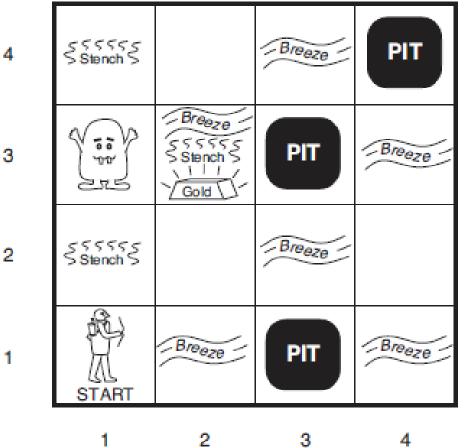
# Artificial Intelligence

CS482, CS682, MW 1 – 2:15, SEM 201, MS 227

Prerequisites: 302, 365

Instructor: Sushil Louis, <u>sushil@cse.unr.edu</u>, <u>http://www.cse.unr.edu/~sushil</u> Logic

#### Logical Agents



4

### Truth tables you know

| E1 | E2 | E1&E2 | E1VE2 | E1 <b>→</b> E2 | !E1 V E2 |
|----|----|-------|-------|----------------|----------|
| Т  | Т  | Т     | Т     | Т              | Т        |
| Т  | F  | F     | Т     | F              | F        |
| F  | Т  | F     | Т     | Т              | Т        |
| F  | F  | F     | F     | Т              | Т        |

# Logical agents

- Logical agents reason on internal representations of knowledge
- Knowledge-based agent (KBA)
- Previously states were represented as
  - Black boxes is state a goal or not?
  - A set of variables and their assignments Do these variable assignments satisfy problem's constraints?
- Now
  - Logic is a general class of representations to support KBAs
  - Combine and recombine information, old and new
- Logic is old and the rules are well developed. If a problem permits a logic representation → we can use well understood tools to solve it
- Many problems do not permit logic representations

# **Initial Vocabulary**

- Logic is old and has thus developed an extensive vocabulary
- Knowledge base (KB)
  - Is a set of sentences expressed in a knowledge representation language
  - Some sentences are axioms
  - Tell adds a sentence to the KB
  - **Ask** queries the KB
  - Both operations may require inference → deriving new sentences from old
    - Not allowed to make up stuff when deriving new sentences from old

#### KBA

- Tell an agent what it needs to know
- Tell an agent goals to achieve
- This is a declarative approach to building an agent/system

function KB-AGENT(percept) returns an action
 persistent: KB, a knowledge base
 t, a counter, initially 0, indicating time

TELL(*KB*, MAKE-PERCEPT-SENTENCE(*percept*, *t*))  $action \leftarrow ASK(KB, MAKE-ACTION-QUERY(t))$ TELL(*KB*, MAKE-ACTION-SENTENCE(*action*, *t*))  $t \leftarrow t + 1$ **return** *action* 

# Wumpus world

- Gold and wumpus locations chosen randomly
- 0.2 probability that a square contains a pit

| 1,4            | 2,4       | 3,4 | 4,4 |                                                 | 1,4            | 2,4              | 3,4               | 4,4 |
|----------------|-----------|-----|-----|-------------------------------------------------|----------------|------------------|-------------------|-----|
| 1,3            | 2,3       | 3,3 | 4,3 | P = Pit $S = Stench$ $V = Visited$ $W = Wumpus$ | 1,3            | 2,3              | 3,3               | 4,3 |
| 1,2<br>ОК      | 2,2       | 3,2 | 4,2 |                                                 | 1,2<br>ОК      | 2,2<br>P?        | 3,2               | 4,2 |
| 1,1<br>A<br>OK | 2,1<br>OK | 3,1 | 4,1 |                                                 | 1,1<br>V<br>OK | 2,1 A<br>B<br>OK | <sup>3,1</sup> P? | 4,1 |
|                |           | (a) |     | (b)                                             |                |                  |                   |     |

Figure 7.3FILES: figures/wumpus-seq01.eps(Tue Nov 3 16:24:10 2009).Thefirst step taken by the agent in the wumpusworld.(a) The initial situation, af-ter percept [None, None, None, None, None].(b) After one move, with percept[None, Breeze, None, None, None].

