Artificial Intelligence

CS482, CS682, MW 1 – 2:15, SEM 201, MS 227

Prerequisites: 302, 365

Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil

Informed Search

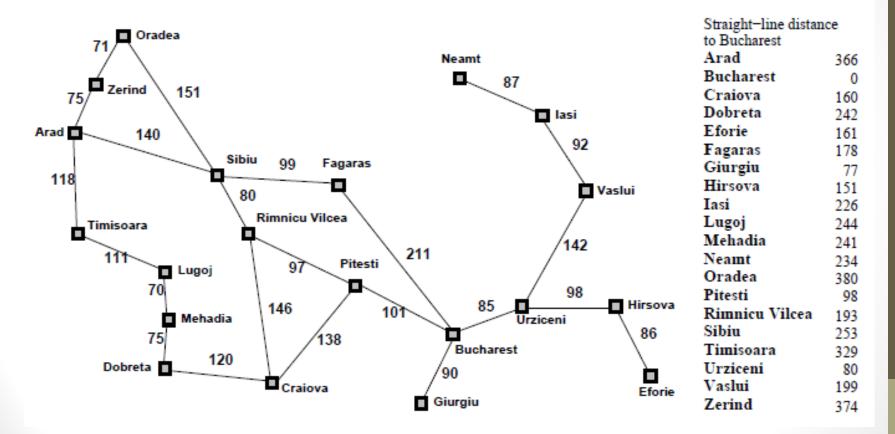
Best First Search

- A*
- Heuristics

Basic idea

- Order nodes for expansion using a specific search strategy
 - Remember uniform cost search?
 - Nodes ordered by path length = path cost and we expand least cost
 - This function was called g(n)
- Order nodes, n, using an evaluation function f(n)
- Most evaluation functions include a heuristic h(n)
 - For example: Estimated cost of the cheapest path from the state at node n to a goal state
 - Heuristics provide domain information to guide informed search

Romania with straight line distance heuristic



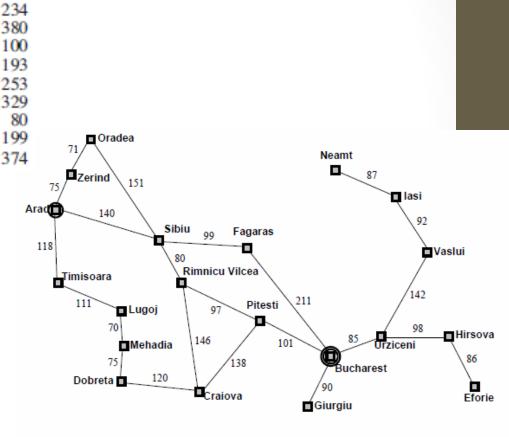
h(n) = straight line distance to Bucharest

Greedy search

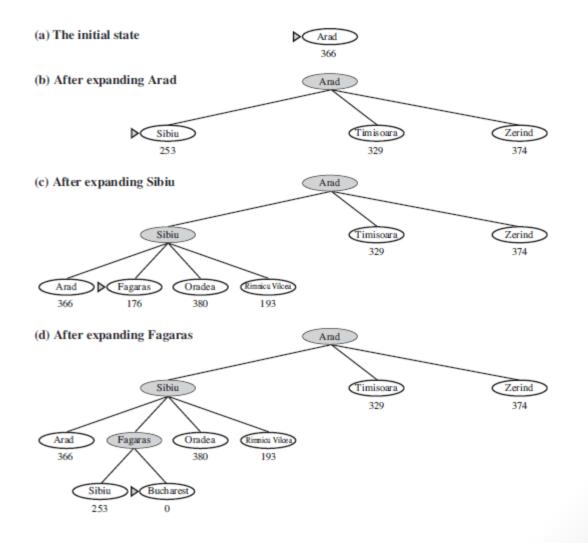
- F(n) = h(n) = straight line distance to goal
- Draw the search tree and list nodes in order of expansion (5 minutes)

