# Artificial Intelligence

CS482, CS682, MW 1 – 2:15, SEM 201, MS 227

Prerequisites: 302, 365

Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil

• Are reflex actions rational? Are they intelligent?

 How could introspection – reporting on one's inner thoughts – be inaccurate? Could I be wrong about what I am thinking?

- To what extent are the following computer systems instances of artificial intelligence?
  - Supermarket bar code scanner
  - Web search engines
  - Voice-activated telephone menus
  - Internet routing algorithms that respond dynamically to the state of the network

- Which tasks can currently be solved by computers?
  - Playing a decent game of table tennis
  - Driving in the center of Cairo, Egypt
  - Driving in Victorville, CA
  - Buying a week's worth of groceries at the market
  - Buying a week's worth of groceries on the web
  - Playing a decent game of bridge at a competitive level
  - Discovering and proving mathematical theorems
  - Writing an intentionally funny story
  - Giving competent legal advice in a specialized area of law
  - Translating spoken English into Swedish in real-time
  - Performing a complex surgical operation

## Agents



- What is a rational agent?
  - Optimizes performance
- What are design principles for building rational agents (intelligent agents)?
- Agent performance will depend on their operating Environment.
   Some environments will be more difficult than others
- Types of environments
- Design considerations for agents in these different types of environments



#### What is an agent?

 Perceives an environment through sensors and acts on the environment through actuators



Figure 2.1 FILES: figures/agent-environment.eps (Tue Nov 3 16:22:19 2009). Agents interact with environments through sensors and actuators.

#### What is an Agent?

- Percept: Agent's perceptual inputs at any given instant of time
- Percept sequence is the complete history of everything the agent has ever perceived

- Agent's choice of action usually depends on percept sequence but not on anything it has not perceived
- Behavior is governed by an agent function that maps percept sequence to actions

#### Agent example



Figure 2.2 FILES: figures/vacuum2-environment.eps (Tue Nov 3 16:24:01 2009). A vacuumcleaner world with just two locations.

### Agent (Behavior) function

F (Percept sequence)  $\rightarrow$  Action

| Percept Sequence | Action |
|------------------|--------|
| [A, Clean]       | Right  |
| [A, Dirty]       | Suck   |
| [B, Clean]       | Left   |
| [B, Dirty]       | Suck   |
|                  |        |
|                  |        |
|                  |        |
|                  |        |
|                  |        |

Agent **programs** implement agent functions on some architecture

This is just a table, with percept sequences on the left and actions on the right

#### **Behavior function**

| Percept Sequence                   | Action |
|------------------------------------|--------|
| [A, Clean]                         | Right  |
| [A, Dirty]                         | Suck   |
| [B, Clean]                         | Left   |
| [B, Dirty]                         | Suck   |
| [A, Clean], [A, Clean]             | Right  |
| [A, Clean], [A, Dirty]             | Suck   |
|                                    |        |
| [A, Clean], [A, Clean], [A, Clean] | Right  |
| [A, Clean], [A, Clean], [A, Dirty] | Suck   |
|                                    |        |

This is **just** a table, with percept sequences on the left and actions on the right But how big?

#### Vacuum Cleaner world



function REFLEX-VACUUM-AGENT([location,status]) returns an action

if status = Dirty then return Suckelse if location = A then return Rightelse if location = B then return Left

Add action "No-Op"

#### **Rational** Behavior versus **Good** behavior

- Agent's action affect environment  $\rightarrow$  changes environment's state
- A sequence of agent actions  $\rightarrow$  a sequence of environment states
- A performance measure on environment states differentiates good behavior from bad
  - Is our vacuum cleaner agent rational?
    - What is the performance metric?
    - What is the agent's prior knowledge?
    - What percept sequence has the agent seen?
    - What actions can agent perform?
  - Suppose the performance measure is just concerned with the first T time steps of the environment, show that a rational agent's action may depend not just on the state of the environment but also on time step

#### Rationality

- Performance metric
  - 1 point per square cleaned?
  - 1 point per square cleaned in time T?
  - 1 point per square per time step minus one per move?
  - Penalty for > k dirty squares?
  - ...
- A rational agent chooses whichever action maximizes expected value of performance measure given the precept sequence to date

## Rationality

- Rational != omniscient
- Rational != clairvoyant
- Rational != successful
- Rational implies
  - Exploration
  - Learning
  - Autonomy



#### PEAS

- To design a rational agent, we need to specifying a task environment
- Consider automated taxi
  - Performance metric?
  - Environment?
  - Actuators?
  - Sensors?

