
Sycophant: An API for Research in Context-Aware User Interfaces

Anil Shankar, Juan Quiroz, Sergiu M. Dascalu, Sushil J. Louis, Monica N. Nicolescu
Department of Computer Science and Engineering

University of Nevada
Reno, Nevada 89557

{anilk, quiroz, dascalus, sushil, monica}@cse.unr.edu

Abstract

Research in context-aware user interfaces aims to im-
prove human-computer interaction by providing more ef-
fective, smarter and user-friendlier solutions for computer
applications. Currently, software available for performing
such research and developing context-aware interfaces is
very limited both in scope and possibilities of extension.
Sycophant was designed with two objectives in mind: first,
to allow easy insertion of new features and capabilities
needed for conducting research and, second, to provide a
reusable, readily available programming resource for de-
veloping new context-aware interactive software applica-
tions. Available as open source software, Sycophant’s API
and the calendaring application we created using it are pre-
sented in this paper in terms of functional capabilities, high
level architecture, detailed design, and results of use. Pro-
cedural steps for developing new context-aware user inter-
faces using our API are also described in the paper.

1. Introduction

Present day computer applications rely on the activity
of an internal clock, keyboard and mouse to provide input
or context to interact with a user. Applications that rely on
such meager contextual information are only partially aware
of a user and her environment. For example, consider the
scenario of Jill listening to music on her media player. Jill
pauses her media player if the phone rings in her office, and
turns the volume down if she is talking with someone in
her office. In a similar situation, Jack prefers to turn down
the volume on his media player if the phone rings in his
office; he pauses the media player while talking with some-
one in his office. Application action preferences not only
vary with the context in which the application is used, but
they are also different from user to user. Jill’s interaction
with her media player could be a lot more effective if her
media player harnessed additional contextual information

from her environment and adapted its behavior to turn the
music volume down whenever she is talking with someone
in her office.

A user’s environment is a rich source for simple contex-
tual information such as the existence of motion or speech,
in addition to the activity of an internal clock, keyboard
and mouse. In this paper, we outline an Application Pro-
gramming Interface (API), Sycophant API, to access such
contextual information from a user’s environment. We use
the name Sycophant for both the API we have developed
and the context-aware software environment (centered on a
calendaring application) that we have built using the API.
Sycophant API allows developers to create different user-
related features and employs these features to build a user
model for individual users. An application developer can
leverage this user model to learn preferences for different
applications. For example, one can use Sycophant API to
harness speech-related contextual information from Jill’s
environment and use this information to enable her me-
dia player to learn Jill’s preferences for turning the volume
down or pausing the music. Jill’s media player could po-
tentially use speech sensor data to learn her context-based
preferences for different situations. We provide results from
using our API in a calendaring application to learn alarm
preferences for different users based on data from different
context sensors. Related work by Shankar et. al [9, 12]
and Fogarty et. al [7, 6] gives more details about user-
context feature-construction for context aware interfaces. In
this paper we focus on highlighting the utility of Sycophant
API for such tasks. Our goal is to provide researchers in
context-aware user interfaces access to APIs such that they
can specify sensors to be used and features to be extracted,
and use the information collected to enhance the adaptive
behavior of different applications. We believe that such
context-enabled applications capable of learning user pref-
erences have a very high potential for improving the quality
of human-computer interaction (HCI).

To summarize our two main contributions: first, we
provide an account of a unique, operational context-aware

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

calendar-centered software environment used both for re-
search and actual office work. Second, we offer API details
for developing new context-aware applications (for exam-
ple, a media player or an email browser able to learn user
preferences and behave to their satisfaction). The rest of
this paper is organized as follows. Section 2 provides back-
ground on currently available open source APIs and their
applicability for research in context-aware user interfaces.
Section 3 describes the Sycophant context-aware learning
environment, its four-layer architecture, and functionality.
Class diagrams presenting our API organization and pro-
cedural steps for using the API in developing a particular
software application are given in Section 4. Results from
using the Sycophant API and environment in our research
are given in Section 5. Finally, in Section 6 we present our
conclusions and outline directions of future work.

