
Learning Classifier Systems for User Context Learning

Anil Shankar
Evolutionary Computing Systems Laboratory (ECSL)

Dept. of Computer Science and Engineering
University of Nevada, Reno

anilk@cse.unr.edu

Sushil Louis
Evolutionary Computing Systems Laboratory (ECSL)

Dept. of Computer Science and Engineering
University of Nevada, Reno

sushil@cse.unr.edu

Abstract-
Current computer applications and user interfaces

lack user context and are not successful in learning user
preferences to improve user interaction. We present
Sycophant, a context learning calendaring application
program which is designed to learn a mapping from
user-related contextual features to reminder actions. In
this paper, we consider the feasibility of using a genetics-
based machine learning technique, XCS, for the purpose
of learning this mapping from a set of context features to
reminder actions as a predictive data-mining task. We
compare XCS’s performance with a decision tree algo-
rithm on this learning task and show that XCS outper-
forms the decision tree learner.

1 Introduction

Current operating systems support devices like an internal
clock, keyboard and mouse for providing input or context.
Computer applications use this paltry context through sim-
ple Application Programming Interfaces (APIs) to enhance
personal productivity by building user models. Application
programs built this way can only make weak attempts to
adapt to individual user needs. There is no personalization
through learning, no long term memory, and advances in
vision, speech, text analysis, and the availability of cheap
computing power have not been fully utilized for improving
user interaction. The result is that many current computer
applications lack context awareness.

We consider context as any information that is pertinent
to the interaction between an application and a user, which
can be used to characterize the situation of entities (a person,
a place or an object) [7].

We propose to use simple sensors to continuously gather
data on a computer system’s internal and external environ-
ment, store this data in a data warehouse, and mine this data
for useful user-behavior patterns in order to better predict
user preferences (behavior) and improve user interaction.
Applications can then use this learned model of user pref-
erences to better interact with the user. More generally, we
want to apply machine learning techniques to data gathered
from simple context sensors to build improved human com-
puter interfaces.

In our current work, we use a Genetics Based Machine
Learning (GBML) technique to learn the mapping from
user-related contextual features to application actions for
a context-sensitive user interactive application . Specif-
ically, we investigate the effectiveness of Sycophant, a

simple calendaring application in learning a mapping from
context-features to reminder type as predictive data-mining
task [15]. We also compare the performance of our GBML
technique with a decision-tree learning algorithm. Our re-
sults for predicting which of the four different types of re-
minders to generate using Sycophant with external (mo-
tion, speech) and internal (keyboard, mouse activity) sen-
sors show that both the training-set and test-set performance
of XCS is better than that of a decision tree learner.

The next section presents related work in the area
of context-aware applications and genetics-based machine
learning. We introduce Sycophant’s architecture in sec-
tion 3. Section 4 gives a brief introduction to XCS. Details
about our experimental design and data pre-processing are
given in section 5 . Section 6 presents results comparing
our GBML technique with a decision-tree learner on the re-
minder generation task. We discuss the lessons learned from
our experiments in section 7. Section 8 explores directions
for future work.

2 Background and Related Work

To improve user interaction for application programs,
we can gather external and internal contextual information
from the user’s environment. We can sense the internal
context of a computer with respect to a user by monitor-
ing different active processes on a user’s machine. Here
are few ways of how we can gather simple external context
from a user’s environment: sense the presence or abscence
of motion by using a motion-sensor (web-camera), detect
the presence or abscence of speech by using a microphone,
monitor keyboard-usage etcetera. Even without knowing
who is there or what is being said, such simple sensors can
be used to improve user interaction. For example, if you
were Jane’s user-interface you could learn answers to the
the following questions.

• Should I pause the current song when Jane leaves the
room?

• If there is no one in the room should I pop up a sched-
uled appointment?

• Should I ask Jane if she wants me to cancel a sched-
uled meeting (that was supposed to start five minutes
ago) ?

• If there is someone else in the room at the time should
I remind Jane?

