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Abstract. Gabor features are widely used in many computer vision
applications such as image segmentation and pattern recognition. To ex-
tract Gabor features, a set of Gabor filters tuned to several different
frequencies and orientations is utilized. The computational complexity
of these features, due to their non-orthogonality, prevents their use in
many real-time or near real-time tasks. Many research efforts have been
made to address the computational complexity of Gabor filters. Most of
these techniques utilize the separability of Gabor filters by decompos-
ing them into 1-D Gaussian filter. The main issue in these techniques is
the efficient pixel interpolation along the desired direction. Sophisticated
interpolation mechanisms minimize the interpolation error with the in-
creased computational complicity. This paper presents a novel framework
in computation of Gabor features by utilizing a sophisticated interpola-
tion scheme – quadratic spline – without increasing the overall compu-
tational complexity of the process. The main contribution of this work
is the process of performing the interpolation and the convolution in a
single operation. The proposed approach has been used successfully in
real-time extraction of Gabor features from video sequence. The experi-
mental results show that the proposed framework improves the accuracy
of the Gabor features while reduces the computational complexity.

1 Introduction

Recently, computer scientists have become interested in modeling the human
vision systems [1]. It is explained by neuroscientists [2] that receptive fields of
the human vision system can be represented as basis functions similar to Gabor
filters. In NeoCortical Simulators1 (NCS), the response profile of neurons in
visual cortex area of the human brain is modeled by Gabor features. In the
latest version of the NCS (version 5.0), the robot’s eye (a tracking pan-tilt-zoom
camera) captures the video images from the real world [3]. Then, Gabor features
of these images are extracted and uploaded to the brain simulator running on a
cluster of computers, executing a pre-specified spiking brain architecture. Real-
time extraction of these features from video images (30 frames per second) is
important in order to avoid small delays which slow down the entire system.
Moreover, inaccurate features can trigger inappropriate neuron regions. As a

1 For more information, please visit: www.brain.cs.unr.edu
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result, accurate and efficient extraction of Gabor features from video sequences
is a crucial task.

Gabor features are based on Gabor filter responses to a given input image.
The responses over the image are calculated for a set of filters – a bank – tuned
to various orientations and frequencies. The most straightforward technique to
conduct the filtering operation is by performing the convolution in the spatial
domain. The complexity of convolution depends directly on the size of the con-
volution mask. The mask in this case is the Gabor filter. The complexity of
calculating the filter response for one point is O(M2), where M is the width and
height of the mask. If the filtering is done on the entire image of size N ×N , the
complexity becomes O(M2N2).

One trivial solution to reduce the computational complexity is to perform the
filtering process in the frequency domain [4]. In this approach, the image is first
converted to the frequency domain using the Fast Fourier Transform (FFT).
Afterwards the FFT transformed image is multiplied by a FFT transformed
Gabor filter. Finally, the responses are converted back to the spatial domain
using the inverse FFT. For an image of size N×N , the computational complexity
of this approach becomes O(N2 log N) with a constant multiplier [4]. One of the
issues with this method is the fact that the generic FFT formulation is limited
to signals of length 2n. Moreover, the memory requirement of this approach is
very high.

Many research efforts have been made to significantly improve the compu-
tational complexity of Gabor filtering [5–8]. Nestares et al. in [6] improved the
standard convolution with Gabor filters by utilizing the separability of Gabor
filters. Ranganathan et al. in [5] used symmetry and anti-symmetry characteris-
tics of Gabor filters to reduce their computational complexity. These convolution
improvements can reduce the computational complexity of the Gabor filter from
O(M2N2) to O(2MN2). Compared to FFT filtering complexity of O(N2 log N)
it is evident that these techniques are beneficial when M < log N . The main
issue is that these methods can be applied only to certain configurations (e.g.
θ = k π

4
, k ∈ Z), making them merely special cases.