#### PEAS

- To design a rational agent, we need to specifying a task environment
- Consider automated taxi
  - Performance metric?
    - Safety, destination, profits, legal, comfort, speed, cost
  - Environment?
    - US streets/freeways, traffic, pedestrians, weather, ...
  - Actuators?
    - Steering, accelerator, brake, horn, speaker/display, ...
  - Sensors?
    - Video, accelerometers, gauges, engine sensors, keyboard, GPS, ...

#### Internet shopping agent

- Performance metric?
- Environment?
- Actuators?
- Sensors?

#### Internet shopping agent

- Performance metric?
  - Price, quality, efficiency, appropriateness
- Environment?
  - Current and future websites, vendors, shippers, shoppers
- Actuators?
  - Display to use, follow URL, fill forms
- Sensors?
  - HTML pages (text, graphics, scripts)

#### **Interactive English Tutor**

- Performance Metric
- Environment
- Actuators
- Sensors

#### **Interactive English Tutor**

- Performance Metric
  - Score on test
- Environment
  - Students, testing agency
- Actuators
  - Display of exercises, suggestions, corrections, ...
- Sensors
  - Keyboard, mouse



| Task Env                     | Observable | Agents | Deterministic | Episodic | Static | Discrete |
|------------------------------|------------|--------|---------------|----------|--------|----------|
| Crossword                    |            |        |               |          |        |          |
| Chess with Clk               |            |        |               |          |        |          |
| Poker                        |            |        |               |          |        |          |
| Taxi Driving                 |            |        |               |          |        |          |
| Medical<br>Diagnosis         |            |        |               |          |        |          |
| Image analysis               |            |        |               |          |        |          |
| Part-picking<br>robot        |            |        |               |          |        |          |
| Refinery<br>Controller       |            |        |               |          |        |          |
| Interactive<br>English Tutor |            |        |               |          |        |          |

| Task Env                     | Observable | Agents | Deterministic | Episodic   | Static | Discrete |
|------------------------------|------------|--------|---------------|------------|--------|----------|
| Crossword                    | Fully      | Single | Deterministic | Sequential | Static | Discrete |
| Chess with Clk               |            |        |               |            |        |          |
| Poker                        |            |        |               |            |        |          |
| Taxi Driving                 |            |        |               |            |        |          |
| Medical<br>Diagnosis         |            |        |               |            |        |          |
| Image analysis               |            |        |               |            |        |          |
| Part-picking<br>robot        |            |        |               |            |        |          |
| Refinery<br>Controller       |            |        |               |            |        |          |
| Interactive<br>English Tutor |            |        |               |            |        |          |

| Task Env                     | Observable | Agents | Deterministic | Episodic   | Static | Discrete |
|------------------------------|------------|--------|---------------|------------|--------|----------|
| Crossword                    | Fully      | Single | Deterministic | Sequential | Static | Discrete |
| Chess with Clk               | Fully      | Multi  | Deterministic | Sequential | Semi   | Discrete |
| Poker                        |            |        |               |            |        |          |
| Taxi Driving                 |            |        |               |            |        |          |
| Medical<br>Diagnosis         |            |        |               |            |        |          |
| Image analysis               |            |        |               |            |        |          |
| Part-picking<br>robot        |            |        |               |            |        |          |
| Refinery<br>Controller       |            |        |               |            |        |          |
| Interactive<br>English Tutor |            |        |               |            |        |          |

