Artificial Intelligence

CS482, CS682, MW 1 - 2:15, SEM 201, MS 227
Prerequisites: 302, 365
Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil

Informed Search

Best First Search

- A*
- Heuristics

Basic idea

- Order nodes for expansion using a specific search strategy
- Remember uniform cost search?
- Nodes ordered by path length = path cost and we expand least cost
- This function was called $\mathrm{g}(\mathrm{n})$
- Order nodes, n, using an evaluation function $f(n)$
- Most evaluation functions include a heuristic $h(n)$
- For example: Estimated cost of the cheapest path from the state at node n to a goal state
- Heuristics provide domain information to guide informed search

Romania with straight line distance heuristic

$h(n)=$ straight line distance to Bucharest

Straight-line distance to Bucharest
Arad 366
Bucharest 0
Craiova $\quad 160$
Dobreta 242
Eforie $\quad 161$
Fagaras $\quad 178$
Giurgiu 77
Hirsova $\quad 151$
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara $\quad 329$
Urziceni 80
Vaslui 199
Zerind $\quad 374$

Greedy search

- $F(n)=h(n)=$ straight line distance to goal
- Draw the search tree and list nodes in order of expansion (5 minutes)

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vasiui	199
Lugoj	244	Zerind	374

Time?
Space?
Complete?
Optimal?

Neamt
 234

Oradea
Prd
Rimnicu Vilcea193 329
Urziceni 80

Zerind

Greedy search

(a) The initial state

(b) After expanding Arad Arad

- Complete?
- Consider Iasi to Fagaras
- Tree search no, but graph search with no repeated states version \rightarrow yes
- In finite spaces
- Time and Space
- Worst case b^{m} where m is the maximum depth of the search space
- Good heuristic can reduce complexity

A^{*}

- $f(n)=g(n)+h(n)$
= cost to state + estimated cost to goal
$=$ estimated cost of cheapest solution through n

(a) The initial state
D Arad
$366=0+366$
(b) After expanding Arad

A^{*}

(c) After expanding Sibiu

Arad Fagaras Oradea D OmicuVint
$646=280+366 \quad 415=239+176 \quad 671=291+380 \quad 413=220+193$

A^{*}

- $\mathrm{f}(\mathrm{n})=\mathrm{g}(\mathrm{n})+\mathrm{h}(\mathrm{n})$
- \quad cost to state + estimated cost to goal
$=$ estimated cost of cheapest solution through n
- Seem reasonable?
- If heuristic is admissible, A^{*} is optimal and complete for Tree search
- Admissible heuristics underestimate cost to goal
- If heuristic is consistent, A^{*} is optimal and complete for graph search
- Consistent heuristics follow the triangle inequality
- If n^{\prime} is successor of n, then $h(n) \leq c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right)$
- Is less than cost of going from n to $n^{\prime}+$ estimated cost from n ' to goal
- Otherwise you should have expanded n' before n and you need a different heuristic
- f costs are always non-decreasing along any path

A^{*} contours

- Non decreasing fimplies
- We can draw contours
- Inside the 400 contour
- All nodes have $\mathrm{f}(\mathrm{n}) \leq 400$
- Contour shape
- Circular if $h(n)=0$
- Elliptical towards goal for h(n)
- If C^{*} is optimal path cost
- A* expands all nodes with $f(n)<C^{*}$

- A* may expand some nodes with $f(n)=C^{*}$ before getting to a goal state
- If b is finite and all step costs $>e$ e, then A^{*} is complete since
- There will only be a finite number of nodes with $f(n)<C^{*}$
- Because b is finite and all step costs >e

Pruning, IDA*, RBFS, MA/SMA

- A* does not expand nodes with $f(n)>C^{*}$
- The sub-tree rooted at Timisoara is pruned
- A* may need too much memory
- Iterative Deepening A* (IDA*)
- Iterative deepening using $f(n)$ to limit depth of search
- Much less memory
- Depth cutoff used: $\min f(n)$ from prior step
- Recursive Best First Search (RBFS)
- Best first search
- Again uses $f(n)$ to limit depth
- Whenever current $f(n)>$ next best alternative, explore alternative
- Keep track of best alternative
- Memory Bounded A* (MA) or Simple Memory Bounded A*(SMA)
- A* with memory limit
- When memory limit exceeded drop worst leaf, and back up f-value to parent
- Drops oldest worst leaf, and expands newest best leaf

