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ABSTRACT usability goals of effectiveness and utility. Such a cottex
We present results from an empirical user-study with tensuse aware interface also has the potential to improve Janeis use
which investigates if information from a user’s environrhen experience.

helps a user interface to personalize itself to individisgira

to better meet usability goals and improve user-experience In general, user preference for an application action sarie
In our research we use a microphone and a web-camera telepending on the context in which the application is used.
collect this information (user-context) from the vicinity a For example, if Jane has an appointment for a meeting and is
subject’'s desktop computer. Sycophant, our context-awarefacing away from her computer, she might prefer her calen-
calendaring application and research test-bed uses neachindaring application to generate a voice alarm for her appoint
learning techniques to successfully predict a user-preder ment. In a different scenario, if Jane is talking with someon
alarm type. Discounting user identity and motion informa- in her office she might prefer her calender to generate a vi-
tion significantly degrades Sycophant’s performance on thesual alarm for her meeting. In the same situation, Jack might
alarm prediction task. Our user study emphasizes the neegbrefer to have a visual alarm if he is facing away from his
for user-context for personalizable user interfaces whantn computer; a voice alarm if he is talking with someone in his
better meet effectiveness and utility usability goals. tRes  office. Application action preferences in addition to vary-
from our study further demonstrate that contextual informa ing upon the context of use also vary according to individual
tion helps adaptive interfaces to improve user-experience  users. Wouldn't it be nice if Jane’s calendar was context-

aware and adaptively generated her preferred alarm types?
ACM Classification:  H5.2 [Information interfaces and pre-

sentation]: User Interfaces. - Graphical user interfaces. Current computer interfaces rely on the activity of an inter
) ) ) ) nal clock, keyboard and mouse to provide input or context to
General terms:  Algorithms, Design, Experimentation. interact with a user. This reliance on meager contextual con

textual information makes computer applications unawére o
a user and her environment. Context unaware user interfaces
can only make weak attempts to adapt their behavior to indi-
INTRODUCTION vidual user needs. A user’s environment is a rich source for

Consider the scenario of Jane setting a few appointments inOther types of contextual information like motion and sreec

her calendar. According to Preece et. al., Jane's calemglari In addition to the activity of a keyboard or mouse or an inter-

interface iseffectiveif it is doing what it is supposed to do, nal clock. In our research, we use simple sensors to gather

that is, her calendar should generate alarms as reminders fosuch contextual information from a user’s environment and

ner appornments (12, Jane's calendarngneriacesgen e dala sig machine earning echniaues o enerete
ates suitable alarm types so that she does not miss any of het y 9 P

appointments, then the calendar provides Jane sty a generalized context-aware framework for enabling multi-

that is, it provides the right kind of functionality so thain ple user-interfaces that personalize themselves to ithati

can accomplish what she wants to do. We believe that a cal-15€rs:

endaring interface which is aware of Jane and learns her pref
erences for alarm-types can better meet these two importan

Keywords:  context, user-context, machine learning, learn-
ing classifier systems

We present results from an empirical user study which in-
vestigates if contextual information from a user’s environ
ment is beneficial for user interfaces to adapt their belmavio
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not made or distributed for profit or commercial advantage that copies ten graduate students in our department. We collected data
bear this notice and the full citation on the first page. TWCIImheI’WiSE, to for an alarm type preference Wh||e a subject read different a
republish, to post on servers or to redistribute to listguies prior specific ; : ; ;

permission and/or a fee. t|c_Ies on a computerin four d|fferenf[ sessions, each I_gﬂt’bn
IUI'07, January 28—31, 2007, Honolulu, Hawaii, USA.. minutes. Section gives more details about the design of our
Copyright 2007 ACM 1-59593-481-2/07/0001$5.00. user study.Sycophantour context-aware calendaring inter-



face and research test-bed learns a mapping from useedelat eralization of our context-learning approach across wiffe
contextual features to alarm types [11, 16]. Sycophant suc-subjects.