In our research, we view a computer as a stationary robot



with simple sensors for sensing the external and internal
environments of a computer system and a simple actuator
which is the response of an application program on the same
computer [14]. On this stationary-robot model of a desktop
PC, we built Sycophant, a simple calendaring application
program that stores appointments and reminds the user us-
ing different types of reminders. Our system continuously
gathers binary activity data from the keyboard, mouse, a
motion detector, and a speech sensor. We also monitor the
activity of five processes on the computer. Whenever Syco-
phant generates a reminder, it expects the user to indicate
whether Sycophant used the correct reminder type. A re-
minder can be visual (a pop-up window), speech (using a
text-to-speech system), both, or neither.

In the area of context-aware applications and environ-
ments, Reba demonstrated the necessity for systems to be
context-aware for anticipating user actions and simplify
user interaction, Bailey and Adamczyk’s work showed that
a user’s attention must be carefully managed among com-
peting applications and that this management is necessary
to mitigate the disruptive effects of necessarily interrupting
a user, Horvitz and Apacible have built models for predict-
ing the cost of interrupting users and used machine learning
techniques to generate statistical models to infer the state
of interruptibility of users and, Hudson, Fogarty, Atkeson
et al. have constructed robust sensor-based predictions of
interruptibility [2, 14, 11, 8].

In the area of data-mining, XCS has been used for
learning Boolean functions by Wilson and Kovacs, on The
Monk’s problems by Saxon and Barry and on the well-
known Wisconsin Breast Cancer Data Set by Wilson [20,
21, 13, 22, 17].

Our work integrates the above described approaches
in context-aware systems, genetics-based machine learning
and data mining. Sycophant learns whether or not to in-
terrupt the user as well as how to interrupt the user. Like
Fogarty, we use real sensors but in addition to learning
whether to interrupt the user, Sycophant learns which one of
the four different types of reminders to use in interrupting
the user [8]. We use a GBML technique, XCS, which con-
sists of a set of rules and actions to learn the mapping from
context-features (gathered by our sensors) to reminder types
as predictive data-mining task. We also compare the perfor-
mance of this GBML technique with a decision-tree algo-
rithm for learning this mapping from sensors to reminder
types.

3 SYCOPHANT

Sycophant can generate four different types of reminders: a
simple pop-up window containing the appointment text, a
voice reminder where the appointment text is spoken using
the Festival Speech Synthesis System [3], a pop-up window
and a voice reminder, and no pop-up or voice reminder. The
appointments for Sycophant were set up to mimic a user’s
regular work-day. Figure 1 shows a screen-shot of Syco-
phant’s appointment entry interface.

Figure 2 depicts Sycophant’s architecture. The calen-
daring application runs as separate process and five sensors

Figure 1: Screen Shot of Sycophant’s Appointment Entry
Interface

SENSOR RAW DATA

Sensor−Any5
Sensor−Any1Sensor−All1

Sensor−Count, Sensor−All5
Sensor−Immed

APPOINTMENT−DATA

USER−CONTEXT
DATA

APPLICATION
CALENDAR

MACHINE LEARNING
ALGORITHM

USER MODEL

REMINDER

FEEDBACK
USER

Feature Extraction

SYCOPHANT

MOTION

SPEECH

USER
PROCESSES

KEYBOARD

MOUSE

S
E

N
S

O
R

S

Figure 2: Sycophant Architecture



collect data on the computer and immediate vicinity. These
sensors are binary, for example, when the motion sensor de-
tects motion it reports a value of 1, otherwise 0. Our sensors
are:

• Motion: We use a cheap Logitech USB web-cam with
the motion package [1].

• Talk: We use the Sphinx Speech Recognition System
to simply detect the presence or absence of speech.
This is fairly accurate and fast as long as we do not
actually attempt to recognize the detected speech [6].

• Processes: The user under observation ac-
tively uses the following five processes: java,
bash, gnome-terminal, xscreensaver,
mozilla and we kept track of these processes’
state.

• Keyboard: The keyboard sensor monitors keyboard
activity.

• Mouse: Like the keyboard sensor, the mouse sensor
monitors mouse activity.

