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Abstract

Theintegratedprocessing-decodingnetwork modelof St.JohnandMcClelland(1990)wasrevisedto allow extracting
thepredicatecontentof complex sentencesdirectly from anincomingstreamof word tokens.Theinput streamwas
presentedto thenetwork without any syntacticmarkupsuchasbracketization,andtheextractionwasdonewithout
any explicit emulationof stacking,segmentation,or othersuchoperationsthatareordinarily associatedwith parsing
asentence.Thelackof suchexplicit syntacticoperationsallowedasimulatedneuralnetwork of minorcomplexity to
betrainedto thetaskunderasimpleregimen.

1 Introduction

Variouschallengesexist for any cognitive modelof languageprocessing,andscalablesolutionssuitablefor usein
simulatedneuralnetworkshave beenslow in arriving. Evensucha basicmatterasrepresentinglinguistic objectshas
beenall but a show-stopper, andalthoughneuralnetworks offer a numberof desirableprocessingcapabilities,they
facespecialchallengeswhenusedto modelthecognitiveoperationof processingcomplex linguistic objects.

Representationof linguistic objectsin thestaticstructureof a simulatedneuralnetwork is difficult becauseof the
variety in the lengthandcomplexity of the objects. Variablelengthpresentsitself whetherprocessingsoundsinto
morphemes,morphemesinto words,wordsinto sentences,or sentencesinto discourses.Variablecomplexity presents
itself in the latter two categories(at least),andis a factorregardlessof whetherthe objectsunderconsiderationare
viewedin termsof form or content.

For a network that processessentences,variablelength is an issueprimarily relating to the inputsandvariable
complexity is an issueprimarily relatingto theoutputs.Somesortof recurrency seemsto bethemostcommonway
of addressingvariableinput length,with theactivationsin a recurrentlayerconverging towarda staticrepresentation
of a wholeasits elementsarefed into thenetwork piecewise(Elman1990).Thereseemto betwo majorapproaches
to addressingvariablecomplexity in the output: oneextractswell-integratedchunksof the objectas they become
available,so that the whole is never explicitly representedin static form (Miikkulainen 1996); the otherusessome
form of coercionto force the formationof a static,compressedrepresentationof the whole asa whole. Within this
lattercategory therehave beenmodelsproducingcompressedrepresentationsbothof syntactic(Pollack1988)andof
semantic(St.JohnandMcClelland1990)structures.Theexperimentsreportedherein section4 wereaninvestigation
into theutility androbustnessof staticsemanticrepresentationscreatedby sucha compressionschemefor modestly
complex sentences.

�
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Evenwith representationsin hand,processingobjectsof variablecomplexity canchallengethe designof a net-
work modelandraisequestionsof cognitive plausibility for the solution. Among the modelsmentionedabove, for
example,theRAAM (Pollack1988)requiredexplicit specificationof constituentbracketizationin thetrainingset,and
SPEC(Miikkulainen1996)requiredexplicitly trainingmodularcomponentsto performhiddentasks.Theexperiment
reportedherein section5 attemptedto bypassthe former problemby usingsemantictargets,which arepotentially
derivablefrom the environmentby a learner, andto bypassthe latter problemby makingdo without overt modules
andexplicit hiddentasksaltogether. To statethesegoalsmoreclearly: anattemptwasmadeto processsentencesby
direct transductionfrom representationsof their surfaceform to representationsof their semanticcontentin orderto
testthehypothesesthatsyntacticstructuresare information-bearingstructuresandthat informationcanbeextracted
fromsuch structureswithoutovertly performinga traditional syntacticparse.

2 The Corpus

2.1 Sentences and Semantic Representations

In order to control the length and complexity of the sentencedata,a hand-generatedcorpuswas usedfor all the
experimentsreportedhere. Thecorpusconsistedof recordspairing theplaintext of a sentencewith a setof shallow
semanticrepresentationsfor thecontentof its variousclauses.Theplaintext wasspecifiedin thecorpusasa simple
list of wordswithoutcapitalizationor punctuation,asshown in sentence(1).

