or equal to the cardinalities of the sets that were intersected,
every block in the tree is larger than or equal to any of its
children. We traverse the tree breadth-first and only recurse
into nodes above the maximum block size. This allows us
to explore the space of possible sub-blocks in cardinality or-
der for a given branch, stopping as soon as we have a small
enough sub-block.
Figure 2 shows an algorithm that performs blocking using

this method.
The Block function creates the top-level blocks and each

call to the Sub-Block function enumerates one level deeper
into the tree. TheOversize function determines if the block
is over the maximum size, which in our system is expressed
in terms of the maximum number of pairs a block may con-

Block(records)

1 // Do top-level blocking.
2 blocks = ∅
3 for record ∈ records
4 for property ∈ Top-Level-Properties(record)
5 Add-To-Blocks(blocks, property , record)
6 // Do sub-blocking.
7 correct = ∅
8 for block ∈ blocks
9 correct = correct ∪ Sub-Block(block)

10 return correct

Sub-Block(block)

1 if |block .records| == 1
2 return ∅
3 if not Oversize(block)
4 return {block}
5 blocks = ∅
6 for record ∈ block.records
7 for property ∈ Sub-Block-Properties(record)
8 if property > block.key
9 Add-To-Blocks(blocks, property , record)

10 correct = ∅
11 for block ∈ blocks
12 correct = correct ∪ Sub-Block(block)
13 return correct

Add-To-Blocks(blocks, key , record)

1 // Let blocks be a table of blocks indexed by block key.
2 if blocks[key] == ∅
3 blocks[key] = blocks[key] ∪ ⟨key , ∅⟩
4 blocks[key].records = blocks[key].records ∪ record

Figure 2: Recursive blocking algorithm

tain. There is also an additional condition to ignore blocks
of size 1 since these will not contain any pairs. Note that we
do not know all the sub-block keys that will be present in a
given set of records a priori. Instead the algorithm discovers
this set as it runs.

In the worst case, all the sub-blocks except the ones with
the very longest keys are oversize. Then the sub-blocking
algorithm will explore the powerset of all possible blocking
keys and thus have exponential runtime. However, as the
block keys get longer, the sets they represent get smaller
and eventually fall beneath the maximum size. In practice
these two countervailing motions work to keep this strategy
tractable. As will be shown in the experiments, the bulk of
the sub-blocks have key lengths of 3 or less.

3.3 Scalability
The volume of data involved requires that this system be

distributed across a cluster of machines. We make heavy use
of the Hadoop implementation of the MapReduce computing
framework, and the blocking procedure described here is
implemented as a series of Hadoop jobs written in Java.
It is beyond the scope of this paper to fully describe this
framework (see [13] for an overview), but we do discuss the
ways its constraints inform our design.

MapReduce divides computing tasks into a map phase
in which the job is split up among multiple machines to be
worked on in parallel and a reduce phase in which the output
of the map phase is put back together. In a MapReduce
context, recursion becomes iteration. A single MapReduce
iteration works down one level of the binomial tree of sub-
block intersections. Figure 3 shows the MapReduce version
of the sub-blocking algorithm.

The mapper functions parallelize the extraction of proper-
ties from records performed in the loops beginning in lines

Top-Level-Mapper(no-blockkey , record)

1 for property ∈ Top-Level-Properties(record)
2 emit(property , record)

Sub-Block-Mapper(blockkey , record)

1 for property ∈ Sub-Block-Properties(record)
2 if property > blockkey
3 emit(blockkey + property , record)

Blocking-Reducer(blockkey , records)

1 buffer = ∅
2 destination = CORRECT
3 for record ∈ records
4 buffer = buffer ∪ records
5 if Oversize(buffer)
6 destination = OVERSIZE
7 break
8 if |buffer | == 1
9 return

10 // Dispatch the remaining incoming records.
11 for record ∈ records
12 dispatch(blockkey , record, destination)
13 // Dispatch the records in the buffer.
14 for record ∈ buffer
15 dispatch(blockkey , record, destination)

