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ABSTRACT
We present results from an empirical user-study with ten users
which investigates if information from a user’s environment
helps a user interface to personalize itself to individual users
to better meet usability goals and improve user-experience.
In our research we use a microphone and a web-camera to
collect this information (user-context) from the vicinityof a
subject’s desktop computer. Sycophant, our context-aware
calendaring application and research test-bed uses machine
learning techniques to successfully predict a user-preferred
alarm type. Discounting user identity and motion informa-
tion significantly degrades Sycophant’s performance on the
alarm prediction task. Our user study emphasizes the need
for user-context for personalizable user interfaces whichcan
better meet effectiveness and utility usability goals. Results
from our study further demonstrate that contextual informa-
tion helps adaptive interfaces to improve user-experience.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General terms: Algorithms, Design, Experimentation.

Keywords: context, user-context, machine learning, learn-
ing classifier systems

INTRODUCTION
Consider the scenario of Jane setting a few appointments in
her calendar. According to Preece et. al., Jane’s calendaring
interface iseffectiveif it is doing what it is supposed to do,
that is, her calendar should generate alarms as reminders for
her appointments [12]. If Jane’s calendaring interface gener-
ates suitable alarm types so that she does not miss any of her
appointments, then the calendar provides Jane someutility,
that is, it provides the right kind of functionality so that Jane
can accomplish what she wants to do. We believe that a cal-
endaring interface which is aware of Jane and learns her pref-
erences for alarm-types can better meet these two important
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usability goals of effectiveness and utility. Such a context-
aware interface also has the potential to improve Jane’s user-
experience.

In general, user preference for an application action varies
depending on the context in which the application is used.
For example, if Jane has an appointment for a meeting and is
facing away from her computer, she might prefer her calen-
daring application to generate a voice alarm for her appoint-
ment. In a different scenario, if Jane is talking with someone
in her office she might prefer her calender to generate a vi-
sual alarm for her meeting. In the same situation, Jack might
prefer to have a visual alarm if he is facing away from his
computer; a voice alarm if he is talking with someone in his
office. Application action preferences in addition to vary-
ing upon the context of use also vary according to individual
users. Wouldn’t it be nice if Jane’s calendar was context-
aware and adaptively generated her preferred alarm types?

Current computer interfaces rely on the activity of an inter-
nal clock, keyboard and mouse to provide input or context to
interact with a user. This reliance on meager contextual con-
textual information makes computer applications unaware of
a user and her environment. Context unaware user interfaces
can only make weak attempts to adapt their behavior to indi-
vidual user needs. A user’s environment is a rich source for
other types of contextual information like motion and speech
in addition to the activity of a keyboard or mouse or an inter-
nal clock. In our research, we use simple sensors to gather
such contextual information from a user’s environment and
minethis data using machine learning techniques to generate
a user model. Our goal is to incorporate this user-model into
a generalized context-aware framework for enabling multi-
ple user-interfaces that personalize themselves to individual
users.

We present results from an empirical user study which in-
vestigates if contextual information from a user’s environ-
ment is beneficial for user interfaces to adapt their behavior
to individual idiosyncrasies to better meet usability goals and
thereby improve user-experience. Our study subjects were
ten graduate students in our department. We collected data
for an alarm type preference while a subject read different ar-
ticles on a computer in four different sessions, each lasting45
minutes. Section gives more details about the design of our
user study.Sycophant, our context-aware calendaring inter-



face and research test-bed learns a mapping from user-related
contextual features to alarm types [11, 16]. Sycophant suc-
cessfully learns to predict a user-preferred alarm type chosen
from a set of four alarm types: no alarm, visual alarm, voice
alarm and both (voice and visual). Sycophant’s best accu-
racy for this alarm-type prediction is88 percent using XCS,
a learning classifier system [17].

We briefly describe what we mean bycontextin our research
in the next section. Section gives our user study details.
Our results in Section shows the beneficial effect of contex-
tual information for Sycophant to adapt its alarm generation
behavior to individual users. We summarize our results in
learning user preferences based on user-context in the last
section.

CONTEXT, USER-CONTEXT FOR LEARNING USER PREF-
ERENCES
Context awareness is a widely researched topic in the area

of ubiquitous computing [2, 3]. Researchers in this area have
done a significant amount of work on standardizing a clear
definition ofcontext. Here is Dey’s widely accepted defini-
tion of context [4]: “Context is any information that can be
used to characterize the situation of an entity. An entity is
a person, place or object that is considered relevant to the
interaction between a user and an application, including the
user and the application themselves”.

Applying Dey’s definition of context to a desktop PC, we fur-
ther defineuser-contextas [14]:“Any information regarding
a user’s presence (or absence) in the vicinity of a computer”.
We differentiate betweenexternaland internal user-context
in our research. External user-context is information thata
computer senses from the external environment. This in-
cludes user-movements in the immediate vicinity of the com-
puter and the presence or absence of speech. Internal user-
context is any information that a computer senses from its
internal environment. This information generally relatesto
keyboard activity, mouse usage, and the activity of different
processes within a user’s computer. We use Dey’s definition
of context to address the issue of learning user preferences.
We believe that context-aware interfaces can betterperson-
alize themselves to a user. An interface personalizes itself
to a user if it learns user-preferences and adapts its behavior
accordingly.