Recently Areekul et al. in [8] generalized separable Gabor filters to any orien-
tation. Their method uses three steps. The first step is to define and interpolate
consecutive sequences of pixels to form a new image along selected convolutional
orientations and their perpendicular directions. They employed an interpolation
technique with the least expensive complexity – the linear interpolation of the
two nearest pixels. Secondly, two continuous 1-D Gabor filters with suitable pa-
rameters are generated and re-sampled with uniform space between pixels. This
task resembles the image re-sampling from the first step. Finally, separable con-
volutions can be performed along any selected orientation using these tessellated
and interleaved patterns. In the best cases when θ = k π

4
, k ∈ Z the computa-

tional complexity is O(2MN2) [8]. However, for an arbitrary orientation the
re-sampling process plays a critical role if the required pixel is not on the sam-
pling grid. As a result, in the worst case scenarios the computational complexity
reaches O(6MN2). In this method, the main issue is interpolation error result-
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ing in less accurate Gabor features. The accuracy can be improved by employing
more sophisticated interpolation schemes (e.g. quadratic spline). Unfortunately,
such sophisticated techniques drastically increase the computation cost of the
first step – up to 4 times.

In this paper, a new framework is presented to generalize separable Gabor
filters for any orientation by integrating the interpolation and the convolution
processes in a single step. The proposed approach employs a sophisticated in-
terpolation method – quadratic spline. This, results in a low interpolation error
without any increase in the computational complexity. As it was mentioned,
to extract Gabor features, a filter bank containing Q × S Gabor filters in Q
directions and S scales is utilized. In this study, the computation complexity
of Gabor features is further reduced by applying 1D filters in specific direction
for all scales. This paper is organized as follows: In section 2, a review of the
Gabor filter is presented. In section 3, the details of separable Gabor filters are
described. Section 4 discusses the integration of the interpolation and the con-
volution processes in a single step. Section 5 shows experimental results of the
proposed approach and compares our method with the state-of-the-art. Finally,
Section 6 concludes this work and discusses future directions of this study.

2 Gabor Filters

The Gabor filter is a product of an elliptical Gaussian in any rotation and a com-
plex exponential function representing a sinusoidal plane wave [9]. The sharpness
of the filter is controlled on the major and minor axes by σx and σy, respectively.
The filter response in spatial domain can be expressed by the following equation
[9]:

g(x, y, f, θ) = e
− 1

2

(

x2
θ

σ2
x

+
y2

θ

σ2
y

)

× ej2πfxθ (1)

{

xθ = x cos θ + y sin θ
yθ = −x sin θ + y cos θ

(2)

where f is the frequency of the sinusoidal plane wave, θ is the orientation of
the Gabor filter, σx is the sharpness along the major axis and σy is the sharpness
along the minor axis. In most applications, the real part of the filter’s impulse
response (namely even-symmetric Gabor filter) is considered. As a result, the
equation 1 can be rewritten as [9]:

g(x, y, f, θ) = e
− 1

2
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)

× cos(2πfxθ) (3)

The normalized Gabor filter in the frequency domain can be represented by
[9]:
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(a) (b)

Fig. 1. An even-symmetric Gabor filter with θ = π

2
, f = 0.01 and σx = σy = 3 in (a)

spatial domain and (b) frequency domain.

G(u, v, f, θ) =
1
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(4)

{

uθ = u cos θ + v sin θ
vθ = −u sin θ + v cos θ

(5)

where u0, v0 and σu,v are equal to 2π cos θ
f

, 2π sin θ
f

and 1

2πσx,y
, respectively.

Figure 1 shows an even-symmetric Gabor filter in the spatial and frequency
domains.

3 Separability of Gabor Filters

A filter g is called separable if it can be expressed as the multiplication of two
vectors – grow × gcol. For separable filters the convolution can be performed
separately with one dimensional filters grow and gcol. Employing one dimen-
sional filters decreases the two dimensional filter’s computational complexity
from O(M2N2) to O(2MN2), where M and N are the width (and height) of
the filter mask and the image, respectively.

According to the definition of separable filters, the Gabor filters are parallel
to the image axes – θ = k π

2
, k = 0, 1, ... – are separable. In separable Gabor

filters, one of the 1-D filters is a sinusoidal function with a Gaussian envelope
and the other one is a Gaussian envelope. For example, if θ = π

2
, equation (1)

gives xθ = x and yθ = y. Therefore, equation (3) can be rewritten as:

g(x, y, f, θ) = gbp(x, f) × glp(y)

gbp(x, f) = e
− x2

2σ2
x cos(2πfx)

glp(y) = e
− y2

2σ2
y

(6)
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Fig. 2. Decomposing the Gabor filter in Fig. 1 into (a) a band-pass Gaussian filter,
and (b) a low-pass Gaussian filter.

where gbp is a 1D band-pass Gaussian filter, and glp is a 1D low-pass Gaussian
filter as shown in figure 2.