cessfully learns to predict a user-preferred alarm typseho

from a set of four alarm types: no alarm, visual alarm, voice USER STUDY

alarm and both (voice and visual). Sycophant’s best accu- we designed our user study to simulate an average work day
racy for this alarm-type prediction &3 percent using XCS,  in ourresearch lab in the computer science department where
a learning classifier system [17]. one activity includes reading research papers while listen
ing to music and being interrupted with conversations from
neighbors. Our study goal was to investigate if contextual
information gathered from a user’s environment helps Syco-
phant's to accurately predict a user-preferred alarm type.

We briefly describe what we mean bgntextin our research
in the next section. Section gives our user study details.
Our results in Section shows the beneficial effect of contex-

tual information for Sycophant to adapt its alarm generatio Each subject (user) participated in four separieninute

Eaear:??/rzorJgelpdlyel?graelnléseir%a:gg zlrj]n:jr:;”égn?g;triensmtg I'gszessions. During a session we instructed a subject to read an
9 P rticle within the first30 minutes and answer questions per-

section. taining to the article in the remaining minutes. Sycophant
CONTEXT, USER-CONTEXT FOR LEARNING USER PREF- generated different alarms for a subject while she read-an ar
ERENCES ticle. We set the content of these alarms to help a subject par

Context awareness is a widely researched topic in the arediCipate in our study and answer questions related to tie art
of ubiquitous computing [2, 3]. Researchers in this are@hay Cle. Sycophant's alarms were of four different types: visua
done a significant amount of work on standardizing a clear &larm, voice alarm, visual and voice alarm, and no-alarm.
definition of context Here is Dey’s widely accepted defini- Each alarmwas a hintrelated to the article or the study. Syco
tion of context [4]: “Context is any information that can be ~ Phant's visual alarm is a pop-up window, and the voice alarm
used to characterize the situation of an entity. An entity is IS @1 automated voice generated by a text-to-speech synthe-
a person, place or object that is considered relevant to the SIZ€r- The subject participating in a session provided-feed

interaction between a user and an application, including th back specifying the type of alarm she preferred whenever
user and the application themselves’. Sycophant generated a alarm. We provided a notepad and

a pen to our study subjects for writing down the information
Applying Dey’s definition of context to a desktop PC, we fur- provided by the alarms (hints). Subjects studied an article
ther defineuser-contexas [14]:“Any information regarding for the first30 minutes and provided feedback to Sycophant
a user’s presence (or absence) in the vicinity of a computer” on their preferred alarm-type whenever Sycophant gergerate
We differentiate betweeaxternalandinternal user-context  a alarm (hint). During the last5 minutes of oud5 minute
in our research. External user-context is information that study, subjects answered questions pertaining to thdeartic
computer senses from the external environment. This in-Sycophant did not generate alarms for a subject while a sub-
cludes user-movements in the immediate vicinity of the com- ject answered questions.
puter and the presence or absence of speech. Internal user-
context is any information that a computer senses from its Our study had two patterns of variation: cognitive load on a
internal environment. This information generally relates ~ subject (four article reading tasks to be performed) andrala
keyboard activity, mouse usage, and the activity of difiere  types. We applied the following four treatments to our study
processes within a user's computer. We use Dey's definitionsubjects: Music with no talk, Talk with no music, Both music
of context to address the issue of learning user preferencesand talk, and No music or talk. An alarm type was the inde-
We believe that context-aware interfaces can betégson- pendentvariable in our study and we measured it at these four
alize themselves to a user. An interface personalizes itselflevels: no-alarm (no hint is generated for the subject)jalis
to a user if it learns user-preferences and adapts its bahavi alarm (a pop-up window displayed the hint), voice alarm (a
accordingly. hint is voiced out), and both (visual and voice alarms are

_ _ generated). We used the same order of treatments for the
In the area of context-aware interfaces and environmentssequence of alarm types across all subjects in our study.