Figure 3: MapReduce blocking algorithm

M1 R1
JaneWallace: Rec1 Rec2 Rec3

JaneSmith: Rec1 Rec2 Rec4

jsmith@email.com: Rec1 Rec2

<(Rec1,Rec2),(3,JaneWallace)>

<(Rec1,Rec3),(3,JaneWallace)>

<(Rec2,Rec3),(3,JaneWallace)>

<(Rec1,Rec2),(3,JaneSmith)>

<(Rec1,Rec4),(3,JaneSmith)>

<(Rec2,Rec4),(3,JaneSmith)>

<(Rec1,Rec2),(2,jsmith@email)>

<(JaneWallace),(Rec1,Rec2)>

<(JaneWallace),(Rec1,Rec3)>

<(JaneWallace),(Rec2,Rec3)>

<(JaneSmith),(Rec1,Rec4)>

<(JaneSmith),(Rec2,Rec4)>

R2
<(JaneWallace 1 2 5),(Rec1,Rec2,Rec3)>

<(JaneWallace 2 5),(Rec1,Rec2,Rec4)>

Initial Blocks
Final Blocks after Pair Dedup

Figure 4: Pair Deduper MapReduce 2

3 and 6 in the recursive blocking algorithm in Figure 2.
The Top-Level-Mapper is run on the first iteration and
the Sub-Block-Mapper is run subsequently. The reducer
function enumerates over all the records in a newly-created
sub-block, counting them to determine whether or not the
block is small enough or needs to be further subdivided. The
blocks the reducer deems oversized become inputs to the
next iteration. Care is taken that the memory requirements
of the reducer function are constant in the size of a fixed
buffer because otherwise the reducer runs out of memory
on large blocks. Also note that the lexicographic ordering
of the block keys allows separate mapper processes to work
on different nodes in a level of the binomial tree without
creating redundant sub-blocks (e.g. if one mapper creates
a Robert ∩ Seattle block another mapper will not create a
Seattle ∩ Robert one). This is necessary because individual
MapReduce jobs run independently without shared memory
or other runtime communication mechanisms.

4. PAIR DEDUPING
When dealing with deduplication of large databases in

a parallel manner, many blocking approaches allow overlap-
ping blocks in order to increase recall. However, overlapping
blocks might cause redundant work for the linkage compo-
nent by including the same pair across separate blocks as
different blocking key combinations might create duplicate
or subset blocks from the same database. For example, when
we use ‘First:Last’ name combination and SSN as the block-
ing keys, some of the SSN blocks might be duplicate or sub-
sets of some of the ‘First:Last’ blocks (e.g., if records with
the same SSN also have the same first and last name)3.
We deployed a pair deduping module as a phase running

after blocking and before pairwise linkage to address this
issue. This module is a chain of two MapReduce jobs. Fig-
ure 4 represents how this module works. The first job dedu-
plicates all the pairs by retaining each pair with the largest
block4. The second job, reconstructs the blocks from the
retained pairs, and for each block, it generates an edge list
representing which pairs in this block should be compared
in the linkage component. For efficiency purposes, we rep-
resent each edge with an integer equal to (i ∗ n) + j where i
and j are the index of the records to be compared and n is
the block size.
In order to show the impact of pair deduping, we ran an

experiment with 4.8B records. We blocked these records
with Dynamic Blocking. Table 1 presents the number of

2Since the mapper of the second job is an identity mapper
which outputs the input, we excluded it from the figure.
3This might also happen when there are multiple values in
each record for a specific blocking key. For example, a person
might have multiple names and addresses which will cause
this record to appear in different name or address blocks
when using name or address as blocking key.
4If there are multiple blocks with same size, the pair is re-
tained in the block whose key is lexicographically greater.