| Task Env                     | Observable | Agents | Deterministic | Episodic   | Static | Discrete |
|------------------------------|------------|--------|---------------|------------|--------|----------|
| Crossword                    | Fully      | Single | Deterministic | Sequential | Static | Discrete |
| Chess with Clk               | Fully      | Multi  | Deterministic | Sequential | Semi   | Discrete |
| Poker                        | Partially  | Multi  | Stochastic    | Sequential | Static | Discrete |
| Taxi Driving                 |            |        |               |            |        |          |
| Medical<br>Diagnosis         |            |        |               |            |        |          |
| Image analysis               |            |        |               |            |        |          |
| Part-picking<br>robot        |            |        |               |            |        |          |
| Refinery<br>Controller       |            |        |               |            |        |          |
| Interactive<br>English Tutor |            |        |               |            |        |          |

| Task Env                     | Observable | Agents | Deterministic | Episodic   | Static  | Discrete   |
|------------------------------|------------|--------|---------------|------------|---------|------------|
| Crossword                    | Fully      | Single | Deterministic | Sequential | Static  | Discrete   |
| Chess with Clk               | Fully      | Multi  | Deterministic | Sequential | Semi    | Discrete   |
| Poker                        | Partially  | Multi  | Stochastic    | Sequential | Static  | Discrete   |
| Taxi Driving                 | Partially  | Multi  | Stochastic    | Sequential | Dynamic | Continuous |
| Medical<br>Diagnosis         |            |        |               |            |         |            |
| Image analysis               |            |        |               |            |         |            |
| Part-picking<br>robot        |            |        |               |            |         |            |
| Refinery<br>Controller       |            |        |               |            |         |            |
| Interactive<br>English Tutor |            |        |               |            |         |            |

| Task Env                     | Observable | Agents | Deterministic | Episodic   | Static  | Discrete   |
|------------------------------|------------|--------|---------------|------------|---------|------------|
| Crossword                    | Fully      | Single | Deterministic | Sequential | Static  | Discrete   |
| Chess with Clk               | Fully      | Multi  | Deterministic | Sequential | Semi    | Discrete   |
| Poker                        | Partially  | Multi  | Stochastic    | Sequential | Static  | Discrete   |
| Taxi Driving                 | Partially  | Multi  | Stochastic    | Sequential | Dynamic | Continuous |
| Medical<br>Diagnosis         | Partially  | Single | Stochastic    | Sequential | Dynamic | Continuous |
| Image analysis               |            |        |               |            |         |            |
| Part-picking<br>robot        |            |        |               |            |         |            |
| Refinery<br>Controller       |            |        |               |            |         |            |
| Interactive<br>English Tutor |            |        |               |            |         |            |

| Task Env                     | Observable | Agents | Deterministic | Episodic   | Static  | Discrete   |
|------------------------------|------------|--------|---------------|------------|---------|------------|
| Crossword                    | Fully      | Single | Deterministic | Sequential | Static  | Discrete   |
| Chess with Clk               | Fully      | Multi  | Deterministic | Sequential | Semi    | Discrete   |
| Poker                        | Partially  | Multi  | Stochastic    | Sequential | Static  | Discrete   |
| Taxi Driving                 | Partially  | Multi  | Stochastic    | Sequential | Dynamic | Continuous |
| Medical<br>Diagnosis         | Partially  | Single | Stochastic    | Sequential | Dynamic | Continuous |
| Image analysis               | Fully      | Single | Deterministic | Episodic   | Semi    | Continuous |
| Part-picking<br>robot        |            |        |               |            |         |            |
| Refinery<br>Controller       |            |        |               |            |         |            |
| Interactive<br>English Tutor |            |        |               |            |         |            |