2 Background and Related Work

We are not aware of any readily available APIs that allow
researchers in context aware user interfaces to extract con-
text features from different sensors. Our survey revealed
two APIs/software packages that come the closest to our
Sycophant API. The first is a software package provided by
Carolina Computer Assistive Technology group at the Uni-
versity of North Carolina-Chapel Hill [1]. Their approach
focuses mostly on the development of applications for peo-
ple with disabilities. The pyHook library included in the
packages wraps low-level mouse and keyboard events in
MicroSoft’s Windows Hooking API. This API cannot be
used on Linux platforms and there is no facility to directly
extract sensor features. The second, Fogarty’s Subtle, is a
software package that collects data from a note-book com-
puter’s closing, opening, mouse-click, audio analyses, and
WiFi sensing activities [7]. Subtle can create new features
and operators based on a context feature’s type and history
of usage. However, Subtle is currently not available for use
on Linux platforms. Our Sycophant-API is transparent to
the operating system and is currently usable on both Win-
dows and Linux [4].

The next section briefly describes Sycophant’s architec-
ture. We used Sycophant in a study involving three users
for a period of four to six weeks and in a second short term
study involving ten users. In both these user studies, Syco-
phant enabled a calendaring application to adaptively gen-
erate alarms for the users [9], [12]. The results of these
studies have demonstrated Sycophant’s utility for research
in context-aware user interfaces and environments. Encour-
aged by these results, we are currently investigating gener-
alizing Sycophant by using it for Google Calendar (a web-
based calendar) and XMMS (a Linux media player).

3 Overview of Sycophant Software Environ-
ment

We have used the Sycophant API to build the Sycophant
context-aware interactive software environment. The tar-
get application for which we wanted to learn user prefer-
ences and adapt application behavior to these preferences
has been a calendar. Nevertheless, the principles of building
a context-aware environment such as Sycophant are largely
independent of the target application. In this section, we de-
scribe use cases that specify functionality provided by the
Sycophant environment and the components (sub-APIs) of
its software architecture.

3.1 Functionality

The major actors interacting with Sycophant are the fol-
lowing: the user of the environment embedding a target user
application (calendaring program or a media player), the
sensors used to collect data relevant to user behavior (mo-
tion, keyboard, mouse, and speech sensors), and the time,
which provides timestamps for analyzing research data. In
Sycophant’s case these actors, together with the use cases in
which they are involved, are shown in Figure 1. Actors and
use cases are elements of the Unified Modeling Language
(UML) that capture system behavior as seen from outside
the system [3] and [8].

Application
Use

Service Set
Customise

Service Set
Define

Feedback
Provide

SensorData
Generate Notify

Change

Build
UserModel

Generate
TimeStamp

Sycophant Environment

SENSOR

USER

TIME

Figure 1. Use case diagram of the Sycophant
user-centered context-aware learning envi-
ronment

Due to space limitations, only the main functionality of
the Sycophant environment is shown in Figure 1. Actors
trigger all use cases. The system can be seen as a black box
since the system use case implementation is irrelevant to
the actors [5]. In Figure 1, all sensor actors inherit from the
abstract (Sensor) actor. The GenerateTimeStamp use case
shows that the Time actor interacts with the system by asso-
ciating timestamps with data items collected from sensors.
The sensors themselves interact with the system by noti-
fying changes, e.g., when a web-camera detects motion in
the vicinity of the computer (captured in the NotifyChange

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

use case). When requested by the User the sensors also
provide sensor data, indicated by their involvement in the
GetSensorData use case. The User of the system initiates
the following use cases: DefineServiceSet allows the user to
specify the types and the number of sensors available in the
system; CustomizeServiceSet is invoked for selecting a sub-
set of available sensors to be used in an actual operation of
the system (e.g., in a research experiment, or over of a speci-
fied period of time of using the application); GetSensorData
allows the user to specify the parameters of data collection,
including sampling intervals; BuildUserModel provides the
creation of the user model based on context data collected;
UseApplication is the actual use of the target application
embedded in the context-aware environment (e.g., of the
calendar, with all its user-preferred alarm types); Provide-
Feedback solicits feedback from the user during the use of
the application on various aspects of use that help the sys-
tem learn user preferences.