initial pair deduped Gain
#blocks 7,135,917,137 1,508,105,207
#records 38,114,162,627 12,800,155,261 66% (I/O)
#pairs 162,722,621,924 58,668,501,433 64% (CPU)

Table 1: Effect of Pair Dedup

blocks, the total number of records and pairs in these blocks.
According to this table, 7.1B blocks are generated by block-
ing iterations. There are 38.1B records and 162.7B pairs(58.7B
unique) inside these blocks. After applying the pair dedup-
ing module, all duplicate pairs across the blocks are re-
moved, and this resulted in a 64% gain in run-time during
the linkage component. Note that this pair deduping mod-
ule took around 20 minutes while processing these duplicate
pairs in linkage component would take 3 days. Addition-
ally, the number of blocks is reduced to 1.5B blocks since
all duplicate and subset blocks are removed. The number
of records in all blocks decreased to 12.8B, so, the I/O gain
with pair deduping module is around 66%.

Note that we also experimented with a naive approach of
exploding all blocks into their constituent record pairs and
then deduping the pairs. This is trivial to do in MapReduce,
but we found that the increased I/O costs from writing out
all the pairs cancelled out any efficiency gained by eliminat-
ing redundant work in the linkage component. Note that
given the scale of our data, we don’t have efficient random
access to the records during the pairwise linkage component,
so the input for the linkage component is a record (not just
a record id) array for each block. Exploding a block of size
n into its constituent pairs results in n2 I/O.

5. EXPERIMENTS
We used two different datasets for our experiments. The

first one is a small subset of our production data. We used
this dataset to make experiments by varying the maximum
block size. We also used a second dataset which has around
5 billion public people records to demonstrate the viability
of this algorithm for very large data sets.

First, we ran experiments on 5,680,599 records sampled
from our full data set of approximately 5 billion. To build
this sample we used all records that contained a first-last
name pair that appeared on a list of 262,005 such pairs ran-
domly chosen from our data set. We did name-based sam-
pling instead of random sampling because the vast majority
of record pairs in the full data set are not matches. By
choosing a broadly individuating property like first and last
name we choose a set of records that will have more matches,
focusing these experiments on a region of the problem space
where blocking is having an effect.

We ran blocking, linkage, and clustering on this sample
of data for a range of maximum block size parameters. We
used three top level properties: 1) first and last name, 2)
social security number and 3) a tuple of last name, zip code,

and house number. We used various sub-properties includ-
ing various kinds of name and address information. The
maximum block size ranged from 20 to 50. We also ran an
experiment by using the traditional blocking approach with
the same blocking keys. In traditional blocking, there is no
limit on block size.
There are approximately 1012 record pairs in this dataset,

making it infeasible to construct a hand-annotated refer-
ence set. However, when the linkage model is held constant,
blocking does not change the score the linkage model assigns
to any individual pair, only the number of pairs presented to
it. In other words, blocking only affects recall, not precision.
For these experiments, then, we treat the results returned by
the linkage component as “truth”. If the model determines
that the pair should be matched, we treat the pair as a true
positive, otherwise we treat it as a true negative. Although
the pairwise model does, of course, make false positive er-
rors, we treat this as the fault of the linkage component, not
blocking whose job is solely to present the model with the
record pairs it will tend to score the highest.
So, we used three different metrics for the evaluations,

namely compression, pair quality, and total runtime. First,
we define the compression metric as:

c = 1− output entities

input records
(1)

We present compression as a percentage. The higher the
compression the better recall we have. Compression does
not take precision into account; however, as long as the
model is doing something reasonable, compression is a good
proxy for recall. Secondly, the pair quality metric is the
ratio of true positive pairs to all unique pairs generated by
blocking.

pq =
true positive pairs

all unique pairs generated by blocking
(2)

Higher pair quality for a blocking approach shows that this
approach is more efficient and generates mostly true matched
candidate pairs while a lower pair quality value means a
large number of non-matches are also generated [7]. Last
but not the least, we used the total runtime for blocking
and linkage components as a metric.