Separable Gabor filters can be extended to work with θ = k π
4

by going
through the image along diagonal directions instead of the image axes [6]. In
order to implement separable 2D Gabor filters in any direction it should be
separated into 1-D low-pass and band-pass filters along the desired orientation
and its perpendicular direction, respectively. However, the line formed by pixel
sequences along an arbitrary direction θ 6= k π

4
is not well defined due to square

sampling grid pattern in an image. For example, if we draw a straight line in
any chosen direction, it is difficult to pick consecutive pixels in order to form a
straight line in that particular direction. Therefore, making Gabor filters separa-
ble in arbitrary directions needs a re-sampling process. The re-sampling should
be performed to get an exact sequence of missing pixels on the desired orienta-
tions.

4 Integrating Interpolation and Convolution

In general, there are several ways to find approximate values for the re-sampled
pixels. Linear interpolation, spline interpolation, or sinc interpolation are among
the most widely used techniques in image re-sampling. In all of these schemes,
there is a trade off between computational complexity and interpolation error.

Areekul et al. in [8] proposed a generalized separable Gabor filter for any
orientation. Their method has two main steps. The first step is to interpolate
consecutive sequences of pixels along an arbitrary direction. The second step
performs a separable convolution along the direction. In order to reduce the
computational complexity of the interpolation process in [8], missing pixels are
linearly interpolated between their two nearest pixels. Although this interpola-
tion scheme has a low complexity O(2MN2), it suffers from increased interpola-
tion error. Employing more sophisticated interpolation schemes in this approach
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will increase the computational complexity significantly – e.g. O(9MN2) for
quadratic spline interpolation.

We proposed a novel approach in performing the interpolation and convo-
lution processes required to achieve a separable Gabor filter along an arbitrary
direction. The main idea behind our framework is the integration of the inter-
polation and the convolution processes. To this end, we propose a technique to
re-sample an image f(x, y) by an interpolation kernel k(x, y) and then convolve
it by a convolution kernel p(x, y). By performing this integration scheme the
overall process saves one step by convolving the image by a kernel q(x, y).

Let’s define fi(x, y) to be the image after interpolation but before convolu-
tion:

fi(x, y) =
∑

x1,y1

f(x1, y1)k(x − x1, y − y1) (7)

By convolving it with p(x, y) we get the final result fp(x, y):

fp(x, y) =
∑

x2,y2

fi(x − x2, y − y2)p(x2, y2) (8)

Substituting equation (7) in (8) results in:

fp(x, y) =
∑

x2,y2

[
∑

x1,y1

f(x1, y1)k(x − x2 − x1, y − y2 − y1)]p(x2, y2) (9)

After regrouping the sums, we get:

fp(x, y) =
∑

x1,y1

f(x1, y1)[
∑

x2,y2

k(x − x2 − x1, y − y2 − y1)p(x2, y2)] (10)

=
∑

x1,y1

f(x1, y1)q(x − x1, y − y1)

Therefore, the final result – fp(x, y) – is the convolution of the image f(x, y)
by q(x, y), where q(x, y) = k(x, y) ∗ p(x, y).

The 1D low-pass Gaussian filter – glp – in the direction θ can be generated
with uniform displacement d. In this case d is related to θ by the following
equation:

d =











1

cos θ
if | cos θ| ≥

√
2

2

1

sin θ
if | sin θ| >

√
2

2

(11)

The same relation is true for the 1-D band-pass filter along the perpendicular
direction as well. Therefore, the 1D low-pass and band-pass Gaussian filters
become:
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(a) (b)

(c) (d)

Fig. 3. (a) Some pixels in 1D filtering may not on sampling Cartesian grid; (b) Re-
generating missing pixels by Quadratic B-spline interpolation; (c) Building the mask q

which integrate 1D convolution and Quadratic B-spline interpolation; (d) Calculating
the q(i, j) coefficients.