| Task Env                     | Observable | Agents | Deterministic | Episodic   | Static  | Discrete   |
|------------------------------|------------|--------|---------------|------------|---------|------------|
| Crossword                    | Fully      | Single | Deterministic | Sequential | Static  | Discrete   |
| Chess with Clk               | Fully      | Multi  | Deterministic | Sequential | Semi    | Discrete   |
| Poker                        | Partially  | Multi  | Stochastic    | Sequential | Static  | Discrete   |
| Taxi Driving                 | Partially  | Multi  | Stochastic    | Sequential | Dynamic | Continuous |
| Medical<br>Diagnosis         | Partially  | Single | Stochastic    | Sequential | Dynamic | Continuous |
| Image analysis               | Fully      | Single | Deterministic | Episodic   | Semi    | Continuous |
| Part-picking<br>robot        | Partially  | Single | Stochastic    | Episodic   | Dynamic | Continuous |
| Refinery<br>Controller       |            |        |               |            |         |            |
| Interactive<br>English Tutor |            |        |               |            |         |            |

| Task Env                     | Observable | Agents | Deterministic | Episodic   | Static  | Discrete   |
|------------------------------|------------|--------|---------------|------------|---------|------------|
| Crossword                    | Fully      | Single | Deterministic | Sequential | Static  | Discrete   |
| Chess with Clk               | Fully      | Multi  | Deterministic | Sequential | Semi    | Discrete   |
| Poker                        | Partially  | Multi  | Stochastic    | Sequential | Static  | Discrete   |
| Taxi Driving                 | Partially  | Multi  | Stochastic    | Sequential | Dynamic | Continuous |
| Medical<br>Diagnosis         | Partially  | Single | Stochastic    | Sequential | Dynamic | Continuous |
| Image analysis               | Fully      | Single | Deterministic | Episodic   | Semi    | Continuous |
| Part-picking<br>robot        | Partially  | Single | Stochastic    | Episodic   | Dynamic | Continuous |
| Refinery<br>Controller       | Partially  | Single | Stochastic    | Sequential | Dynamic | Continuous |
| Interactive<br>English Tutor |            |        |               |            |         |            |

| Task Env                     | Observable | Agents | Deterministic | Episodic   | Static  | Discrete   |
|------------------------------|------------|--------|---------------|------------|---------|------------|
| Crossword                    | Fully      | Single | Deterministic | Sequential | Static  | Discrete   |
| Chess with Clk               | Fully      | Multi  | Deterministic | Sequential | Semi    | Discrete   |
| Poker                        | Partially  | Multi  | Stochastic    | Sequential | Static  | Discrete   |
| Taxi Driving                 | Partially  | Multi  | Stochastic    | Sequential | Dynamic | Continuous |
| Medical<br>Diagnosis         | Partially  | Single | Stochastic    | Sequential | Dynamic | Continuous |
| Image analysis               | Fully      | Single | Deterministic | Episodic   | Semi    | Continuous |
| Part-picking<br>robot        | Partially  | Single | Stochastic    | Episodic   | Dynamic | Continuous |
| Refinery<br>Controller       | Partially  | Single | Stochastic    | Sequential | Dynamic | Continuous |
| Interactive<br>English Tutor | Partially  | Multi  | Stochastic    | Sequential | Dynamic | Discrete   |

## Types of agents

• Simple reflex agents

function REFLEX-VACUUM-AGENT([location,status]) returns an action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

- Reflex agents with state
- Goal based agents
- Utility-based agents
- All can be turned into learning agents

#### Simple reflex agents



#### Reflex agent with state



Model-based agent

#### Goal-based agent



Search for ways to achieve goals. Make plans to achieve goals. Searching for plans

#### Utility-based agent



Maximizes expected utility

#### Learning agents

Performance standard



#### **Representing environmental states**



Less expressive

## Summary

- Agents interact with environment with actuators and sensors
- Agent function describes agent behavior
- Performance measure evaluates the environment sequence produced by agent actions
- A perfectly rational agent maximizes expected performance
- Agent programs implement agent functions on some architecture
- PEAS descriptions define task environments
- Environments can be categorized along
  - Observerable, deterministic, episodic, static, discrete, single-agent
- Several basic single-agent architectures exist
  - Reflex, reflex with state, goal-based, utility-based, learning