rttotal = rtblocking + rtlinkage (3)

Since the number of candidate pairs generated by blocking
affects the runtime of the linkage component, we don’t take
into account just the runtime of blocking, and rather prefer
looking at the overall runtime for blocking and linkage.
Table 2 presents the compression, pair quality, total run-

time values for Dynamic Blocking, and Traditional Block-
ing. According to this table, Traditional Blocking yields the
highest compression ratio. However, its pair quality is much
lower than that of Dynamic Record Blocking. Additionally,
the total runtime for this approach is around 4 times higher
than the total runtime of Dynamic Blocking with a max-
imum block size 40. Moreover, while maximum block size
increases for Dynamic Record Blocking, we have higher com-
pression. This is to be expected because increasing the block
size parameter increases the number of pairs that will be
considered by the linkage component. But, the increase in
compression is not directly proportional to the increase in
total runtime. According to our experiments, the increase
in total run time is more likely to be quadratic. Therefore,

Block Size Traditional
20 30 40 50 Blocking

Compression 83.25 83.81 83.98 84.05 85.09
Pair Quality 0.65 0.59 0.52 0.44 0.13

Total Runtime x 1.05x 1.21x 1.65x 4.83x

Table 2: Experimens with various Block Sizes

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40

n
u

m
b

e
r
 o

f
b

lo
c
k

s

block size

before pair dedup

after pair dedup

Billions

Figure 5: Block size distribution.

we need to keep the maximum block size at a certain level
in order to complete all linkage processes in a reasonable
amount of time.

We also used a dataset of around 5 billion public people
records to demonstrate the viability of this algorithm for
very large data sets. We set the maximum block size to 35
and blocked all 5 billion records with the Dynamic Blocking
approach. The blocking step took around 1.5 days to com-
plete. As shown in Table 1, around 1.5B blocks along with
58B candidate pairs were produced for the pairwise linkage
component. Figure 5 shows the size distribution of blocks
before and after pair deduping them. Since we keep the
duplicate pairs that occur in the larger blocks, we remove
mostly smaller blocks. After running the linkage component,
which took around 5 days, we had around 84.7% compres-
sion. This compression was in line with the results on the
smaller dataset.

6. CONCLUSION AND FUTURE WORK
We have developed a novel blocking technique for dupli-

cate record detection that operates on the intuitive notion of
grouping together records with similar properties and then
subdividing the groups using other shared properties until
they are all of tractable size. We have implemented this al-
gorithm in the MapReduce framework so that it may scale
to inputs in the billions of records.

One area of future work is in text normalization. Unlike
other blocking systems we have not devoted much effort to-
wards directly addressing errors in the original data, relying
instead on multiple top-level keys to catch mis-blockings due
to typos. However, we plan to investigate the effect of text
normalization for our system. There is no reason why our
framework could not incorporate additional record proper-
ties such as, for example, Soundex versions of text fields.

7. ACKNOWLEDGMENTS
The authors would like to express thanks to XinWang, Vi-

tor Carvalho, Ken Goodhope, Mike D’Angelo, Søren Flexner,
Jim Adler, Jean-Remy Facq, and the Data Team at Intelius
for building the infrastructure that made this work possible.
Particular thanks to Siddharth Agrawal and Chase Bradford
for their contributions to blocking scalability.

8. REFERENCES
[1] N. Adly. Efficient record linkage using a double

embedding scheme. In R. Stahlbock, S. F. Crone, and
S. Lessmann, editors, DMIN, pages 274–281. CSREA
Press, 2009.

[2] A. N. Aizawa and K. Oyama. A fast linkage detection
scheme for multi-source information integration. In
WIRI, pages 30–39. IEEE Computer Society, 2005.

[3] R. Baxter, P. Christen, and T. Churches. A
comparison of fast blocking methods for record
linkage, 2003.