## Move safely, but where?

- Based on guaranteed correct updating of new knowledge
- aka  $\rightarrow$  Sound Rules of Inference

| 1,4                   | 2,4                         | 3,4               | 4,4 |                                                 | 1,4                         | 2,4<br>P?           | 3,4               | 4,4 |
|-----------------------|-----------------------------|-------------------|-----|-------------------------------------------------|-----------------------------|---------------------|-------------------|-----|
| <sup>1,3</sup> w!     | 2,3                         | 3,3               | 4,3 | P = Pit $S = Stench$ $V = Visited$ $W = Wumpus$ | <sup>1,3</sup> w!           | 2,3 A<br>S G<br>B   | <sup>3,3</sup> р? | 4,3 |
| 1,2<br><u>S</u><br>OK | 2,2<br>OK                   | 3,2               | 4,2 |                                                 | <sup>1,2</sup> s<br>V<br>OK | 2,2<br>V<br>OK      | 3,2               | 4,2 |
| 1,1<br>V<br>OK        | <sup>2,1</sup> B<br>V<br>OK | <sup>3,1</sup> P! | 4,1 |                                                 | 1,1<br>V<br>OK              | 2,1<br>B<br>V<br>OK | <sup>3,1</sup> P! | 4,1 |
|                       |                             | (a)               | ·   | _                                               | (b)                         |                     |                   |     |

**Figure 7.4 FILES: figures/wumpus-seq35.eps (Tue Nov 3 16:24:11 2009).** Two later stages in the progress of the agent. (a) After the third move, with percept [*Stench*, *None*, *None*, *None*, *None*]. (b) After the fifth move, with percept [*Stench*, *Breeze*, *Glitter*, *None*, *None*].

#### More Vocabulary

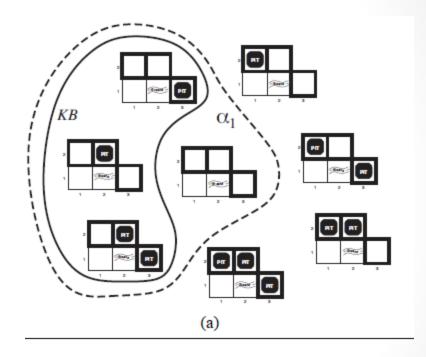
- x + y = 4 is a sentence (call the sentence  $\rightarrow$  alpha)
  - Sentence has syntax. Well formed sentence (well formed formula (wff))
  - Sentence has semantics
    - Semantics defines the truth of sentence w.r.t to each possible world
- There are **possible worlds** in which alpha is true **or** false
- In classical logic only possibilities are true and false
- In Fuzzy logic, we can have "in-between"
- There are models in which alpha is true or false (but a model need not have any connection to the real world)
- A model **m** satisfies alpha if alpha is true in **m**.
  - Ex: **m** = (2, 2)
  - Also stated as: **m** is a **model of** alpha
- **M**(alpha) is the set of all models of alpha
  - $M = \{(x = 0, y = 4), (x = 1, y = 3), (x = 2, y = 2), (x = 3, y = 1), (x = 4, y = 0)\}$
  - (x = 2, y = 3) is **not** a model of alpha and not a member of **M**

#### Entailment

- A sentence beta logically follows from alpha
- alpha entails beta
  - Iff M(alpha) is a subset of M(beta)
  - Alpha is a stronger assertion than beta, it rules out more possible worlds
  - x = 0 entails xy = 0, since in any world where x is 0, xy is zero

# Knowledge in the Wumpus world

- Possible models for the presence of pits in [1,2], [2,2], [3,1]
- Each square may or may not contain pit
  - 2<sup>3</sup> == 8 possibilities
- KB is what is known
  - Cannot have pit in [2,1]
  - Must have pit in [2,2] or
     [3,1]

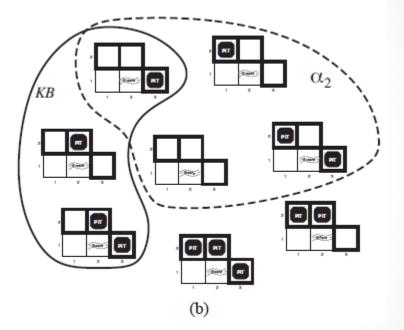


Consider:

alpha1 = There is no pit in [1,2]