3.2 Architecture

Figure 2 shows the architecture of our Sycophant user-
context aware learning environment, built using the Syco-
phant API. Sycophant API consists of four components
(sub-APIs): Sensors API, Context API, Learning Services
API, and Application-Level API. Sensors API interfaces
different sensors (motion, speech, keyboard, mouse) with
a user’s environment. For example, we can interface with a
web-camera (motion sensor) and create a motion detection
service at the sensor’s level. We can similarly interface with
a microphone, a keyboard, or a mouse. Different sensors
store their data in the User-Context layer. We can extract
user-context features from this data using the Context-API.
For example, if we want to count the number of times the
motion detector was active in the last 10 minutes we can
use the Context-API to extract a Count-10 feature that ac-
complishes this task. Using the User Context API, we can
similarly extract different sets of features from all the sen-
sors. Section 4 provides more details on how to create a
user-context data set extracting different features from vari-
ous sensors.

We can use the Learning Services API to select a ma-
chine learning algorithm for generating an application-
specific user model based on user-context data collected in
the User Context layer. A user model maps user-related
contextual features to applications. We can use this API to
select a decision-tree learning algorithm for learning Jill’s
music volume preferences based on speech activity detected
in her environment. Learning Services API allows use to
plug-in any other machine-learning algorithm for generat-
ing user models that reflect their application action prefer-
ences. The Application API provides access to the user-
model (generated at the Learning Services layer) for pre-

LEARNING SERVICES LAYER

APPLICATION API

Google
Calendar

XMMS Music
Player Application-N

APPLICATIONS LAYER

User Model

XCS

USER CONTEXT LAYER

Motion
Sensor

Speech
Sensor

Keyboard
Sensor

Mouse
Sensor

SENSORS LAYER

User Environment

LEARNING SERVICES API

CONTEXT API

SENSORS API

Figure 2. Four-layer architecture of the Syco-
phant software environment

dicting a user preferred application action. We can use this
API to enable Jill’s media player to predict when the volume
should be turned down based on Jill’s model built using dif-
ferent sensor data. Thus, the Sycophant API plays a key role
in aiding applications to adapt their behavior to individual
users.

4 Sychophant API: Component Details and
Application Set-up Procedure

Due to space limitation not all Sycophant API details are
presented in this paper. For more information, the reader is
invited to download the Sycophant software publicly avail-
able via [4]. Nevertheless, in this section we use class
diagrams to cover Sensor and Application components of
Sycophant API. We also illustrate the API use for setting
up our calendaring application. The steps followed in do-
ing this are general and can be used for implementing other
context-aware applications.

4.1 Sensors API

Figure 3 shows the class diagram of the Sensor API com-
ponent of the Sycophant API. The SycoMonitor class con-
tains and manages multiple instances of user-context sen-
sors. SycoMonitor has attributes that reflect the status of
different user-context sensors. For example, motionActive
checks if the motion detection sensor is active. SycoMoni-
tor uses similar status flags for keyboard, mouse and speech

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

sensors. The attribute runInterval specifies how often the
context sensors are polled for raw data. In SycoMonitor,
the createPeripherals method initializes the keyboard and
mouse peripherals; createMotionSensor and createSpeech-
Sensor initialize motion and speech sensors, respectively.
All these three methods create instances of the UserCon-
textSensor class. The UserContextSensor has attributes:
logFile to log a sensor’s data and logInterval to specify how
often the sensor data needs to be logged. The attribute start-
Detection is used to start detecting activity from a sensor
and the attribute stopDetection to stop a sensor’s activity de-
tection. The runThread method starts a thread that contin-
uously tracks sensor activity. Three sensor specific classes
are derived from UserContextSensor. The PeripheralsAc-
tivityDetector class manages keyboard and mouse sensors.
Next, the MotionDetector class manages motion detection.
It has attributes to store the previous image (previousIm-
age), the current image (currentImage), the minimum al-
lowed threshold for the difference between the two images,
and the program to use for grabbing images from a web-
camera (imageGrabber). Lastly, the SpeechDetector class
manages speech activity detection – its speechSoftwareCmd
specifies the speech recognition software to be used for de-
tecting speech from a user’s environment.