gbp[n] = e
− (nd)2

2σ2
x cos(2πfnd) (12)

glp[n] = e
− (nd)2

2σ2
y

When the orientation is θ = k π
4

all of glp[n] and/or gbp[n] are located on the
sampling Cartesian grid. However, for an arbitrary direction (figure 3(a)) some
of the low- and/or band- pass filtered pixels (i.e. the red circles) may be on the
sampling Cartesian grid while others may not. For the pixels which do not lie
on the sampling gird their pixel values need to be regenerated by a re-sampling
process. We utilize a quadratic B-spline interpolation scheme to estimate these
missing pixel values. Moreover, the proposed framework can be extended to
other interpolation schemes as well. The B-spline re-sampling process is one of
the most commonly used family of spline functions [10]. It can be derived by
several self-convolutions of a basis function. Quadratic B-spline interpolation
kernel, k(r), can be presented by the following formula [11]:
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k(r) =















1

2
r2 if 0 < |r| ≤ 1

2

−r2 + r + 1

2
if 1

2
< |r| ≤ 1

1

2
(1 − r2) if 1 < |r| ≤ 3

2

0 otherwise

(13)

where r is the distance of an estimated value from a pixel on the sampling
Cartesian grid – figure 3(b).

Instead of performing interpolation and convolution separately, we can ac-
complish them in a single step by defining a mask q, shown in figure 3(c). This
mask is the convolution of the interpolation kernel k(r) and the 1D low- and/or
band-pass Gaussian filters – glp and/or gbp. The size of q is almost 3 × M in
the worst case scenario – figure 3(c). As a result, the asymptotic computational
complexity of our approach is O(6M2N2).

For the implementation purpose, we find all Cartesian grids whose minimum
distance to gmis[n] (the red crosses in figure 3(d)) is less than 3

2
. Then we cal-

culate their coefficients by the following formula:

q(i, j) =

M
2

∑

l=−M
2 ,|rl|≤ 3

2

k(rl)gmis[nl] (14)

Some glp[n
′′] and/or gbp[n

′′] positions may be located on the sampling Carte-
sian grid of the mask q – the q(i′′, j′′) in figure 3(d). In these cases we need to
update the q(i′′, j′′) by adding glp[n

′′]/gbp[n
′′] to it.

5 Experimental results

In this section some experiments have been conducted in order to evaluate the
performance and efficiency of the proposed framework. The computational com-
plexity of our approach is compared to the traditional techniques in the liter-
ature. To extract Gabor features from an acquired image, a Gabor filter bank
containing P × Q Gabor filters in different directions θ ∈ {θ1, θ2, ..., θQ} and
different frequencies f ∈ {f1, f2, ..., fP }, is utilized. From equation (3), in sepa-
rable Gabor filters, the frequency only affects the 1-D band-pass Gaussian filter.
Therefore, in a practical implementation, the 1-D low-pass Gaussian filter is
computed once for all P Gabor filters in a specific direction θi with different
frequencies.

Table 1 shows the computational complexity and the memory requirement
of our proposed approach compared to the traditional method of filtering in fre-
quency domain, and the separable technique proposed in[8]. In this experiment
we use a specific direction and frequency and a Gabor filter bank containing P×Q
filters. Although the traditional method in spatial domain is the least expensive
technique in terms of memory requirement, it is the most computationally com-
plex. As compared to filtering in the frequency domain, O(12N2 log N), the spa-
tial domain convolution with separable filters is beneficial when M < 2 logN .
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Table 1. Comparison of different methods in terms of memory requirement and com-
putational complexity.

Techniques Memory Computation cost Computation cost
space for a Gabor filter for a Gabor bank

Traditional method O(N2) O(M2N2) O(PQM2N2)
Filtering in O(3N2) O(12N2 log N) O(12PQN2 log N)
frequency domain
Separable method[8] O(2N2) O(6MN2) −

Proposed method O(2N2) O(6MN2) O(3(P + 1)QMN2)

Moreover, the generic FFT formulation is limited to working with signals of
length 2n. From table 1, however, the proposed method employs a sophisticated
interpolation scheme based on Quadratic B-spline. Compared to the method in
[8], it is evident that our approach does not increase the computational com-
plexity and the memory requirements.

Table 2. Average number of filtered video frames by a Gabor filter bank (12 filters)
in one second using different Gabor filtering methods.