For this study, we collected 387 user-context data exem-
plars from a single user over a period of eight to ten weeks.
Every fifteen seconds, we checked all sensors for activity
and stored these values to a file. Next, we extracted the fol-
lowing six features from the raw data [12]: Any5, if the sen-
sor is active during any of the fifteen second intervals during
the last five minutes. All5, if the sensor is active during all
of the fifteen second intervals during the last five minutes.
Any1, if the sensor is active during any of the fifteen sec-
ond intervals during the last minute. All1, if the sensor is
active during all of the fifteen second intervals during the
last minute. Immed, if the sensor is active during the last
fifteen second interval. Count, the number of intervals dur-
ing which the sensor is active during the last five minutes.
Therefore every sensor provides six features. We consider
each of the five user processes as a separate sensor so the
number of sensors grows to nine and We therefore ended up
with a total of 54 features. Finally, We also include a user
identifier and the next appointment time.

Here is an exemplar from our context data-set:
User1, 05.00, 0, 0, 0, 0, 0, 0, 7,

0, 1, 0, 0, 0, 20, 1, 1, 1, 1, 1, 20,
1, 1, 1, 1, 1, 20, 1, 1, 1, 1, 1, 0, 0,
0, 0, 0, 0, 20, 1, 1, 1, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0

where the first two features correspond to User-Id and
Time of Appointment. The remaining set of features in
groups of six represent Sensor-Count, Sensor-All5, Sensor-
Any5, Sensor-All1, Sensor-Any1 and Sensor-Immed. The
sensors are ordered as follows: Motion, Talk, Process, Key-
board and Mouse. Each of these six features is derived for
each sensor mode. The last value from the above data row
corresponds to the type of reminder actually preferred by a
user, which is obtained through user feedback. During the
intial phases of training when insufficient user-context data
is available, Sycophant uses a hand-coded set of rules for
generating a reminder. After collecting an adequate number

of exemplars, Sycophant uses a machine learning algorithm
to build a user-model and uses the reminder generated from
this model.

4 Brief Introduction to XCS

XCS is derived from Wilson’s Animat and ZCS [18, 19].
Figure 3 shows the architecture of XCS. The system con-
sists of a population of classifiers where each classifier con-
sists of the following components:

COVERING

REWARD

DETECTORS

CLASSIFER POPULATION

MATCH−SET

PREDICTION ARRAY

ACTION

ACTION−SET
UPDATE

PREDICTIONS
ERRORS
FITNESS

EFFECTORS

GENETIC−
ALGORITHM

XCS

ENVIRONMENT

ENVIRONMENT

Figure 3: XCS Architecture

• Condition: defined over the ternary alphabet
{0, 1, #}L, where L is the length of the bit-string. It
specifies an input state sensed from the environment
which a classifier tries to match. # is a meta-character
which can match either a 0 or a 1. In our case, a
condition is an exemplar from the context-data set as
described in section ??.

• Action: specifies the action which a classifier can
take. The possible values of an action in our study
is the classification of a reminder-type, that is, an ac-
tion can take the values from the {0, 1, 2, 3}.

• Prediction Estimate: the expected pay-off if a classi-
fier matches the environment’s sensory input and its
action is chosen by the system.

• Prediction Error: estimate of the error made in pre-
dictions. This is calculated after the reward from the
environment is received.



• Fitness: denotes the classifier’s fitness.

• Experience: the number of times which the classifier
belonged to a set of actions since its creation.

• Time-stamp: a counter or time-step of the last occur-
rence of the genetic algorithm (GA) in an action set
to which this classifier belonged.

• Action set size: average size of the action sets to
which this classifier belonged

• Numerosity: the number of micro-classifiers which
this macro-classifier represents. A macro-classifier
represents n traditional classifiers having identical
conditions and actions.

The external environment provides a message string, an
exemplar from the context data-set which is a string belong-
ing to {0, 1}L, where L is the number of bits in each situ-
ation, to XCS. Next, XCS forms a match-set (M) which is
a set of classifiers from the population of classifiers whose
conditions match the environmental message. If none of the
classifiers in the population match the environmental mes-
sage, covering is done by creating matching classifiers with
each of the possible actions and placing them in M. In the
implementation of XCS we are using, the initial population
is empty and covering occurs only at the beginning of a run.
Next, for each of the actions presented in M, the system
computes a fitness-weighted average of the predictions of
each classifier in M having that particular action. At the
next step, XCS chooses an action from those represented in
M and sends it to the environment. Each action results in
a reward whose value is 1000 if the action is correct and
0 otherwise. Our initial attempts to choose the action in a
non-deterministic way seemed to degrade the system perfor-
mance, therefore we chose to pick the best action and this
approach of choosing the action improved the system per-
formance. Classifiers in M which proposed this particular
action are added to a set which is called the action-set (A).