SycoMonitor
applicationParameterFile
kbdActive
mouseActive
speechActive
motionActive
runInterval
initialize()
createPeripherals()
createMotionSensor()
createSpeechSensor()
getApplicationRunStatus()
runThread()

UserContextSensor
logFile
logInterval
initialize()
startDetection()
stopDetection()
runThread()

Speech
Detector

speechSoftwareCmd

MotionDetector
previousImage
currentImage
detectionThreshold
imageGrabber

checkThreshold()

Peripherals
ActivityDetector

keyboardEventName
mouseEventName

1

*

Figure 3. Class diagram of Sycophant’s Sen-
sors API

.

4.2 Application-Level API

Figure 4 shows the class diagram of the Application API
component of the Sycophant API. The GCalMonitor class

manages alarms from a user’s calendar. This class has meth-
ods to check for any current or pending appointments. The
GCalProcessor has methods for gathering calendaring data
from a user’s calendar, accessing a user-preferred alarm
type and generating an alarm for a current or pending ap-
pointment. GCalParser parses calendar data from a user’s
calendar file. The AlarmGenerator class generates differ-
ent types of alarms and notifications. It has methods to to
log user context information from different sensors, get user
feedback, and predict alarm types.

The classes VoiceAlarm and Visual Alarm inherit from
the AlarmGenerator class and generate voice/visual alarms.
The AlarmPredictor class has methods to get relevant con-
text data, build a user model based on this data that reflects
a user’s preferences for alarm type, and predict an alarm
type leveraging this user model. Most of target application-
specific parameters (in this case, Google Calendar related
parameters) are set in an AppParameters class (in our case,
in the GCalParameters class). The source code we provide
on our website [4] gives more details about each of these
application-specific parameters.

Figure 4 shows classes related to extracting user con-
text features from the raw sensor data. The class UserCon-
textCreator has methods to set which sensors to use (set-
Sensors), indicate the features to extract (setFeatures), and
extract context data using these features from the raw sen-
sor data (getUserContextData). The FeatureExtractorClass
extracts the context features used by UserContextCreator
class. It has methods to calculate how many times a sen-
sor was active, if it was active during any or all of those
minutes. The FeatureExtractor uses SensorTail class which
mimics the tail command on a Linux/Unix operating system
and obtains the specified number of lines (nLinesToGrab)
from a sensor’s log file sensorLogFile. The data in this log
file is a time-stamp indicating the activity of a sensor.

4.3 Sycophant API in use: Example of ap-
plication set-up procedure

We show how to use Sycophant API to context-enable
Google Calendar. The setup procedure involves sensor
setup, feature-extractor setup, feature-set extraction, and
target application setup. This four step procedure is the
same regardless of the type of target application or the type
of sensor involved. Our code excerpts provided below show
how to set up a motion sensor. We can similarly set up the
peripherals (keyboard and mouse) and the speech sensor us-
ing the following steps. Listing 1 shows how to set up a
sensor and activate it to its log raw data (timestamp value)
to a file. We first create a sensor by specifying its name and
its associated log file (line 1), then we activate the sensor by
calling the start method on it (line 2).

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

SensorTail
nLinesToGrab
sensorLogFile
nTotalLines
getNLines()

FeatureExtractor
sensorLogFile
lastNSeconds
currRangeOfIntervals
getActivityCount(lastNMinutes)
checkAny(lastNMinutes)
checkAll(lastNMinutes)
getCurrentRangeOfIntervals()

UserContextCreator
sensors
sensorFeatures

setSensorsAndFeatures()
setSensors()
setFeatures()
getUserContextData()

GCalParameters
wgetCmd
userName
googleCalendarLink
alarmCheckInterval
preAlarmTime
autoCloseAlarmInterval
javaPath
webcamImageGrabberApp
textToSpeechGeneratorApp
machineLearnersRootDir
userContextTrainingSet
userContextTestSet
gCalUserModel
machineLeanersPath
getGCalParameters()
setLearningParameters()

AlarmPredictor
currSensorValues
checkForUserContextData()
buildUserModel()
predictAlarm()

AlarmGenerator
userFeedbackRequest
alarmText
fortuneCookieText
predictedAlarmType
generateFortuneCookie()
writeCurrentUserContext()
writePredictedAndActualAlarms()
setPredictedAlarmType(alarmType)
getPredictedAlarmType()
generateAlarm()
getUserFeedback()

VisualAlarm
userFeedbackValue
onUserFeedback()