# Knowledge in the Wumpus world

- Possible models for the presence of pits in [1,2], [2,2], [3,1]
- Each square may or may not contain pit
  - 2<sup>3</sup> == 8 possibilities
- KB is what is known
  - Cannot have pit in [2,1]
  - Must have pit in [2,2] or
     [3,1]



alpha2 = There is no pit in [3,1]

#### So: KB entails alpha1

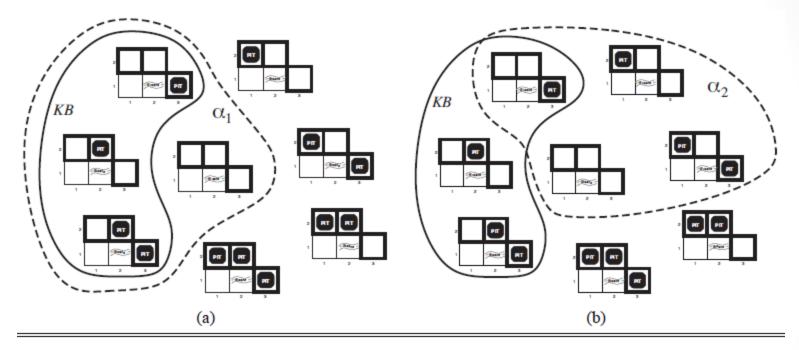


Figure 7.5 FILES: figures/wumpus-entailment.eps (Tue Nov 3 16:24:09 2009) figures/wumpusnonentailment.eps (Tue Nov 3 16:24:10 2009). Possible models for the presence of pits in squares [1,2], [2,2], and [3,1]. The KB corresponding to the observations of nothing in [1,1] and a breeze in [2,1] is shown by the solid line. (a) Dotted line shows models of  $\alpha_1$  (no pit in [1,2]). (b) Dotted line shows models of  $\alpha_2$  (no pit in [2,2]).

#### KB does not entail alpha2

# Logical inference

- Entailment can be used to derive conclusions
  - This is Logical Inference
- Model Checking checks that M(alpha) entails M(beta)
  - Previous figure model checked that M(KB) entails M(alpha1)
- If an inference algorithm *i* can derive alpha from KB then
  - i derives alpha from KB
- An inference algorithm that derives only entailed sentences is
  - SOUND
  - Model Checking is a sound procedure
  - Model Checking is a sound inference algorithm
- An inference algorithm is complete if it can derive any sentence that is entailed
   We are back to set

We are back to searching to check that KB entails alpha

#### Sound Inference

- Guarantees that a conclusion arrived through sound inference is true in any world in which the premise (KB) is true
- Sound inference operates on a representation of the real world
- If good representation then this means
  - Conclusions correspond to aspects of the real world

# Some philosophy

- Grounding
  - Connects the logical reasoning on a representation of the real world with the real world

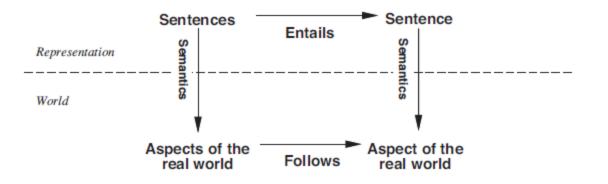


Figure 7.6 FILES: figures/follows+entails.eps (Tue Nov 3 16:22:52 2009). Sentences are physical configurations of the agent, and reasoning is a process of constructing new physical configurations from old ones. Logical reasoning should ensure that the new configurations represent aspects of the world that actually follow from the aspects that the old configurations represent.

### Sad about Marcus

- Marcus is a man
- Marcus is a pompein
- Marcus was born in 40AD
- All men are mortal
- All pompeins died when the volcano erupted in 79AD
- No mortal lives longer than 150 years
- It is now 2013AD
- How do we represent this as sentences that a sound inference procedure can work with?

### Sadder about Marcus

- Man(marcus)
- Pompein(marcus)
- Born(marcus, 40)
- A(x)  $[man(x) \rightarrow mortal(x)]$
- Erupted(Volcano, 79)
- A(x) [Pompein(x)  $\rightarrow$  died(x, 79)]
- A(x) A(t1) A(t2) [mortal(x) & born(x, t1) & gt(t2 t1, 150) → dead(x, t2)]
- Now = 2013

#### **Propositional Calculus**

- Cannot represent all facts about the Marcus problem
- What can it represent? To find out let us define it
- Syntax