Heuristic functions

- Some consistent heuristics are better than others
- Analysis
- Consider the effective branching factor, b^{*}
- The better the heuristic, the closer that b^{*} is to 1
- $\mathrm{N}+1=1+\mathrm{b}^{*}+(b *)^{2}+\ldots+\left(\mathrm{b}^{*}\right)^{d}$
- If $d=5$, and $N=52$, then $b^{*}=1.92$
- There are techniques for generating admissible heuristics
- Relax a problem
- Learn from pattern database

Non-classical search

- Path does not matter, just the final state
- Maximize objective function

Model

- We have a black box "evaluate" function that returns an objective function value

Application dependent fitness function

Local Hill Climbing

function HILL-CLIMBING(problem) returns a state that is a local maximum

```
current \leftarrow < MAKE-NODE(problem.INITIAL-STATE)
```

loop do
neighbor \leftarrow a highest-valued successor of current if neighbor.VALUE \leq current.VALUE then return current.STATE current \leftarrow neighbor

- Move in the direction of increasing value
- Very greedy
- Subject to
- Local maxima
- Ridges
- Plateaux
- 8-queens: 86% failure, but only needs 4 steps to succeed, 3 to fail

Hill climbing

- Keep going on a plateau?
- Advantage: Might find another hill
- Disadvantage: infinite loops \rightarrow limit number of moves on plateau
- 8 queens: 94% success!!
- Stochastic hill climbing
- randomly choose from among better successors (proportional to obj?)
- First-choice hill climbing
- keep generating successors till a better one is generated
- Random-restarts
- If probability of success is p, then we will need $1 / p$ restarts
- 8-queens: $p=0.14$ ~= $1 / 7$ so 7 starts
- 6 failures (3 steps), 1 success (4 steps) = 22 steps
- In general: Cost of success + (1-p)/p * cost of failure
- 8-queens sideways: 0.94 success in 21 steps, 64 steps for failure
- Under a minute

Simulated annealing

function SIMULATED-ANNEALING(problem, schedule) returns a solution state inputs: problem, a problem schedule, a mapping from time to "temperature"
current \leftarrow MAKE-NODE $($ problem.INITIAL-STATE)
for $t=1$ to ∞ do
$T \leftarrow$ schedule (t)
if $T=0$ then return current
next \leftarrow a randomly selected successor of current
$\Delta E \leftarrow$ next.VALUE - current.VALUE
if $\Delta E>0$ then current \leftarrow next
else current \leftarrow next only with probability $e^{\Delta E / T}$

- Gradient descent (not ascent)
- Accept bad moves with probability $e^{d E / T}$
- T decreases every iteration
- If schedule(t) is slow enough we approach finding global optimum with probability 1

Genetic Algorithms

- Stochastic hill-climbing with information exchange
- A population of stochastic hill-climbers

```
function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
    inputs: population, a set of individuals
            FITNESS-FN, a function that measures the fitness of an individual
    repeat
        new_population }\leftarrow\mathrm{ empty set
        for }i=1\mathrm{ to SIZE(population) do
            x\leftarrow\square-SELECTION(population, FITNESS-FN)
            y\leftarrow\square-SELECTION(population, FITNESS-FN)
            child }\leftarrow\operatorname{REPRODUCE}(x,y
            if (small random probability) then child }\leftarrow\mathrm{ MUTATE(child)
            add child to new_population
    population }\leftarrow\mathrm{ new_population
    until some individual is fit enough, or enough time has elapsed
    return the best individual in population, according to FITNESS-FN
```

```
function REPRODUCE (x,y) returns an individual
```

function REPRODUCE (x,y) returns an individual
inputs: }x,y\mathrm{ , parent individuals
inputs: }x,y\mathrm{ , parent individuals
n\leftarrow\operatorname{LENGTH}(x);c\leftarrow\mathrm{ random number from 1 to }n
n\leftarrow\operatorname{LENGTH}(x);c\leftarrow\mathrm{ random number from 1 to }n
return APPEND(SUBSTRING(}x,1,c),\operatorname{SUBSTRING}(y,c+1,n)

```
    return APPEND(SUBSTRING( }x,1,c),\operatorname{SUBSTRING}(y,c+1,n)
```