XCS next updates the classifiers by re-evaluating the
classifiers in the action-set based on the actual reward (R)
returned by the environment when the system chose to ex-
ecute its best chosen action. First, the predictions are up-
dated and next, the errors. For each classifier, accuracy and
its relative accuracy are also computed. Finally , the fitness
of each classifier is updated based on β, the learning rate for
updating fitness, prediction, prediction error, and action set
size estimate for the classifiers in XCS. Based on θGA, the
threshold for the GA application in an action set, the system
can also execute a GA within the action-set. Classifiers are
thus evolved by a process of trial and error in which, given
an input and a match-set, a particular action is tried and an
appropriate reward is provided from the environment and
the parameters of the associated classifiers are also updated.
Classifiers which are able to accurately predict the correct
action tend to be reproduced, while inaccurate classifiers get
deleted eventually. This process of sensing the input, choos-
ing a particular action and running the GA on an action-set
is done until some termination condition is met, for example
when 20, 000 problems are sampled randomly or when the
performance of the system reaches 100 percent.

More details concerning the commonly used values for
parameters, formation of match-set and action-set, updat-
ing of classifier parameters, and operation of the GA within
the system is found in Wilson [20]. A detailed algorithmic
description is found in Wilson and Butz [4] .

XCS digresses from the traditional model of a learning
classifier systems in the following ways: the fitness of a
classifier is based on the accuracy of its payoff prediction
instead of the actual prediction itself, the GA is run in the
action set instead of the entire population and the classifier
system has no message-list [10, 9].

In our research, we use XCS for an independent single-
step task in which an input, in the form of context-data fea-
tures (binary representation), is presented to the system and
the system makes a decision(the type of reminder to be cho-
sen). The environment provides a reward of 1000 if the sys-
tem takes the correct action (chooses the correct reminder-
type) and 0 otherwise.

5 Experiment Details

5.1 Data Preprocessing

Our approach extends an implmentation of XCS in Java,
XCSJava 1.0, and modifies this implementation to work
with our context data-set collected using Sycophant [5]. We
transformed our contextual data set described in section 3
into a binary representation after removing the User-Id
attribute since our current data is collected from a single
user. We converted the appointment time into seconds
and consider it as an integer value and we also considered
Count as integer value. Next, we converted these two
integer valued attributes into their binary equivalents and
retained the other binary valued features of our data-set.
After this transformation, we end up with a string like the
example shown below :

10001010101010101001110010110000
10010000100110111101001101111010
01111111000000000000100111111100
00000000000000000000:3

The value after the ":" is the correct action for the set
of features. In the above case, the correct action is to choose
a reminder of type 3. You should note that this string repre-
sents a classifier where the first part represents the condition
(of the sensors) and the second part after the ":" represents
the action (reminder-type).

5.2 Design

We wanted to directly compare the performance of XCS
with an implementation of C4.5, a decision tree algorithm
called J48 from the Weka machine learning tool-kit [16, 23].
We therefore created ten stratified folds of the context data-
set for evaluating the training and testing performance and
saved each of these tens folds of training sets and corre-
sponding testing sets. Next, we transformed these training



and testing sets into their binary equivalents are mentioned
in subsection 5.1 to be used by XCS. We thereby ensured
that both J48 and XCS were exposed to the same sets of
training and testing data folds. For both J48 and XCS we
use the training fold and its corresponding testing fold and
record the training and testing performances. We repeat the
same process for all of the ten folds.