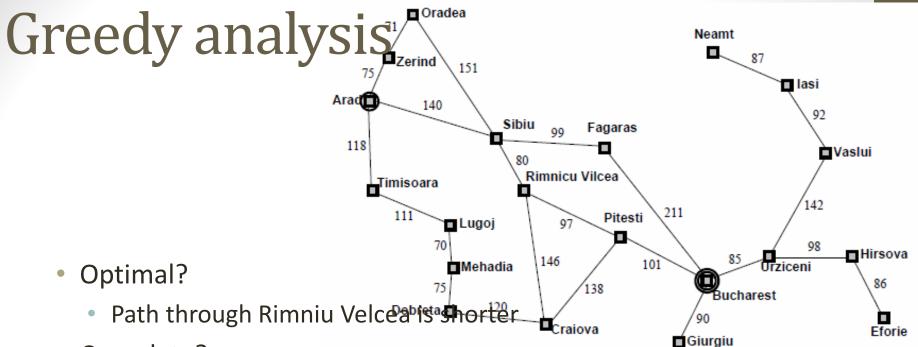
Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Time? Space? Complete? Optimal?



Greedy search

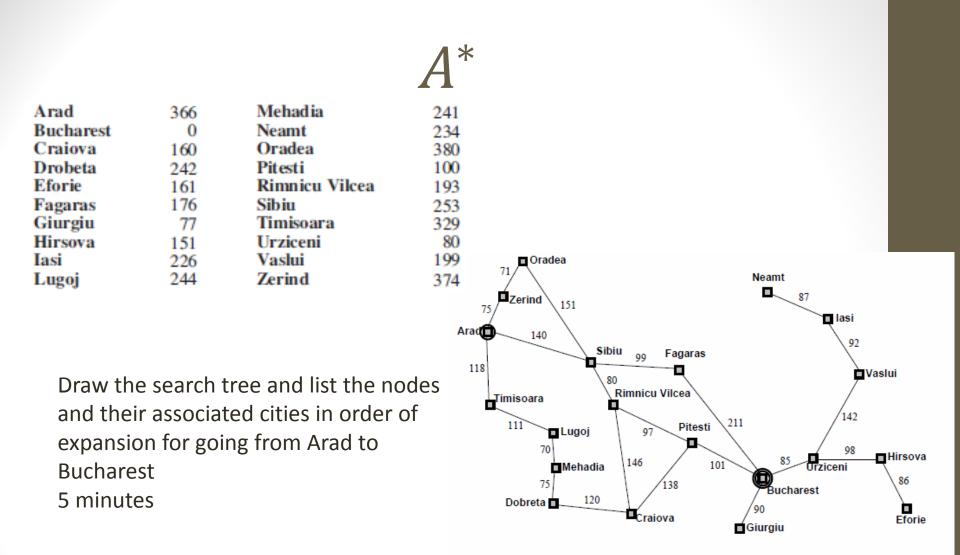


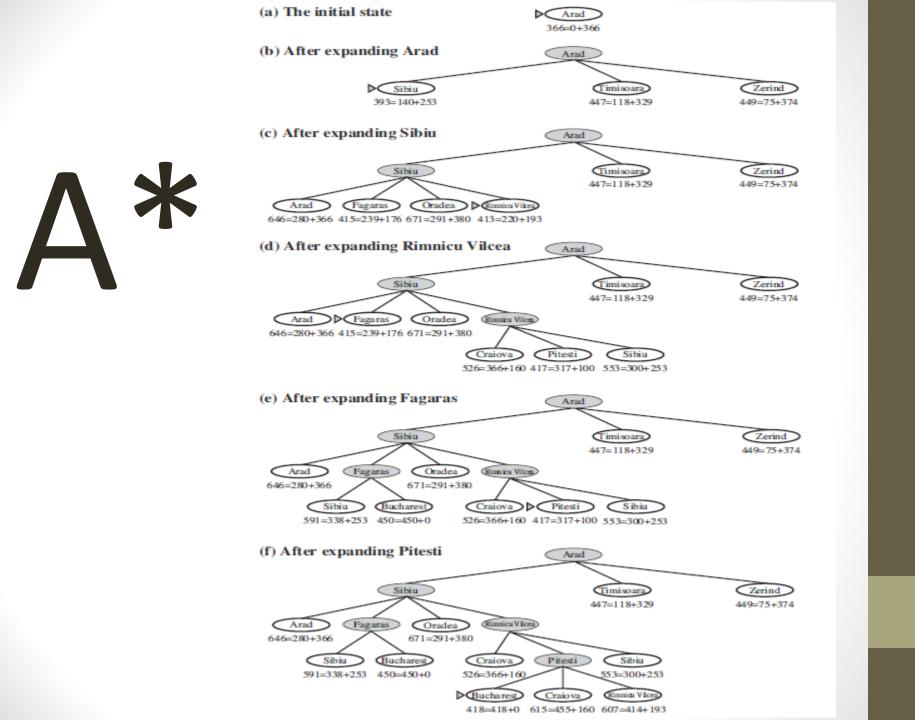


- Complete?
 - Consider lasi to Fagaras
 - Tree search no, but graph search with no repeated states version ightarrow yes
 - In finite spaces
- Time and Space
 - Worst case b^m where m is the maximum depth of the search space
 - Good heuristic can reduce complexity

A^*

- f(n) = g(n) + h(n)
- = cost to state + estimated cost to goal
- = estimated cost of cheapest solution through *n*



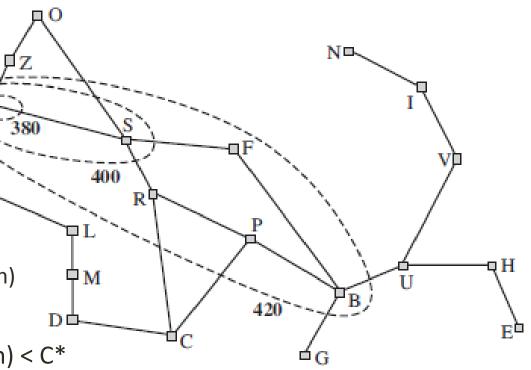


A^*

- f(n) = g(n) + h(n)
- = cost to state + estimated cost to goal
- = estimated cost of cheapest solution through *n*
- Seem reasonable?
 - If heuristic is *admissible*, A^* is optimal and complete for Tree search
 - Admissible heuristics underestimate cost to goal
 - If heuristic is *consistent*, A^* is optimal and complete for graph search
 - Consistent heuristics follow the triangle inequality
 - If n' is successor of n, then $h(n) \le c(n, a, n') + h(n')$
 - Is less than cost of going from n to n' + estimated cost from n' to goal
 - Otherwise you should have expanded n' before n and you need a different heuristic