Horvitz et al. built statistical methods and cost-benefit ap

proaches to infer decisions about alerting users [7, 8].-Hud Table 1 shows our experimental design for a subject reading
son, Fogarty, Atkeson et al. built predictive models to in- a short article, long article, long article and a short #tin

fer the state of interruptability of a user [5, 9], Bailey and different sessions. In our study, a self-report is the sttbje
Adamzyck quantitatively evaluated the effect of interiaps preferred alarm type and the construct being measured is the
on the productivity of a user [1], and Kulkarn®eBaused alarm type which Sycophant generates. We ensure content-
sensor devices to localize a user in context-aware environ-validity for this study by seeing to it that self-report aie t
ments [10]. Our research integrates and extends all theseonstruct being measured are the same. We control the con-
ideas in human-computer interaction. We design a sensorfounding variables by seclusion of a subject while the study
based approach for gathering user-context for enabling in-is being conducted. We use a randomized design to control
terfaces to learn user preferences Like Fogarty, we use reathe variation in the study. The alarms are generated in a ran-
sensors in our research to gather user-context. In addi@ion dom order for every session and this order is preservedifor al
predicting the interruptibility of a user, we also predicet  the subjects in our study. Each unit in our study corresponds
type of alarm to use for an individual user. In this paper, to an article reading task. A subject reads a short article in
we provide describe our empirical user study to test the gen-the first session, a longer article in the second session, an-



Table 1: Experimental Design for a Study Subject Table 2: Prediction accuracy on the four-class alarm

problem
Session| Task | Alarm Order| Treatment
1 short | 0,2,3,1 Talk, No-music I Il Il v
article | 3,1,2,0 Music, No-talk Machine| Original | No No
1,0,2,3 No-music, no-talk Learner | Data User-Context| External Context
2,1,0,3 Music, Talk Zero-R | 48.62 48.62 48.62
2 long |3,1,0,2 Talk, No-music One-R | 63.23 48.62 63.23
article | 1,2,0,3 Music, No-talk J48 62.71 50.00 62.54
1,3,2,0 No-music, no-talk XCS 88.35 31.26 67.51
3,0,2,1 Music, Talk
3 long 1,3,0,2 Talk, No-music .
article | 2.3.1,0 Music, No-talk Table 3: Prediction accuracy on the two-class alarm
2,0,3,1 No-music, no-talk problem
3,2,0,1 Music, Talk
4 short [ 0,3,2,1 Talk, No-music
article | 1,0,2, 3 Music, No-talk | Il I \Y]
1,0,2,3 No-music, no-talk Machine| Original | No No
3,0,1,2 Music, Talk Learner | Data User-Context| External Context
Zero-R | 85.56 85.56 85.56
One-R 86.42 86.42 86.42
other long article in the third session and finally a shorter | J48 87.11 86.42 86.59
article in the fourth session. A subsequent subject reads a XCS 8591 [71.13 74.39

long article in the first session, a shorter article in theoselc
session, another short article in the third session andgeton

article in the fourth session. We perform this variation of task of deciding to generate an a|arm_type from the set of

article reading lengths for every pair of subjects. four alarm-types as thieur-class alarm probleftwo-class
alarm problemis the task of deciding whether or not to gen-
RESULTS erate an alarm (interrupt) for a user.

