Artificial Intelligence

CS482, CS682, MW 1 - 2:15, SEM 201, MS 227
Prerequisites: 302, 365
Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil

Three colour problem

(a)

(b)

Figure 6.1 FILES: figures/australia.eps (Tue Nov 3 16:22:26 2009) figures/australia-csp.eps (Tue Nov 3 16:22:25 2009). (a) The principal states and territories of Australia. Coloring this map can be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each region so that no neighboring regions have the same color. (b) The map-coloring problem represented as a constraint graph.

Neighboring regions cannot have the same color Colors $=\{r e d$, blue, green $\}$

Consider using a local search

WA	NT	NSW	Queen	Victoria	SA	Tas
\{r, g, b\}	$\{\mathrm{r}, \mathrm{g}, \mathrm{b}\}$	$\{r, g, b\}$				

- 3 to the power 7 possible states $=2187$
- But not all states are legal
- For example: $\{r, r, r, r, r, r, r\}$ is NOT legal because it violates our constraint
- Suppose we do sequential assignment of values to variables
- Assign r (say) to WA then we can immediately reduce the number of possible values for NT and SA to be $\{\mathrm{g}, \mathrm{b}\}$, and if we chose $\mathrm{NT}=\{\mathrm{g}\}$, then SA has to be \{b\}.

Propagation of constraints

Figure 6.1 FILES: figures/australia.eps (Tue Nov 3 16:22:26 2009) figures/australia-csp.eps (Tue Nov 3 16:22:25 2009). (a) The principal states and territories of Australia. Coloring this map can be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each region so that no neighboring regions have the same color. (b) The map-coloring problem represented as a constraint graph.

Wouldn't it be nice to have a constraint propagation algorithm?

```
function AC-3(cap) returns false if an inconsistency is found and tue otherwise
    inputs: csp, a binary CSP with components ( }X,D,C
    local variables: queue, a queue of arcs, initially all the arcs in cap
    while queue is not empty do
        (Xi, X ( ) & Remove-First(queue)
        if Revise(csp, Xi, Xj) then
            if size of }\mp@subsup{D}{1}{}=0\mathrm{ then return false
            for each }\mp@subsup{X}{k}{}\mathrm{ in }\mp@subsup{X}{i}{}\mathrm{ .Neighbors - { {}\mp@subsup{X}{j}{}}\mathrm{ do
                add (X}\mp@subsup{X}{k}{},\mp@subsup{X}{i}{})\mathrm{ to queue
    return true
```

function Revise(cap, X_{i}, X_{j}) returns true iff we revise the domain of X_{i}
revised \leftarrow false
for each x in D_{i} do
if no value y in D_{j} allows (x, y) to satisfy the constraint between X_{1} and X_{j} then
delete x from D_{i}
revised \leftarrow true
return revised

Figure 6.3 The arc-consistency algonithm AC-3. After applying $\mathrm{AC}-3$, either every arc is arcconsistent, or some variable has an empty domain, indicating that the CSP camot be solved. The name "AC-3" was used by the algorithm's inventor (?) because it's the third version developed in the paper.

Properties

- Node consistency (unary)
- Arc consistency (binary)
- Network arc consistency (all arcs are consistent)
- ACS3 is the most popular arc consistency algorithm
- Fails quickly if no consistent set of values found
- Start:
- Considers all pairs of arcs
- If making an arc (xi, xj) consistent causes domain reduction
- Add all neighboring arcs that go to xi to set of arcs to be considered
- Success leaves a much smaller search space for search
- Domains will have been reduced
- Suppose n variables, max domain size is d , then complexity is $\mathrm{O}\left(\mathrm{cd}{ }^{\wedge} 3\right)$ where c is number of binary constraints

More constraint types and approache

- Path (triples)
- Global constraints (n variables)
- Special purpose algorithms (heuristics)
- Alldiff constraints (Sudoku)
- Remove any variable with singleton domain
- Remove that value from the domains of all other variables
- Repeat
- While
- singletons values remain
- No domains are empty
- Not more variables than domain values
- Resource constraints (Ex: Atmost 100)
- Bounds and bounds propagation

Search

- Constraints have been met and propagated
- But the problem still remains to be solved (multiple values in domains)
- Search through remaining assignments
- For CSPs Backtracking search is good
- Choose a value for variable, x
- Choose a subsequent legal value for next variable, y
- Backtrack to x if no legal value found for y

Australia coloring

Figure 6.6 FILES: figures/australia-search.eps (Tue Nov 3 16:22:25 2009). Part of the search tree for the map-coloring problem in Figure 6.1.