In the area of context-aware interfaces and environments,
Horvitz et al. built statistical methods and cost-benefit ap-
proaches to infer decisions about alerting users [7, 8]. Hud-
son, Fogarty, Atkeson et al. built predictive models to in-
fer the state of interruptability of a user [5, 9], Bailey and
Adamzyck quantitatively evaluated the effect of interruptions
on the productivity of a user [1], and Kulkarni’sReBaused
sensor devices to localize a user in context-aware environ-
ments [10]. Our research integrates and extends all these
ideas in human-computer interaction. We design a sensor-
based approach for gathering user-context for enabling in-
terfaces to learn user preferences Like Fogarty, we use real
sensors in our research to gather user-context. In additionto
predicting the interruptibility of a user, we also predict the
type of alarm to use for an individual user. In this paper,
we provide describe our empirical user study to test the gen-

eralization of our context-learning approach across different
subjects.

USER STUDY
We designed our user study to simulate an average work day
in our research lab in the computer science department where
one activity includes reading research papers while listen-
ing to music and being interrupted with conversations from
neighbors. Our study goal was to investigate if contextual
information gathered from a user’s environment helps Syco-
phant’s to accurately predict a user-preferred alarm type.
Each subject (user) participated in four separate45 minute
sessions. During a session we instructed a subject to read an
article within the first30 minutes and answer questions per-
taining to the article in the remaining15 minutes. Sycophant
generated different alarms for a subject while she read an ar-
ticle. We set the content of these alarms to help a subject par-
ticipate in our study and answer questions related to the arti-
cle. Sycophant’s alarms were of four different types: visual
alarm, voice alarm, visual and voice alarm, and no-alarm.
Each alarm was a hint related to the article or the study. Syco-
phant’s visual alarm is a pop-up window, and the voice alarm
is an automated voice generated by a text-to-speech synthe-
sizer. The subject participating in a session provided feed-
back specifying the type of alarm she preferred whenever
Sycophant generated a alarm. We provided a notepad and
a pen to our study subjects for writing down the information
provided by the alarms (hints). Subjects studied an article
for the first30 minutes and provided feedback to Sycophant
on their preferred alarm-type whenever Sycophant generated
a alarm (hint). During the last15 minutes of our45 minute
study, subjects answered questions pertaining to the article.
Sycophant did not generate alarms for a subject while a sub-
ject answered questions.

Our study had two patterns of variation: cognitive load on a
subject (four article reading tasks to be performed) and alarm
types. We applied the following four treatments to our study
subjects: Music with no talk, Talk with no music, Both music
and talk, and No music or talk. An alarm type was the inde-
pendent variable in our study and we measured it at these four
levels: no-alarm (no hint is generated for the subject), visual
alarm (a pop-up window displayed the hint), voice alarm (a
hint is voiced out), and both (visual and voice alarms are
generated). We used the same order of treatments for the
sequence of alarm types across all subjects in our study.

Table 1 shows our experimental design for a subject reading
a short article, long article, long article and a short article in
different sessions. In our study, a self-report is the subject-
preferred alarm type and the construct being measured is the
alarm type which Sycophant generates. We ensure content-
validity for this study by seeing to it that self-report and the
construct being measured are the same. We control the con-
founding variables by seclusion of a subject while the study
is being conducted. We use a randomized design to control
the variation in the study. The alarms are generated in a ran-
dom order for every session and this order is preserved for all
the subjects in our study. Each unit in our study corresponds
to an article reading task. A subject reads a short article in
the first session, a longer article in the second session, an-



Table 1: Experimental Design for a Study Subject

Session Task Alarm Order Treatment
1 short 0, 2, 3, 1 Talk, No-music

article 3, 1, 2, 0 Music, No-talk
1, 0, 2, 3 No-music, no-talk
2, 1, 0, 3 Music, Talk

2 long 3, 1, 0, 2 Talk, No-music
article 1, 2, 0, 3 Music, No-talk

1, 3, 2, 0 No-music, no-talk
3, 0, 2, 1 Music, Talk

3 long 1, 3, 0, 2 Talk, No-music
article 2, 3, 1, 0 Music, No-talk

2, 0, 3, 1 No-music, no-talk
3, 2, 0, 1 Music, Talk

4 short 0, 3, 2, 1 Talk, No-music
article 1, 0, 2, 3 Music, No-talk

1, 0, 2, 3 No-music, no-talk
3, 0, 1, 2 Music, Talk

other long article in the third session and finally a shorter
article in the fourth session. A subsequent subject reads a
long article in the first session, a shorter article in the second
session, another short article in the third session and a longer
article in the fourth session. We perform this variation of
article reading lengths for every pair of subjects.