VoiceAlarm
userFeedback
Value
generateUser
FeedbackRequest()

GCalProcessor
predictedAlarm
currentRunStatus
updateRunStatus()
getPredictedAlarm()
generateAlarms()
getCalendarData()

GCalMonitor
alarmCheckInterval
checkForAlarms()

GCalParser
calendarData
calendarEvents
isDaily
isWeekly
isMonthly
isValid
getTodaysEvents()
checkIfDaily()
checkIfWeekly()
checkIfMonthly()
checkIfValid()

1:1 1:1

1:1

1:1

1:1

1:1

1:1

1:1

1:11:1

Figure 4. Class diagram of Sycophant’s Application-Level API

Listing 1. Sensor Setup
1 m ot ionSensor = Sensor (’ motion ’ , m o t i o n L o g F i l e)
2 m ot ionSensor . s t a r t ()

Listing 2 illustrates setting up a feature extractor to extract
user-context features from a sensor. We specify the length
of a sensors activity history in the past that we want to ex-
amine (line 1) and indicate the type of feature extractor used
(line 2). In this case, we check the motion sensor’s activity
in the last five minutes. We can check if the sensor was ac-
tive during any of the five minutes or in all the five minutes
by specifying the checkAny and checkAll features (lines 3
and 4). We can also check how many times the motion sen-
sor was active in the period of five minutes by specifying the
getCountAll feature for the motion feature extractor (line 5).

Listing 2. Feature-Extractor Setup
1 l a s t N M i n u t e s = 5 # d u r a t i o n o f h i s t o r y check f o r

a s e n s o r
2 m o t i o n F e a t u r e E x t r a c t o r = F e a t u r e E x t r a c t o r (

m o t i o n L o g F i l e)
3 checkAnyNMinutes = m o t i o n F e a t u r e E x t r a c t o r .

checkAny (l a s t N M i n u t e s)
4 checkAl lNMinu tes = m o t i o n F e a t u r e E x t r a c t o r .

c h e c k A l l l a s t N M i n u t e s)
5 ge tCountAl lNMinu te s = m o t i o n F e a t u r e E x t r a c t o r .

ge tCount (l a s t N M i n u t e s)

Listing 3 shows how to create user context data using differ-
ent features extracted from different sensors. More details
about the meaning of these features are given in [9].

Listing 3. Extracting Features
1 m o t i o n F e a t u r e s = checkAny −1, checkAl l −1, checkAny

−5, checkAl l −5, ge tCount−5
2 s p e e c h F e a t u r e s = checkAny −1, checkAl l −1, checkAny

−5, checkAl l −5, ge tCount−5
3 m o t i o n U s e r C o n t e x t D a t a = U s e r C o n t e x t E x t r a c t o r (

m o t i o n F e a t u r e s)
4 s p e e c h U s e r C o n t e x t D a t a = U s e r C o n t e x t E x t r a c t o r (

s p e e c h F e a t u r e s)

Listing 4 shows how we use the context sensors for a target
application such as the Google Calendar by associating a
calendar file (line 1). Figure 4 provides additional details
about the target application wrapped within the Sycophant
API (specifically, in its Application-Level API component).

Listing 4. Application-Specific Use
1 c a l e n d a r M o n i t o r = GCalMonitor (c a l e n d a r F i l e)
2 c a l e n d a r M o n i t o r . g e n e r a t e A l a r m s ()

5 Results

We deployed Sycophant API prototype to three users in
a long term study lasting four to six weeks [9, 11]. A simple
calendaring application we authored used Sycophant API to
generate four types or alarms for a user. The first alarm type
was a visual alarm that displayed the appointment text, the
second alarm type was a voice alarm where a text to speech
generation system voiced out an alarm for a user, the third
alarm type combined both visual and voice alarms, and the

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

fourth alarm type was a no-alarm (the user was not inter-
rupted by any alarm). We tested our hypothesis of using
contextual information from a user’s environment to learn
her preferences for alarm types by predicting the alarm type.
In our research, the two-class alarm prediction problem is
deciding whether or not to interrupt a user with an alarm,
and the four-class alarm problem is picking an alarm type to
use from the class of four different alarm types. In our initial
long term study, Sycophant API enabled us to achieve a pre-
diction accuracy of 87 percent on the two-class problem and
82 percent on the four-class problem using XCS, a learning
classifier system [10]. We give details of the learning al-
gorithms used, the experimental methodology, and analysis
results in [9].