[4] M. Bilenko and B. Kamath. Adaptive blocking:
Learning to scale up record linkage. In Data Mining,
2006. ICDM’, number December, 2006.

[5] A. Borthwick, A. Goldberg, P. Cheung, and
A. Winkel. Batch automated blocking and record
matching, 2005. U.S. Patent #7899796.

[6] S. Chen, A. Borthwick, and V. R. Carvalho. The case
for cost-sensitive and easy-to-interpret models in
industrial record linkage. In 9th International
Workshop on Quality in Databases, August 2011.

[7] P. Christen. A survey of indexing techniques for
scalable record linkage and deduplication. IEEE
Transactions on Knowledge and Data Engineering,
99(PrePrints), 2011.

[8] T. de Vries, H. Ke, S. Chawla, and P. Christen.
Robust record linkage blocking using suffix arrays. In
Proceedings of the 18th ACM conference on
Information and knowledge management, CIKM ’09,
pages 305–314, New York, NY, USA, 2009. ACM.

[9] T. de Vries, H. Ke, S. Chawla, and P. Christen.
Robust record linkage blocking using suffix arrays and
bloom filters. ACM Trans. Knowl. Discov. Data,
5(2):9:1–9:27, Feb. 2011.

[10] A. K. Elmagarmid, P. G. Iperirotis, and V. S.
Verykios. Duplicate record detection: A survey. In
IEEE Transactions on Knowledge and Data
Engineering, pages 1–16, 2007.

[11] M. A. Hernandez and S. J. Stolfo. Real-world data is
dirty. data cleansing and the merge/purge problem.
Journal of Data Mining and Knowledge Discovery,
pages 1–39, 1998.

[12] L. Jin, C. Li, and S. Mehrotra. Efficient record linkage
in large data sets. In Proceedings of the Eighth
International Conference on Database Systems for
Advanced Applications, DASFAA ’03, pages 137–,
Washington, DC, USA, 2003. IEEE Computer Society.

[13] J. Lin and C. Dyer. Data-Intensive Text Processing
with MapReduce. Synthesis Lectures on Human
Langugage Technologies. Morgan & Claypool, 2010.

[14] A. McCallum, K. Nigam, and L. H. Ungar. Efficient
clustering of high-dimensional data sets with
application to reference matching. In Proceedings of
the ACM International Conference on Knowledge
Discover and Data Mining, pages 169–178, 2000.

[15] J. Nin, V. Muntes-Mulero, N. Martinez-Bazan, and
J.-L. Larriba-Pey. On the use of semantic blocking
techniques for data cleansing and integration. In
Proceedings of the 11th International Database
Engineering and Applications Symposium, IDEAS ’07,
pages 190–198, Washington, DC, USA, 2007. IEEE
Computer Society.

[16] A. D. Sarma, A. Jain, and A. Machanavajjhala.
CBLOCK: An Automatic Blocking Mechanism for
Large-Scale De-duplication Tasks. Technical report,
2011.

[17] M. Weis, F. Naumann, U. Jehle, J. Lufter, and
H. Schuster. Industry-scale duplicate detection. Proc.
VLDB Endow., 1(2):1253–1264, Aug. 2008.

[18] S. E. Whang, D. Menestrina, G. Koutrika,
M. Theobald, and H. Garcia-Molina. Entity resolution
with iterative blocking. In Proceedings of the 35th
SIGMOD international conference on Management of
data, SIGMOD ’09, pages 219–232, New York, NY,
USA, 2009. ACM.

[19] W. Winkler. Overview of record linkage and current
research directions. Technical report, U.S. Bureau of
the Census, 2006.

[20] S. Yan, D. Lee, M.-Y. Kan, and L. C. Giles. Adaptive
sorted neighborhood methods for efficient record
linkage. In Proceedings of the 7th ACM/IEEE-CS
joint conference on Digital libraries, JCDL ’07, pages
185–194, New York, NY, USA, 2007. ACM.