 - f costs are always non-decreasing along any path

A^* contours

- Non decreasing f implies
 - We can draw contours
 - Inside the 400 contour
 - All nodes have $f(n) \le 400$
 - Contour shape
 - Circular if h(n) = 0
 - Elliptical towards goal for h(n)
- If C* is optimal path cost
 - A* expands all nodes with f(n) < C*
 - A* may expand some nodes with f(n) = C* before getting to a goal state
 - If b is finite and all step costs > e, then A* is complete since
 - There will only be a finite number of nodes with f(n) < C*
 - Because b is finite and all step costs > e



Pruning, IDA*, RBFS, MA/SMA

- A* does not expand nodes with f(n) > C*
 - The sub-tree rooted at Timisoara is pruned
- A* may need too much memory
- Iterative Deepening A* (IDA*)
 - Iterative deepening using f(n) to limit depth of search
 - Much less memory
 - Depth cutoff used: min f(n) from prior step

Recursive Best First Search (RBFS)

- Best first search
- Again uses f(n) to limit depth
- Whenever current f(n) > next best alternative, explore alternative
- Keep track of best alternative
- Memory Bounded A* (MA) or Simple Memory Bounded A*(SMA)
 - A* with memory limit
 - When memory limit exceeded drop worst leaf, and back up f-value to parent
 - Drops oldest worst leaf, and expands newest best leaf