Propositional logic is the simplest logic—illustrates basic ideas The proposition symbols  $P_1$ ,  $P_2$  etc are sentences If S is a sentence,  $\neg S$  is a sentence (negation) If  $S_1$  and  $S_2$  are sentences,  $S_1 \wedge S_2$  is a sentence (conjunction) If  $S_1$  and  $S_2$  are sentences,  $S_1 \vee S_2$  is a sentence (disjunction) If  $S_1$  and  $S_2$  are sentences,  $S_1 \Rightarrow S_2$  is a sentence (implication) If  $S_1$  and  $S_2$  are sentences,  $S_1 \Rightarrow S_2$  is a sentence (implication) If  $S_1$  and  $S_2$  are sentences,  $S_1 \Rightarrow S_2$  is a sentence (biconditional)

#### Semantics

Each model specifies true/false for each proposition symbol

E.g.  $P_{1,2}$   $P_{2,2}$   $P_{3,1}$ true true false

(With these symbols, 8 possible models, can be enumerated automatically.)

Rules for evaluating truth with respect to a model m:

Simple recursive process evaluates an arbitrary sentence, e.g.,  $\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (false \lor true) = true \land true = true$ 

#### Back to Wumpuses

Propositional logic is the simplest logic—illustrates basic ideas

The proposition symbols  $P_1$ ,  $P_2$  etc are sentences

If S is a sentence,  $\neg S$  is a sentence (negation)

If  $S_1$  and  $S_2$  are sentences,  $S_1 \wedge S_2$  is a sentence (conjunction)

If  $S_1$  and  $S_2$  are sentences,  $S_1 \vee S_2$  is a sentence (disjunction)

If  $S_1$  and  $S_2$  are sentences,  $S_1 \Rightarrow S_2$  is a sentence (implication)

If  $S_1$  and  $S_2$  are sentences,  $S_1 \Leftrightarrow S_2$  is a sentence (biconditional)

W[1,3]  $\leftarrow \rightarrow$  ! W[2,2]. Wumpus is in [1,3] is true if and only if Wumpus is in [2,2] is false

#### Truth tables

| E1 | E2 | E1&E2 | E1V E2 | E1 <b>→</b> E2 | !E1 V E2 | E1<br>←→ | E2 |
|----|----|-------|--------|----------------|----------|----------|----|
| Т  | Т  | Т     | Т      | Т              | Т        | Т        |    |
| Т  | F  | F     | Т      | F              | F        | F        |    |
| F  | Т  | F     | Т      | Т              | Т        | F        |    |
| F  | F  | F     | F      | Т              | Т        | Т        |    |

#### Wumpus representation

| $\begin{array}{l} A \\ B \\ B \\ G \\ G \\ C \\ C$ | 1,4            | 2,4               | 3,4               | 4,4 |
|----------------------------------------------------------------------------------|----------------|-------------------|-------------------|-----|
| P = Pit $S = Stench$ $V = Visited$ $W = Wumpus$                                  | 1,3            | 2,3               | 3,3               | 4,3 |
|                                                                                  | 1,2<br>ОК      | <sup>2,2</sup> P? | 3,2               | 4,2 |
| in $[i, j]$ .<br>eze in $[i, j]$ .                                               | 1,1<br>V<br>OK | 2,1<br>B<br>OK    | <sup>3,1</sup> P? | 4,1 |

(b)

Let  $P_{i,j}$  be true if there is a pit in [i, j]. Let  $B_{i,j}$  be true if there is a breeze in [i, j].

 $\neg P_{1,1} \\
 \neg B_{1,1} \\
 B_{2,1}$ 

### Wumpus Representation (2)

"Pits cause breezes in adjacent squares"

 $\begin{array}{lll} B_{1,1} & \Leftrightarrow & (P_{1,2} \lor P_{2,1}) \\ B_{2,1} & \Leftrightarrow & (P_{1,1} \lor P_{2,2} \lor P_{3,1}) \end{array}$ 

 $\begin{array}{ll} \underline{A} &= Agent\\ \underline{B} &= Breeze\\ \underline{G} &= Glitter, \ Gold\\ OK &= Safe \ square\\ \underline{P} &= Pit\\ \underline{S} &= Stench\\ \underline{V} &= Visited\\ \underline{W} &= Wumpus \end{array}$ 

| 1,4            | 2,4              | 3,4               | 4,4 |
|----------------|------------------|-------------------|-----|
| 1,3            | 2,3              | 3,3               | 4,3 |
| 1,2<br>ОК      | 2,2<br>P?        | 3,2               | 4,2 |
| 1,1<br>V<br>OK | 2,1 A<br>B<br>OK | <sup>3,1</sup> P? | 4,1 |

(b)

# !P[1,2]?

• 5 sentences in KB

Let  $P_{i,j}$  be true if there is a pit in [i, j]. Let  $B_{i,j}$  be true if there is a breeze in [i, j].