We make XCS evolve a set of classifiers for the first
training fold and store these classifers after our stopping cri-
terion which is defined as repeatedly sampling 20, 000 ran-
dom problems (context data-set exemplars) from the train-
ing fold or when the system performance during training
reaches 1.0. Next, we use this evolved set of classifers
on the testing fold and record our performance metrics of
system error, performance, and number of classifiers. The
system error is the difference between the actual reward re-
ceived and the system prediction for the chosen action. Per-
formance is the percentage of correctly solved problems in
the last M problems sampled, in our experiment, the value
of M is 100. A problem or exemplar is correctly solved if
the classifer is able to correctly predict the type of reminder
to be generated. The number of classifiers is the size of
the population in terms of macro-classifiers at a certain time
step. More details about the meaning of these parameters
are given in [4]. For each training and testing fold, we con-
duct ten runs to get an average of the training and testing
performance. We repeat the same process for all the ten
folds of our cross-validation set. For both XCS and J48, we
average the results from the ten folds of their correspond-
ing data-sets to get a measure of the final performance for
comparison purposes.

5.3 XCS Parameter Settings

We set the number of trials, that is, the number of exemplars
to be randomly sampled from a training-fold to 20000. The
learning rate, β, for updating fitness , prediction, prediction
error, and action set size estimate an XCS’s classifiers is
tuned to 0.2, Finally, θGA, the threshold for the GA appli-
cation in an action set is tuned to 25. We set the different
parameters of the GA as follows: the probability of applying
crossover in an offspring classifier is 0.67, the probability of
mutating one allele and the action in an offspring classifier
is 0.4, and, the probability of using a don’t care symbol in
an allele (P#) is 0.33.

Earlier, we had investigated an approach of restricting
the number of classifiers to an estimate of the number of
rules (the number of leaves) used by a decision-tree learner.
This approach restricted XCS’s performance by limiting the
GA within the classifier system. A GA in XCS provides a
niching facility for allowing cooperative rule-sets to coexist
within a population while allowing competing rule-sets to
converge on optimum rule attributes within a niche. Lim-
iting the size of the population in XCS takes away the op-
portunity for the GA to experiment with recombination. We
therefore explored using XCS in two modes. In the first
setting, we do not limit the classifier population size but
use a maximum classifier population size of 20000 (N ) for
XCS. Our second setting is the same as the first one but

here we use condensation to extract minimal subset of clas-
sifiers which represent the final solution [20]. Condensa-
tion consists of running the classifier system with crossover
and mutation rates set to zero. This process freezes genetic
search as no new classifier conditions can now be generated.
However, the classifier selection and deletion processes still
continue to operate whenever the GA is triggered. This re-
sults in a tendency for less fit and less general classifiers to
be weeded out of the population. We enable condensation
after our stopping criterion during the training fold evalu-
ation. Condensation stops after an additional 20000 prob-
lems have been sampled from the training fold. We examine
XCS’s performance on the training set after randomly sam-
pling 100 problems from a training fold and stop when the
system has sampled 20000 problems or when condensation
is suspended. We set all the other parameters to their de-
fault values. A complete description the default parameter
settings for XCS is given by Butz and Wilson [4].

6 Results

Our training and testing performance is measured on a scale
of 0.0 to 1.0. We use a two-sample t-test for comparing the
mean values of the performance of XCS and J48. We set up
our statistical inference test to have 95 percent confidence
interval for a one-sided comparison, that is we check if the
value of a result from one algorithm is greater (or lesser)
than the corresponding result from the second algorithm.

Table 1 shows the performance of XCS when compared
to J48 on our user-context data set. The first column is the
data set used for evaluating the performance of a learning al-
gorithm; the data set is a training fold or a testing fold. We
show the performance J48 in column two. XCS’s perfor-
mance with and without condensation is show in columns
three and four respectively. Our statistical inference regard-
ing how XCS fared when compared with J48 is given in
columns four and five. Column four is the inference when
XCS is operated without condensation. Inference when
XCS is operated with condensation is given in column five.