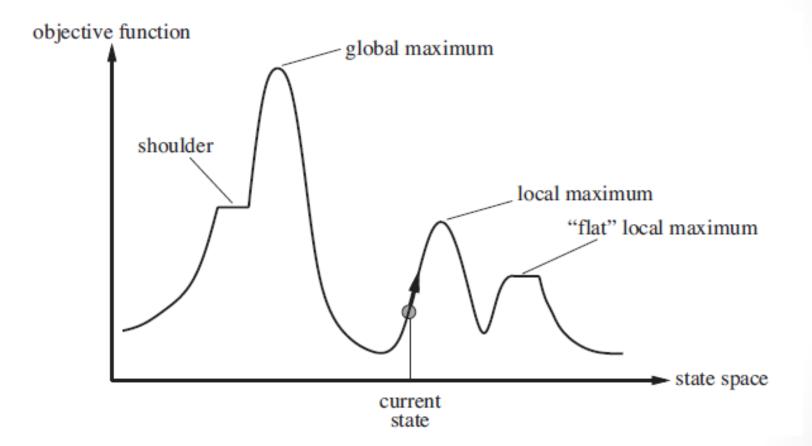
Heuristic functions

- Some consistent heuristics are better than others
- Analysis
 - Consider the **effective** branching factor, b*
 - The better the heuristic, the closer that b* is to 1

• N+1 = 1 + b* +
$$(b *)^2$$
 + ... + $(b^*)^d$

- If d = 5, and N = 52, then b* = 1.92
- There are techniques for generating admissible heuristics
 - Relax a problem
 - Learn from pattern database

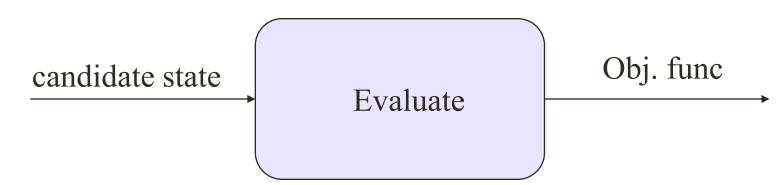
Non-classical search



- Path does not matter, just the final state
- Maximize objective function

Model

 We have a black box "evaluate" function that returns an objective function value



Application dependent fitness function

Local Hill Climbing

function HILL-CLIMBING(problem) returns a state that is a local maximum

```
current \leftarrow MAKE-NODE(problem.INITIAL-STATE)
loop do
neighbor \leftarrow a highest-valued successor of current
if neighbor.VALUE \leq current.VALUE then return current.STATE
current \leftarrow neighbor
```

- Move in the direction of increasing value
- Very greedy
- Subject to
 - Local maxima
 - Ridges
 - Plateaux
- 8-queens: 86% failure, but only needs 4 steps to succeed, 3 to fail

Hill climbing

- Keep going on a plateau?
 - Advantage: Might find another hill
 - Disadvantage: infinite loops \rightarrow limit number of moves on plateau
 - 8 queens: 94% success!!
- Stochastic hill climbing
 - randomly choose from among better successors (proportional to obj?)
- First-choice hill climbing
 - keep generating successors till a better one is generated
- Random-restarts
 - If probability of success is *p*, then we will need 1/p restarts
 - 8-queens: p = 0.14 ~= 1/7 so 7 starts
 - 6 failures (3 steps), 1 success (4 steps) = 22 steps
 - In general: Cost of success + (1-p)/p * cost of failure
 - 8-queens sideways: 0.94 success in 21 steps, 64 steps for failure
 - Under a minute

Simulated annealing

function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: *problem*, a problem

schedule, a mapping from time to "temperature"

- $current \leftarrow MAKE-NODE(problem.INITIAL-STATE)$
- for t = 1 to ∞ do
 - $T \leftarrow schedule(t)$

 $\begin{array}{l} \text{if }T = \texttt{0 then return } current \\ next \leftarrow \texttt{a randomly selected successor of } current \\ \Delta E \leftarrow next. \texttt{VALUE} - current. \texttt{VALUE} \\ \text{if } \Delta E > \texttt{0 then } current \leftarrow next \\ \textbf{else } current \leftarrow next \text{ only with probability } e^{\Delta E/T} \end{array}$

- Gradient descent (not ascent)
- Accept bad moves with probability $e^{dE/T}$
- T decreases every iteration
- If schedule(t) is slow enough we approach finding global optimum with probability 1