 $\neg P_{1,1} \\
 \neg B_{1,1} \\
 B_{2,1}$ 

"Pits cause breezes in adjacent squares"

 $\begin{array}{rcl} B_{1,1} & \Leftrightarrow & (P_{1,2} \lor P_{2,1}) \\ B_{2,1} & \Leftrightarrow & (P_{1,1} \lor P_{2,2} \lor P_{3,1}) \end{array}$ 

|                                                    | 1,4            | 2,4              | 3,4               | 4,4 |
|----------------------------------------------------|----------------|------------------|-------------------|-----|
| P = Pit<br>S = Stench<br>V = Visited<br>W = Wumpus | 1,3            | 2,3              | 3,3               | 4,3 |
|                                                    | 1,2<br>ОК      | 2,2 P?           | 3,2               | 4,2 |
|                                                    | 1,1<br>V<br>OK | 2,1 A<br>B<br>OK | <sup>3,1</sup> P? | 4,1 |

(b)

#### Need to model check

| $B_{1,1}$        | $B_{2,1}$ | $P_{1,1}$        | $P_{1,2}$        | $P_{2,1}$        | $P_{2,2}$ | $P_{3,1}$        | $R_1$ | $R_2$ | $R_3$ | $R_4$            | $R_5$ | KB          |
|------------------|-----------|------------------|------------------|------------------|-----------|------------------|-------|-------|-------|------------------|-------|-------------|
| false            | false     | false            | false            | false            | false     | false            | true  | true  | true  | true             | false | false       |
| false            | false     | false            | false            | false            | false     | true             | true  | true  | false | true             | false | false       |
| :                | :         | :                | :                | :                | :         | :                | :     | :     | :     | :                |       | :           |
| $\mathit{false}$ | true      | false            | false            | $\mathit{false}$ | false     | $\mathit{false}$ | true  | true  | false | true             | true  | false       |
| false            | true      | false            | false            | false            | false     | true             | true  | true  | true  | true             | true  | true        |
| false            | true      | false            | false            | false            | true      | false            | true  | true  | true  | true             | true  | true        |
| $\mathit{false}$ | true      | $\mathit{false}$ | $\mathit{false}$ | $\mathit{false}$ | true      | true             | true  | true  | true  | true             | true  | <u>true</u> |
| false            | true      | false            | false            | true             | false     | false            | true  | false | false | true             | true  | false       |
|                  | :         | :                | :                | :                | :         | :                | :     | :     | :     | ÷                | :     | :           |
| true             | true      | true             | true             | true             | true      | true             | false | true  | true  | $\mathit{false}$ | true  | false       |

M(KB) entails M(!P[1,2]) Does M(KB) entail M(P[2,2]) ?

# Entailment algorithm O(2^n)

function TT-ENTAILS?(KB,  $\alpha$ ) returns true or false

inputs:  $K\!B,$  the knowledge base, a sentence in propositional logic

 $\alpha$ , the query, a sentence in propositional logic

```
symbols \leftarrow a list of the proposition symbols in KB and \alpha return TT-CHECK-ALL(KB, \alpha, symbols, \{\})
```

function TT-CHECK-ALL(KB, a, symbols, model) returns true or false

```
if EMPTY?(symbols) then
```

if PL-TRUE?(*KB*, model) then return PL-TRUE?( $\alpha$ , model) else return true // when KB is false, always return true

#### else do

```
P \leftarrow \text{FIRST}(symbols)
rest \leftarrow \text{REST}(symbols)
return (TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = true\})
and
TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = false\}))
```

**Figure 7.8** A truth-table enumeration algorithm for deciding propositional entailment. (TT stands for truth table.) PL-TRUE? returns *true* if a sentence holds within a model. The variable *model* represents a partial model—an assignment to some of the symbols. The keyword "and" is used here as a logical operation on its two arguments, returning *true* or *false*.