RESULTS
We evaluated the performance of four machine learning al-

gorithms, Zero-R, One-R, J48, and XCS to learn user prefer-
ences. We use Zero-R’s performance as the base rate for eval-
uating a machine learning algorithm’s performance. Zero-
R is a primitive learning scheme which predicts the major-
ity class in categorical data or average class if the class is
numeric. For example, if a user-preferred a visual alarm
in 6 out of 10 cases, then Zero-R would predict that this
subject always preferred a visual alarm. One-R generates
a one level decision tree which tests only one particular at-
tribute and constructs a set of rules based only on that at-
tribute [6]. J48 isWeka’s implementation of Ross Quinlan’s
C4.5 decision tree [18, 13]. Wilson’s XCS classifier sys-
tem, a genetics-based machine learning scheme, is our fourth
learning scheme. [17]. We use a two-sample t-test with a95
percent confidence interval to compare different learning al-
gorithms (tp=0.025,N=9). We use the same statistical test to
compare the performance of a learning algorithm across dif-
ferent data sets.

We merged the data collected from the10 subjects in our
study and ended up with a total of582 exemplars. We pro-
vide more details about the construction of our user-context
data in [15, 16]. We selected a subset of features in our
user-context data after ranking these features using theinfor-
mation gain ratiofilter in Wekamachine learning toolkit and
retained user-context features which had a non-zero gain ra-
tio. Next, we created three-stratified folds (2/3 of the data
for training the rest for testing) of this data set to gauge the
training and test set performances. We consider Sycophant’s

Table 2: Prediction accuracy on the four-class alarm
problem

I II III IV
Machine Original No No
Learner Data User-Context External Context
Zero-R 48.62 48.62 48.62
One-R 63.23 48.62 63.23
J48 62.71 50.00 62.54
XCS 88.35 31.26 67.51

Table 3: Prediction accuracy on the two-class alarm
problem

I II III IV
Machine Original No No
Learner Data User-Context External Context
Zero-R 85.56 85.56 85.56
One-R 86.42 86.42 86.42
J48 87.11 86.42 86.59
XCS 85.91 71.13 74.39

task of deciding to generate an alarm-type from the set of
four alarm-types as thefour-class alarm problem; two-class
alarm problemis the task of deciding whether or not to gen-
erate an alarm (interrupt) for a user.

Tables 2 and 3 show the test-set performance (averaged over
ten runs) of Zero-R, One-R, J48 and XCS in learning user
preferences across all these subjects on the four-class and
two-class alarm problems respectively. We list the learning
algorithm in column one. Column two shows the predictive
accuracy, that is, the test-set performance of a learning algo-
rithm on the four-class problem of predicting a alarm type
from a set of four alarm types (visual, voice, both visual
and voice, and none). We show the predictive accuracy of
the four machine learning algorithms on a data set after re-
moving the user-context features (user-id, motion and speech
features) in column three. Column four shows the learning
algorithms’ performance on a data set which has no external
context (no motion or speech features).

On the four-class alarm problem, all the learning schemes
perform better than Zero-R (base-rate) and XCS significantly
outperforms other machine learners. Removing user-context
considerably degrades the performance of all machine learn-
ers except Zero-R (the majority voting algorithm). Remov-
ing external user-context degrades the performance of XCS
and J48. We notice a similar behavior on the two-class alarm
problem; removing user-context or external user-context de-
grades the performance of XCS and J48. The high predictive
accuracy of the four machine learning schemes on the two-
class alarm problem of deciding whether or not to interrupt
a user bolsters Fogarty’s work on predicting the state of in-
terruptability of a user [5]. Examining One-R’s tree showed
that user-identity attribute was chosen as the most important



attribute on the data-set which had all the user-context fea-
tures and mouse-activity attribute was chosen when the user-
context features were removed. Our results clearly indicate
the following: Knowing who the user is helps Sycophant
to adapt its alarm-type to that particular user; User-context
features like user-id and motion information are critical for
Sycophant’s ability to accurately predict alarm-type prefer-
ences; Removing external user-context (motion and speech)
information degrades Sycophant’s ability to predict alarm-
type preferences. These statistically significant resultsshow
that an adaptive context-aware user interface can improve
user-experience.

CONCLUSION AND FUTURE WORK
In this paper we investigated if context-aware user inter-
faces capable of adapting their behavior to individual users
can better meet usability goals and improve user-experience.
Our study showed that user-context information benefits our
context-aware calendaring interface, Sycophant, to success-
fully personalize itself to individual subjects Next, we ob-
tained results which indicated that Sycophant adapted (per-
sonalized) its behavior to individual subjects. Sycophantpri-
marily used user-identity information along with information
from a user’s external environment (motion) to successfully
predict a user-preferred alarm type.

Encouraged by the positive results from our user study, we
are currently implementing a generalized user-context aware
framework for enabling existing applications to personalize
themselves to individual users. We plan to incorporate open-
source applications like Sunbird (a calendaring application)
and XMMS (media player) within our framework and en-
able these applications to be user-context aware. We plan to
distribute this user-context software and gather long-term us-
age data to substantiate our claims regarding the importance
of contextual information for adaptive user interfaces which
can improve user-experience by learning their preferences.
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