Genetic Algorithms

- Stochastic hill-climbing with information exchange
- A population of stochastic hill-climbers

```
function GENETIC-ALGORITHM( population, FITNESS-FN) returns an individual
inputs: population, a set of individuals
```

FITNESS-FN, a function that measures the fitness of an individual

repeat

 $\begin{array}{l} new_population \leftarrow \texttt{empty set} \\ \texttt{for } i = \texttt{1 to SIZE}(population) \texttt{do} \\ x \leftarrow \texttt{SELECTION}(population, \texttt{FITNESS-FN}) \\ y \leftarrow \texttt{SELECTION}(population, \texttt{FITNESS-FN}) \\ child \leftarrow \texttt{REPRODUCE}(x, y) \\ \texttt{if (small random probability) then } child \leftarrow \texttt{MUTATE}(child) \\ \texttt{add } child \texttt{ to } new_population \\ population \leftarrow new_population \\ \texttt{until some individual is fit enough, or enough time has elapsed} \\ \texttt{return the best individual in } population, \texttt{according to FITNESS-FN} \end{array}$

function REPRODUCE(x, y) returns an individual inputs: x, y, parent individuals

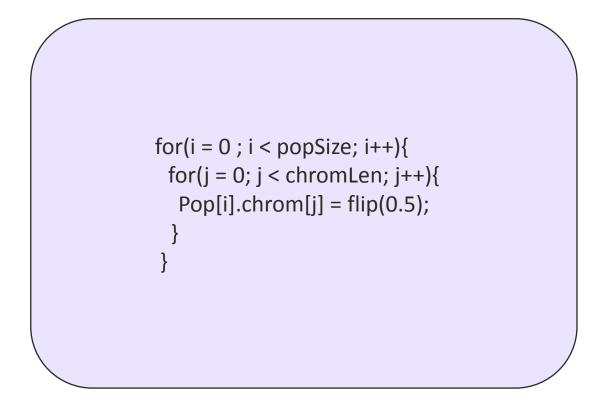
```
n \leftarrow \text{LENGTH}(x); c \leftarrow \text{random number from 1 to } n
return APPEND(SUBSTRING(x, 1, c), SUBSTRING(y, c + 1, n))
```

More detailed GA

- Generate pop(0)
- Evaluate pop(0)
- T=0
- While (not converged) do
 - Select pop(T+1) from pop(T)
 - Recombine pop(T+1)
 - Evaluate pop(T+1)
 - T = T + 1
- Done

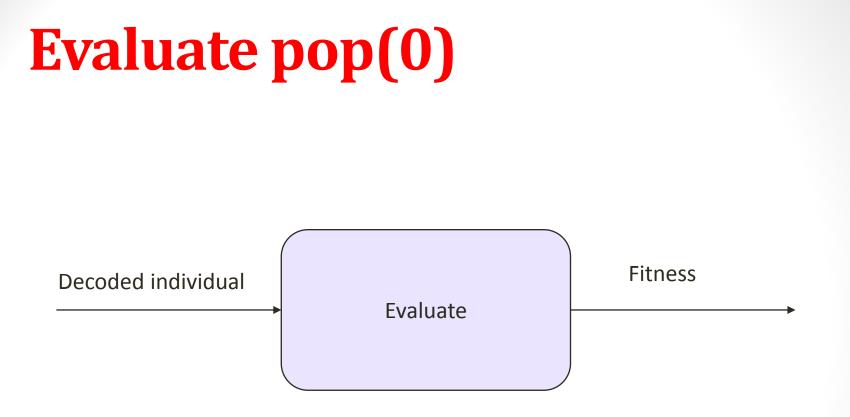
Generate pop(0)

Initialize population with randomly generated strings of 1's and 0's



Genetic Algorithm

- Generate pop(0)
- Evaluate pop(0)
- T=0
- While (not converged) do
 - Select pop(T+1) from pop(T)
 - Recombine pop(T+1)
 - Evaluate pop(T+1)
 - T = T + 1
- Done



Application dependent fitness function

Genetic Algorithm

- Generate pop(0)
- Evaluate pop(0)
- T=0
- While (T < maxGen) do
 - Select pop(T+1) from pop(T)
 - Recombine pop(T+1)
 - Evaluate pop(T+1)
 - T = T + 1
- Done