XCS without condensation had on an average 19386

classifiers in the population at the end of the training phase.
We were able to reduce the number of classifiers to an av-
erage value of 16428 when we operated XCS in the con-
densation mode. We note from table 1 that while XCS
equals the performance of J48 on the training set, it sig-
nificantly outperforms J48 on the test set. We attribute
this improved performance on the test-set to the tendency
of XCS to form accurate generalizations and its ability to
form a better mapping from the condition space to the ac-
tion space (reminder-types) [13]. We provide our context-
data set, the cross-validation data-sets used by J48 and XCS,
and result files containing the classifiers evolved by XCS at
http://www.cse.unr.edu/∼anilk/CEC2005/after comments/.

7 Conclusions

In this paper, we have considered the feasibility of using a
Genetics Based Machine Learning technique, XCS, to learn
the mapping from a set of context-features to reminder type



Table 1: Comparision of the mean performance of XCS with J48

I II II III IV V
Data Performance Performance Performance Inference Inferencec

Set of of of
J48 XCS XCSc

Training-Set 0.812 0.940 0.937 Equal Equal
Test-Set 0.700 0.940 1.000 Better Better

as a predictive data-mining task in the area of context learn-
ing for improving user interaction. We have shown that
XCS is capable of learning this complex, non-linear classifi-
cation function and that it can be used to accurately predict
unseen cases. We have also directly compared the perfor-
mance of XCS with a popular decision-tree machine learn-
ing algorithm and have shown that XCS significantly per-
forms better than a decision-tree on unseen examples in the
test-set while matching the decision-tree’s performance on
the training sets.

8 Future Work

We use condensation to obtain a minimal number of non-
overlapping optimal set of rules to describe the problem
space [20]. Currently we trigger condensation whenever
XCS’s performance reaches 1.0 and remains close to this
value for a certain number of consecutive time stepss. In this
way we have been able to reduce the number of classifiers
and improve XCS’s performance. However, we end up with
a large number of rules (classifiers) when compared with a
rule-estimate number of a decision-tree learner. This led us
to suspect that we might have terminated condensation pre-
maturely. We would like to adopt Kovac’s heuristic of using
the system error for deciding when to start and terminate
condensation to better evaluate XCS’s performance [13].
Ideally, we would like to have minimal and optimal set of
rules for learning the mapping from user-context features
to reminder types. Our intention is to end up with clas-
sifiers which are capable of describing the patterns in the
user-context data which are human readable. These rules
can then be compared with the rules produced by a decision
tree learner. Thus, we would like to venture into the area
of descriptive data-mining where we want to analyze the
classifiers evolved by XCS and compare the rules generated
by XCS with that of a decision tree algorithm. Ideally, we
seek to automate the process of translating the classifiers
evolved into human-understandable rules and examine their
relevance for learning user preferences for reminder type.
We wish to combine expert-generated rules with machine-
learned rules and use this combined knowledge to design
better adaptive user interfaces.

The type of a reminder can have a significant impact
on user effectiveness and thereby her preferences, for in-
stance, not generating a reminder (type-0) would be ideal
in some cases and would be a costly error in other cases.
We intend to consider weighting the rewards for different
reminder types. For example, not generating a reminder

could be given a higher or lower reward depending upon
user-context. We would like to evaluate the XCS classifier
system under these conditions. We also want to test the per-
formance of XCS on the task of whether or not to generate
a reminder.

In this paper, we directly convert our context data-set
into a binary representation to be used by XCS, preliminary
investigation into attribute subset selection and discretiza-
tion of our context data-set has given us promising results
for improving the accuracy of reminder type prediction by a
decision tree. We would like to consider this transformed
context-data set where attribute subset selection and dis-
cretization have been performed and use it with XCS and
again evaluate XCS’s performance on this transformed data
set.

Further, we plan to collect data from different users to
scale up our research in the area of context learning appli-
cations and consider the possiblilty for personalization to
individual users. Our results in this paper clearly indicate
that classifier systems are a viable method for this task.

Acknowledgments

The authors would like to thank the reviewers for helping us
improve our paper.

This work was supported in part by contract number
N00014-0301-0104 from the Office of Naval Research.



Bibliography

[1] Motion. http://motion.sourceforge.net/.
[2] P. D. Adamczyk and B. P. Bailey. If not now, when?: the ef-

fects of interruption at different moments within task execu-
tion. Proceedings of the 2004 conference on Human factors
in computing systems, pages 271–278, 2004.