More detailed GA

- Generate pop(0)
- Evaluate pop(0)
- T=0
- While (not converged) do
- Select pop(T+1) from pop(T)
- Recombine pop(T+1)
- Evaluate pop(T+1)
- T = T + 1
- Done

Generate pop(0)

Initialize population with randomly generated strings of 1's and 0's

Genetic Algorithm

- Generate pop(0)
- Evaluate pop(0)
- T=0
- While (not converged) do
- Select pop(T+1) from pop(T)
- Recombine pop($\mathrm{T}+1$)
- Evaluate pop(T+1)
- T = T + 1
- Done

Evaluate pop(0)

Application dependent fitness function

Genetic Algorithm

- Generate pop(0)
- Evaluate pop(0)
- T=0
- While (T < maxGen) do
- Select pop(T+1) from pop(T)
- Recombine pop($\mathrm{T}+1$)
- Evaluate pop(T+1)
- $\mathrm{T}=\mathrm{T}+1$
- Done

Genetic Algorithm

- Generate pop(0)
- Evaluate pop(0)
- T=0
- While (T < maxGen) do
- Select pop(T+1) from pop(T)
- Recombine pop(T+1)
- Evaluate pop(T+1)
- T = T + 1
- Done

Selection

- Each member of the population gets a share of the pie proportional to fitness relative to other members of the population

- Spin the roulette wheel pie and pick the individual that the ball lands on
- Focuses search in promising areas

Code

```
int roulette(IPTR pop, double sumFitness, int popsize)
{
    /* select a single individual by roulette wheel selection */
    double rand,partsum;
    int i;
    partsum = 0.0; i = 0;
    rand = f_random() * sumFitness;
    i = -1;
    do{
        i++;
        partsum += pop[i].fitness;
    } while (partsum < rand && i < popsize - 1) ;
    return i;
}
```


Genetic Algorithm

- Generate pop(0)
- Evaluate pop(0)
- T=0
- While (T < maxGen) do
- Select pop(T+1) from pop(T)
- Recombine pop(T+1)
- Evaluate pop(T+1)
- $\mathrm{T}=\mathrm{T}+1$
- Done

Crossover and mutation

Xover Probability $=0.7$

Crossover code

```
void crossover(POPULATION *p, IPTR p1, IPTR p2, IPTR c1, IPTR c2)
{
/* p1,p2,c1,c2,m1,m2,mc1,mc2 */
    int *pi1,*pi2,*ci1,*ci2;
    int xp, i;
    pi1 = p1->chrom;
    pi2 = p2->chrom;
    cil = c1->chrom;
    ci2 = c2->chrom;
    if(flip(p->pCross)) {
        xp = rnd(0, p->lchrom - 1);
        for(i = 0; i < xp; i++){
            ci1[i] = muteX(p, pil[i]);
            ci2[i] = muteX(p, pi2[i]);
        }
        for(i = xp; i < p->lchrom; i++) {
            ci1[i] = muteX(p, pi2[i]);
            ci2[i] = muteX(p, pi1[i]);
        }
    } else {
        for(i = 0; i < p->lchrom; i++) {
            ci1[i] = muteX(p, pi1[i]);
            ci2[i] = muteX(p, pi2[i]);
        }
    }
}
```


Mutation code

int muteX(POPULATION *p, int pa) \{
\}

Search

- Problem solving by searching for a solution in a space of possible solutions
- Uninformed versus Informed search
- Atomic representation of state
- Solutions are fixed sequences of actions