To check the generalization of our approach, we con-
ducted a short term study with ten users. During the study,
the user read an article for the first 30 minutes on our exper-
imental set-up and answered questions related to the article
during the last 15 minutes. Our goal again was to predict the
alarm type to use for individual users based on user-context
data collected from them during the study. We achieved
an accuracy of 86 percent on the two-class problem and 88
percent on the four-class problem using XCS. Currently, we
have plugged in the Google Calendar [2] into our environ-
ment and are deploying it to more users to gather long term
usage data. More details about our study, its design and the
analysis of the performance of the best and the worst ma-
chine learning algorithms on the alarm prediction tasks are
presented in [12].

6 Conclusions and Future Work

In this paper, we highlighted the lack of context-
awareness in many current computer applications and ex-
plored the possibility of improving human-computer inter-
action by harnessing contextual information from a users
environment. Also, we identified the lack of a platform-
independent API for extracting context features for re-
searchers in adaptive user interfaces. Our proposed Syco-
phant API is designed to remedy this problem since it is
available for use on both Windows and Linux. Further, we
described the functionality and the 4-layer architecture of
our context-aware environment and showed how Sycophant
API provides a reusable, open-source resource for personal-
izing user interfaces. Our Sycophant component APIs and
an example of context enabling a target application (Google
Calendar) showed the general procedure for accessing, pro-
cessing, and using context information from a user environ-
ment. Our results from previously conducted studies clearly
demonstrated Sycophant’s utility for research in context
aware interfaces.

We are currently refining the Sycophant API and plan to
collect long term sensor data from at least ten more users.

Our goal is to test the generalization of our context learning
approach on one or more open source applications such as
the XMMS media player for Linux. We plan to incorpo-
rate this and other new applications within our Sycophant
context-learning environment to create adaptive user inter-
faces that can interact in more effective and more intelligent
ways with the users and thus improve their human-computer
interaction experience.

Acknowledgements

We thank the ten users involved in our study for their
time. This work was supported in part by contract number
N00014-0301-0104 from the Office of Naval Research and
the National Science Foundation under Grant No. 0447416.

References

[1] Carolina Computer Assistive Technology Group,
UNC Assistive Technology, April 10, 2007.
http://sourceforge.net/project/showfiles.php.

[2] Google Calendar, April 10, 2007.
http://calendar.google.com.

[3] Object Management Group, Unified Modeling Langauge,
April 10, 2007. http://www.uml.org.

[4] Sycophant Website, April 10, 2007.
http://www.cse.unr.edu/ syco/.

[5] J. Arlow and I. Neustadt. UML and the Unified Process:
Practical Object-Oriented Analysis and Design. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002.

[6] J. Fogarty, S. E. Hudson, and J. Lai. Examining the robust-
ness of sensor-based statistical models of human interrupt-
ibility. Proceedings of the Conference on Human factors in
Computing Systems, pages 207–214, 2004.

[7] J. A. Fogarty. Constructing and Evaluating Sensor-Based
Statistical Models of Human Interruptibility. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA, 2006.

[8] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling
Language Reference Manual, 2nd Edition. Pearson Higher
Education, 2004.

[9] A. Shankar. Simple user-context for better application per-
sonalization. Master’s Thesis, University of Nevada, Reno,
NV, 2006.

[10] A. Shankar and S. J. Louis. Better personalization using
learning classifier systems. In Proceedings of the Indian In-
ternational Conference on Artificial Intelligence, December
20-22, Poona, India, 2005.

[11] A. Shankar and S. J. Louis. Learning classifier systems for
user context learning. In Proceedings of the IEEE Congress
on Evolutionary Computation,September 2-5 2005, Edin-
burgh, UK, 2005.

[12] A. Shankar, S. J. Louis, S. Dascalu, R. Houmanfar, and L. J.
Hayes. User-context for adaptive user interfaces conference.
In Proceedings of the Intelligent User Interfaces Confer-
ence, Honolulu, Hawaii, USA, pages 321–325, 2007.

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