[3] A. Black, P. Taylor, and R. Caley. The festival speech syn-
thesis system. 1998.

[4] M. Butz and S. W. Wilson. An algorithmic description of
xcs. Soft Comput., 6(3-4):144–153, 2002.

[5] M. V. Butz. XCSJava 1.0: An Implementation of the XCS
classifier system in Java . Technical Report 2000027, Illinois
Genetic Algorithms Laboratory, 2000.

[6] C.M.U. Sphinx: Open source speech recognition.
http://www.speech.cs.cmu.edu/sphinx/.

[7] A. K. Dey, G. D. Abowd, and D. Salber. A conceptual frame-
work and a toolkit for supporting the rapid prototyping of
context-aware appplications. Human Computer Interaction,
16, 2001.

[8] J. Fogarty, S. E. Hudson, and J. Lai. Examining the robust-
ness of sensor-based statistical models of human interrupt-
ibility. Proceedings of the 2004 conference on Human fac-
tors in computing systems, pages 207–214, 2004.

[9] D. E. Goldberg. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison-Wesley, Reading,
MA, 1989.

[10] J. H. Holland. Escaping brittleness: The possibilities of
general-purpose learning algorithms applied to parallel rule-
based systems. In R. S. Michalski, J. G. Carbonell, and T. M.
Mitchell, editors, Machine Learning: An Artificial Intelli-
gence Approach: Volume II, pages 593–623. Kaufmann, Los
Altos, CA, 1986.

[11] E. Horvitz and J. Apacible. Learning and reasoning about
interruption. Proceedings of the 5th international conference
on Multimodal interfaces, pages 20–27, 2003.

[12] S. Hudson, J. Fogarty, C. Atkeson, J. Forlizzi, S. Kiesler,
J. Lee, and J. Yang. Predicting human interruptibility with
sensors: A wizard of oz feasibility study. Proceedings of
CHI 2003, ACM Press, 2003.

[13] T. Kovacs. XCS Classifier System Reliably Evolves Accu-
rate, Complete, and Minimal Representations for Boolean
Functions., pages 59–68. Springer-Verlag, August 1997.

[14] A. Kulkarni. A reactive behavioral system for the intelligent
room. Master’s thesis, Massachusetts Institute of Technol-
ogy, Cambridge, MA, 2002., 2002.

[15] S. J. Louis and A. Shankar. Context learning can improve
user interaction. In Proceedings of the 2004 IEEE Interna-
tional Conference on Information Reuse and Integration, IRI
- 2004, November 8-10, 2004, las Vegas Hilton, Las Vegas,
NV USA, pages 115–120, 2004.

[16] J. R. Quinlan. C4.5: Programs for Machine Learning. Mor-
gan Kaufmann, 1992.

[17] S. Saxon and A. Barry. XCS and the monk’s problems.
In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon,
V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceed-
ings of the Genetic and Evolutionary Computation Confer-
ence, volume 1, page 809, Orlando, Florida, USA, 13-17
1999. Morgan Kaufmann.

[18] S. W. Wilson. Classifier systems and the animat problem.
Mach. Learn., 2(3):199–228, 1987.

[19] S. W. Wilson. ZCS: A zeroth level classifier system. Evolu-
tionary Computation, 2(1):1–18, 1994.

[20] S. W. Wilson. Classifier fitness based on accuracy. Evolu-
tionary Computation, 3(2):149–175, 1995.

[21] S. W. Wilson. Generalization in the XCS classifier sys-
tem. In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb,
M. Dorigo, D. B. Fogel, M. H. Garzon, D. E.Goldberg,
H. Iba, and R. Riolo, editors, Genetic Programming 1998:
Proceedings of the Third Annual Conference, pages 665–
674, University of Wisconsin, Madison, Wisconsin, USA,
22-25 1998. Morgan Kaufmann.

[22] S. W. Wilson. Mining oblique data with XCS. Lecture Notes
in Computer Science, 1996:158–??, 2001.

[23] I. H. Witten and E. Frank. Data Mining: Practical machine
learning tools with Java implementations. Morgan Kauf-
mann, San Francisco, USA, 2000.