Genetic Algorithm

- Generate pop(0)
- Evaluate pop(0)
- T=0
- While (T < maxGen) do
 - Select pop(T+1) from pop(T)
 - Recombine pop(T+1)
 - Evaluate pop(T+1)
 - T = T + 1
- Done

Selection

- Each member of the population gets a share of the pie proportional to fitness relative to other members of the population
- Spin the roulette wheel pie and pick the individual that the ball lands on
- Focuses search in promising areas

Code

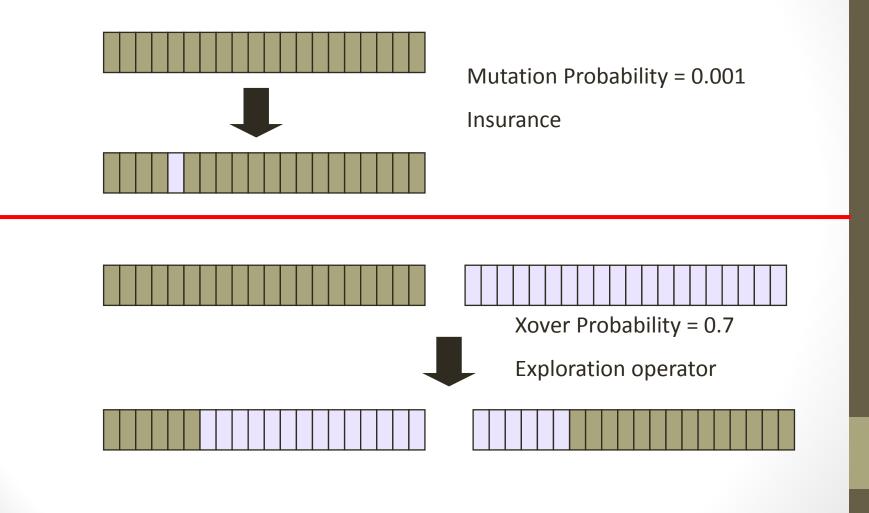
```
int roulette(IPTR pop, double sumFitness, int popsize)
{
```

```
/* select a single individual by roulette wheel selection */
double rand,partsum;
int i;
partsum = 0.0; i = 0;
rand = f_random() * sumFitness;
i = -1;
do{
   i++;
   partsum += pop[i].fitness;
} while (partsum < rand && i < popsize - 1) ;
return i;
}</pre>
```

Genetic Algorithm

- Generate pop(0)
- Evaluate pop(0)
- T=0
- While (T < maxGen) do
 - Select pop(T+1) from pop(T)
 - Recombine pop(T+1)
 - Evaluate pop(T+1)
 - T = T + 1
- Done

Crossover and mutation



Crossover code

}

```
void crossover (POPULATION *p, IPTR p1, IPTR p2, IPTR c1, IPTR c2)
/* p1,p2,c1,c2,m1,m2,mc1,mc2 */
  int *pi1,*pi2,*ci1,*ci2;
  int xp, i;
  pi1 = p1->chrom;
  pi2 = p2 - > chrom;
  cil = cl \rightarrow chrom;
  ci2 = c2 - > chrom;
  if(flip(p->pCross)){
    xp = rnd(0, p \rightarrow 1);
    for(i = 0; i < xp; i++) {</pre>
      ci1[i] = muteX(p, pi1[i]);
      ci2[i] = muteX(p, pi2[i]);
    }
    for(i = xp; i < p->lchrom; i++){
      ci1[i] = muteX(p, pi2[i]);
      ci2[i] = muteX(p, pi1[i]);
    }
  } else {
    for(i = 0; i < p->lchrom; i++) {
      ci1[i] = muteX(p, pi1[i]);
      ci2[i] = muteX(p, pi2[i]);
    }
  }
```

Mutation code

```
int muteX(POPULATION *p, int pa)
{
  return (flip(p->pMut) ? 1 - pa : pa);
}
```

Search

- Problem solving by searching for a solution in a space of possible solutions
- Uninformed versus Informed search
- Atomic representation of state
- Solutions are fixed sequences of actions