Techniques Speed (fps)

Traditional method 1.1
Filtering in frequency domain 12.8
Separable method[8] 30
Proposed method 30

In this experiment, we have employed different methods to extract Gabor
features from a video sequence with dimensionality of 640× 480 and the rate of
30 frames per second. Gabor features were extracted using 12 Gabor filters in 4
different directions θ ∈ {π

8
, 3π

8
, 5π

8
, 7π

8
}, and 3 different scales f ∈ {1, 3, 5}. All

methods have been implemented in C/C++ on a 64-bit machine with 2G byte
RAM. In the case of filtering in frequency domain, since the dimensionality of
video frames were not exactly the length of 2n, we used FFTW3 library [12].
This technique provides fast solutions for the signal lengths that the original
FFT is not suitable for. Table 2 shows that the separable Gabor filter has the
best performance among others and, as expected, the traditional method has the
worst one. To evaluate the accuracy of both separable approaches, we calculated
the normalized error E:

E =

∑

x

∑

y |ḟ(x, y) − f̈(x, y)|2

∑

x

∑

y ḟ(x, y)2
(15)
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Fig. 4. Comparison of Areekul’s method [8] and proposed method in terms of accuracy
for the first 50 frames od video sequence.

where ḟ is the filtered image by traditional method in spatial domain, and f̈
is the filtered image by one of the separable Gabor techniques. Figure 4 shows
the average normalized error for all direction and frequencies for the first 50
frames. As you can see, our proposed method has significantly reduced the in-
terpolation error by employing Quadratic B-spline interpolation technique. As
it was expected, the method in [8] has considerable error due to the use of linear
interpolation of the two nearest pixels.

6 Conclusion

Fast and efficient computation of Gabor features from video frames have become
the focus of recent studies of the functionalities of the human brain and visual
cognitive systems. The issue of efficient calculation of Gabor filters is of particular
interest since the directional properties of these filters makes them inseparable
along arbitrary direction.

In this paper we proposed a novel technique to integrate the interpolation
and the convolution processes of the Gabor filter. This integration of the two
processes makes the 2-D Gabor filter separable along any direction. Moreover,
the integration performs the two processes as a single step in real-time. There-
fore, our interpolation process employs a sophisticated interpolation technique
in order to increase its accuracy while performing the entire process in real-time.

References

1. Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual
cortex. IEEE Conference on Computer Vision and Pattern Recognition 2 (2005)
994–1000



Lecture Notes in Computer Science 11

2. Olshausen, A.B., Field, D.J.: Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Int. Jurnal of Nature 381 (1996)
607–609

3. Goodman, P., Zou, Q., Dascalu, S.: Framework and implications of virtual neuro-
robotics. Frontiers in Neuroscience 2 (2008) 123–128

4. Bracewell, R.N., ed.: The Fourier Transform and Its Applications. 3rd edition.
McGraw-Hill (2000)

5. Ranganathan, N., Mehrotra, R., Namuduri, K.: An architecture to implement mul-
tiresolution. International Conference on Acoustics, Speech, and Signal Processing
2 (1991) 1157–1160

6. Nestares, O., Navarro, R., Portilla, J., Tabernero, A.: Efficient spatial-domain
implementation of a multiscale image representation based on gabor functions.
Journal of Electronic Imaging 7 (1998) 166–173

7. Areekul, V., Watchareeruetai, U., Tantaratana, S.: Fast separable gabor filter for
fingerprint enhancement. International Conference on Biometric Authentication
(2004) 403–409

8. Areekul, V., Watchareeruetai, U., Suppasriwasuseth, K., Tantaratana, S.: Separa-
ble gabor filter realization for fast fingerprint enhancement. IEEE International
Conference on Image Processing 3 (2005) 253–256

9. Daugman, J.: Uncertainty relation for resolution in space, spatial-frequency, and
orientation optimized by two-dimensional visual cortical filters. Journal of Optical
Socity America 2 (1985) 160–169

10. Hou, H.S., Andrews, H.C.: Cubic splines for image interpolation and digital fil-
tering. IEEE Transaction on Acoustic, Speech and Signal Processing 26 (1978)
508–517

11. Dodgson, N.A.: Quadratic interpolation in image resampling. IEEE Transactions
on Image Processing 6 (1997) 1322–1326

12. Frigo, M., Johnson, S.: The design and implementation of fftw3. Proceedings of
IEEE 93 (2005) 216–231