Backtracking search algorithm

```
function BACKTRACKING-SEARCH(csp) returns a solution, or failure
    return BACKTRACK({},csp)
function BACKTRACK(assignment, csp) returns a solution, or failure
    if assignment is complete then return assignment
    var\leftarrowSELECT-UNASSIGNED-VARIABLE(csp)
    for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
        if value is consistent with assignment then
        add {var = value} to assignment
        inferences }\leftarrow\mathrm{ INFERENCE(csp,var,value)
        if inferences }\not=\mathrm{ failure then
            add inferences to assignment
            result }\leftarrow\mathrm{ BACKTRACK(assignment,csp)
            if result }\not=\mathrm{ failure then
            return result
        remove {var = value } and inferences from assignment
    return failure
```

Figure 6.5 A simple backtracking algorithm for constraint satisfaction problems. The algorithm is modeled on the recursive depth-first search of Chapter ??. By varying the functions SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES, we can implement the generalpurpose heuristics discussed in the text. The function INFERENCE can optionally be used to impose arc-, path-, or k-consistency, as desired. If a value choice leads to failure (noticed either by INFERENCE or by BACKTRACK), then value assignments (including those made by INFERENCE) are removed from the current assignment and a new value is tried.

CSP heuristics

- For all CSPs
- Depends on the answer to the following:
- Which var should be assigned next, and what order should it be assigned a value from the set of values available?
- What inference should be performed at each step of search?
- When the search arrives at an assignment that violates a constraint, can the search avoid repeating this failure?

Variable and value ordering

- Choosing which variable:
- Minimum Remaining Value (MRV) heuristic aka fail-fast
- Choose the variable with the fewest remaining "legal" values
- Degree heuristic
- Choose variable that is involved in the largest number of constraints
- Choosing which value:
- Least constraining value (fail-last)

Interleaving search \& inference

- AC-3 infers reductions in set of possible values before search
- Inference is also powerful during search
- Consider backtracking search + Forward checking
- FC: After X assigned,
- For each unassigned var Y that is connected to X, delete any values from Y 's domain that is inconsistent with the value chosen for X
- After WA = red
- Forward check
- After Q = green
- Forward check
- $N T=\{b l u e\}, S A=\{b l u e\}$
- $\mathrm{V}=\{$ blue $\} \rightarrow \mathrm{SA}=\{ \}$

(a)

T
(b)

Figure 6.1 FILES: figures/australia.eps (Tue Nov 3 16:22:26 2009) figures/australia-csp.eps (Tue Nov 3 16:22:25 2009). (a) The principal states and territories of Australia. Coloring this map can be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each region so that no neighboring regions have the same color. (b) The map-coloring problem represented as a constraint graph.

- Backtrack because there is no assignment for SA

Inference + search

- Backtracking + AC3 = Maintaining Arc Consistency (MAC algorithm)
- Fails faster than Backtracking + forward checking

	WA	NT	Q	NSW	V	SA	T
Initial domains	R G B	R G B	R G B	R G B	R G B	R G B	R G B
After $W A=$ red	(B)	G B	R G B	R G B	R G B	G B	R G B
After $Q=$ green	(B)	B	(G)	$\mathrm{R} \quad \mathrm{B}$	R G B	B	R G B
After V=blue	(B)	B	(G)	R	(B)		R G B

Figure 6.7 FILES: figures/australia-fc.eps (Tue Nov 3 16:22:25 2009). The progress of a mapcoloring search with forward checking. $W A=$ red is assigned first; then forward checking deletes red from the domains of the neighboring variables $N T$ and $S A$. After $Q=$ green is assigned, green is deleted from the domains of $N T, S A$, and $N S W$. After $V=b l u e$ is assigned, blue is deleted from the domains of $N S W$ and $S A$, leaving $S A$ with no legal values.

Heuristic backtracking

- $\mathrm{Q}=$ red, NSW = green, $\mathrm{V}=$ blue, $\mathrm{T}=$ red, $\mathrm{SA}=$?
- Every value of SA violates a constraint
- Should we backtrack to T = red?
- But T = red does not have anything to do with SA
- Carry around a conflict set, a set of prior assignments that affects SA
- $\{\mathrm{Q}=$ red, NSW=green, $\mathrm{V}=$ blue $\}=$ = conflict set for SA
- FC may specify a conflict set!
- Conflict set
- tells us not to backtrack to T
- instead to V
- Back Jumping algorithm

(a)

(b)

Figure 6.1 FILES: figures/australia.eps (Tue Nov 3 16:22:26 2009) figures/australia-csp.eps (Tue Nov 3 16:22:25 2009). (a) The principal states and territories of Australia. Coloring this map can be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each region so that no neighboring regions have the same color. (b) The map-coloring problem represented as a constraint graph.