We evaluated the performance of four machine learning al-

gorithms, Zero-R, One-R, J48, and XCS to learn user prefer-Tables 2 and 3 show the test-set performance (averaged over
ences. We use Zero-R’s performance as the base rate for evaten runs) of Zero-R, One-R, J48 and XCS in learning user
uating a machine learning algorithm’s performance. Zero- preferences across all these subjects on the four-class and
R is a primitive learning scheme which predicts the major- two-class alarm problems respectively. We list the leaynin

ity class in categorical data or average class if the class isalgorithm in column one. Column two shows the predictive
numeric. For example, if a user-preferred a visual alarm accuracy, that is, the test-set performance of a learngw al

in 6 out of 10 cases, then Zero-R would predict that this rithm on the four-class problem of predicting a alarm type
subject always preferred a visual alarm. One-R generatedrom a set of four alarm types (visual, voice, both visual

a one level decision tree which tests only one particular at-and voice, and none). We show the predictive accuracy of
tribute and constructs a set of rules based only on that at-the four machine learning algorithms on a data set after re-
tribute [6]. J48 isWekas implementation of Ross Quinlan’'s  moving the user-context features (user-id, motion anddpee
C4.5 decision tree [18, 13]. Wilson's XCS classifier sys- features) in column three. Column four shows the learning
tem, a genetics-based machine learning scheme, is ouhfourtalgorithms’ performance on a data set which has no external
learning scheme. [17]. We use a two-sample t-test wili a  context (no motion or speech features).

percent confidence interval to compare different learnlng a )

gorithms ¢,—o.025 v—9). We use the same statistical test to On the four-class alarm problem, all the learning schemes

compare the performance of a learning algorithm across dif-Perform better than Zero-R (base-rate) and XCS signifigant
ferent data sets. outperforms other machine learners. Removing user-contex

considerably degrades the performance of all machinedearn
We merged the data collected from tihe subjects in our  ers except Zero-R (the majority voting algorithm). Remov-
study and ended up with a total 882 exemplars. We pro- ing external user-context degrades the performance of XCS
vide more details about the construction of our user-cdntex and J48. We notice a similar behavior on the two-class alarm
data in [15, 16]. We selected a subset of features in ourproblem; removing user-context or external user-context d
user-context data after ranking these features usingtbe grades the performance of XCS and J48. The high predictive
mation gain ratidfilter in Wekamachine learning toolkitand  accuracy of the four machine learning schemes on the two-
retained user-context features which had a non-zero gain raclass alarm problem of deciding whether or not to interrupt
tio. Next, we created three-stratified folds/g of the data  a user bolsters Fogarty’s work on predicting the state of in-
for training the rest for testing) of this data set to gauge th terruptability of a user [5]. Examining One-R’s tree showed
training and test set performances. We consider Sycopghant’ that user-identity attribute was chosen as the most impbrta



attribute on the data-set which had all the user-context fea 5.
tures and mouse-activity attribute was chosen when the user
context features were removed. Our results clearly indicat
the following: Knowing who the user is helps Sycophant
to adapt its alarm-type to that particular user; User-cdnte
features like user-id and motion information are criticad f
Sycophant’s ability to accurately predict alarm-type pref
ences; Removing external user-context (motion and speech)
information degrades Sycophant’s ability to predict alarm
type preferences. These statistically significant reshitsv

that an adaptive context-aware user interface can improve
user-experience.

6.

CONCLUSION AND FUTURE WORK

In this paper we investigated if context-aware user inter-
faces capable of adapting their behavior to individual siser
can better meet usability goals and improve user-expegienc
Our study showed that user-context information benefits our
context-aware calendaring interface, Sycophant, to ssece
fully personalize itself to individual subjects Next, we-ob
tained results which indicated that Sycophant adapted (per
sonalized) its behavior to individual subjects. Sycoplpaiat
marily used user-identity information along with inforricat
from a user’s external environment (motion) to succesgfull
predict a user-preferred alarm type.

9.

Encouraged by the positive results from our user study, we10.

are currently implementing a generalized user-contextawa
framework for enabling existing applications to persarali
themselves to individual users. We plan to incorporate epen
source applications like Sunbird (a calendaring applegti
and XMMS (media player) within our framework and en-
able these applications to be user-context aware. We plan to
distribute this user-context software and gather longies-
age data to substantiate our claims regarding the impatanc
of contextual information for adaptive user interfacesahhi
can improve user-experience by learning their preferences
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