Conflict-directed back jumping

- Not that simple:
- Consider $\{W A=r e d, ~ N S W=r e d\}$
- Is this possible?
- Now, assign to T,
- then to NT, Q, V, SA
- Because of earlier inconsistency
- No possible assignment
- So we backtrack to NT

(a)

Figure 6.1 FILES: figures/australia.eps (Tue Nov 3 16:22:26 2009) figures/australia-csp.eps (Tue Nov 3 16:22:25 2009). (a) The principal states and territories of Australia. Coloring this map can be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each region so that no neighboring regions have the same color. (b) The map-coloring problem represented as a constraint graph.

- FC does not always provide enough information
- Consider:
- SA fails and SA's conflict set is (say) \{WA, NSW, NT, Q\}
- We backjump to Q and Q absorbs SA's conflict set - Q
- Q's conflict set = \{NT, NSW\} (we haven't seen SA yet)
- SAcs Union Qcs - $\mathrm{Q}=\{\mathrm{FA}, \mathrm{NT}, \mathrm{NSW}\} \rightarrow$ no solution forward from Q given Qcs
- Backtrack to NT which absorbs $\{W A, N T, N S W\}-\{N T\}=\{W A, N S W\}$
- Back jump to NSW

Constraint learning

- Can we learn sets of variable assignments that lead to conflicts?
- NO GOOD == \{ min set of variable and their values in a conflict set that lead to contradiction\}

Local search for CSPs

function MIN-CONFLICTS(csp, max_steps) returns a solution or failure
inputs: $c s p$, a constraint satisfaction problem
max_steps, the number of steps allowed before giving up
current \leftarrow an initial complete assignment for csp
for $i=1$ to max_steps do
if current is a solution for $c s p$ then return current
var \leftarrow a randomly chosen conflicted variable from $c s p$.VARIABLES
value \leftarrow the value v for var that minimizes CONFLICTS(var, v, current, csp)
set $v a r=$ value in current
return failure

Figure 6.8 The MIN-CONFLICTS algorithm for solving CSPs by local search. The initial state may be chosen randomly or by a greedy assignment process that chooses a minimal-conflict value for each variable in turn. The CONFLICTS function counts the number of constraints violated by a particular value, given the rest of the current assignment.

CSP problem structure

- Independent sub-problems
- Very nice
- Tree structure (any two variables are only connected by one path)
- Linear time! O(nd^2)
- Can we convert a constraint graph to a tree structure?
- 1. Removing nodes (delete SA!)
- By assigning a value to SA and removing that value from all other nodes' domains
- In general, find a cycle cutset, and return cutset's assignment and remaining tree CSP
- $d^{\wedge} c *(n-c) d^{\wedge} 2$

Removing nodes

Figure 6.12 FILES: figures/australia-csp.eps (Tue Nov 3 16:22:25 2009) figures/australiatree.eps (Tue Nov 3 16:22:26 2009). (a) The original constraint graph from Figure 6.1. (b) The constraint graph after the removal of $S A$.

Collapsing nodes

- Tree decomposition of constraint graph into a set of connected sub-problems.
- Great if tree width of Constraint Graph is small
- But
- Many possible decompositions

Figure 6.13 FILES: figures/australia-decomposition.eps (Tue Nov 3 16:22:25 2009). A tree decomposition of the constraint graph in Figure 6.12(a).

CSP Puzzle

- In five houses, each with a different color, live five persons of different nationalities, each of whom prefer a different brand of candy, a different drink, and a different pet.
- Where does the zebra live?
- Which house do they drink water?
- What are possible representations of this CSP problem?
- Which is best?
- The Englishman lives in the red house
- The Spaniard owns the dog
- The Norwegian lives in the first house o the left
- The green house is immediately to the right of the ivory house
- The man who eats Hershey bars lives in the house next to the man with the fox
- Kits Kats are eaten in the yellow house
- The Norwegian lives next to the blue house
- The Smarties eater owns snails
- The Snickers eater drinks OJ
- The Ukranian drinks tea
- The Japanese eats Milky Ways
- Kit Kats are eaten in a house next to the house where the horse is kep
- Coffee is drunk in the green house
- Milk is drunk in the middle house

Logical Agents