(1) thepiratethatchasedthemonkey saw theparrot

The semanticrepresentationsfor the individual clauseswerespecifiedas lists of fillers for the relevant theta roles
(Chafe1970;Cook1989),givenin theorderAGENTACT PATIENT BENEFICIARY to makethemeasyto read.The
shallow semanticrepresentations(2) and(3) illustratethefillers appropriatefor thetwo clausesof sentence(1).

(2) PIRATE SEEPARROT —

(3) PIRATE CHASEMONKEY —

Thedashesin representations(2) and(3) indicatedthattheverbsin thoseclausesdid notmakereferenceto anythingin
theBENEFICIARY thetarole. In thiscorpustheBENEFICIARY slotwasapplicableonly to clauseswith ditransitive
verbs,suchastherelativeclausein sentence(4). Thesemanticrepresentationfor thatsentenceis givenin (5) and(6).

(4) thepiratethatgavetheparrotto thecaptainsaw themonkey

(5) PIRATE SEEMONKEY —

(6) PIRATE GIVE PARROT CAPTAIN

Clauseswith intransitiveverbs,suchasthesimplesentence(7), lackeda PATIENT aswell asa BENEFICIARY, and
sohadthedashasthefiller for boththeseroles,asshown in semanticrepresentation(8).

(7) thecaptainran

(8) CAPTAIN RAN — —

As illustratedby sentence(4) andtheassociatedsemanticrepresentationin (5) and(6), theargumentstructuresof the
variousclausesin a sentenceareindependentof oneanother. For theconnectionistimplementationit wasnecessary
to providea constantnumberof slotsfor eachclausesufficient for any clausein thecorpus.In theimplementation,a
dashwastreatedasjustanothersemanticsymbol,with its own uniquenumericrepresentation.

Thefillers in thesemanticrepresentationswerespecifiedin all-capsandwithout inflections.In futureexperiments
we planto parseout overtandimplicit inflectionsin theplaintext asfillers for additionalmarkupslotsto beaddedto
the semanticrepresentations.All-capswereusedto indicatethat the modeldistinguishesbetweenthe lexical words
in thesurfaceform of a sentenceandthesemanticsymbolsevokedby thosewords. As describedin section3 below,
a word andtheassociatedsymbolhadindependentrepresentationsin theconnectionistimplementation,andlearning
thearbitraryassociationbetweenwordsandsymbolswasoneof thechallengesfor thenetwork. Theuseof separate
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representationsof wordsandsymbolsis anelaborationof thenotionof identityconstraintsin St.John(1992),andwas
includedin thecorpusfor thepurposeof cognitivemodellingof thehumanability to learnsuchassociations.

Sucha setof shallow semanticrepresentationsgivesno indicationof the relationbetweenthevariousclausesin
a sentence;a sentencesuchas (1) wassimply taken to make two independentbut simultaneouslyvalid assertions
aboutthepirate, namelythosespecifiedin theshallowsemanticrepresentations(2) and(3). Specifyingmorecomplex
semanticrelationsbetweenclausesis left for futurework.1

The definitearticle the playedno semanticrole in the currentcorpus;it wasnot contrastedwith the indefinite
articlenorwith any of thedemonstratives,but ratherwasusedasanotionallyunmarkedform to allow constructionof
completesentencesfor theparsingexperimentdescribedin section5.

2.2 Content of the Corpus

The lexicon allowed expressingvarious simple statementsabout curious events in a tropical paradise(table 1).
Sentenceswereformedfrom the wordsin the lexicon accordingto a setof rulesaboutwhich nounscould serve as

Table1: Lexicon for the toy corpus. Thefunctionwordsthat, the, andto wereusedto build complete
sentencesfrom thewordsin thetable.

Common Intransitive Transitive Ditransitive
Nouns Verbs Verbs Verbs
captain fled caught gave
monkey flew chased showed
parrot ran heard sold
pirate saw

thesubject/AGENTfor thevariousverbs.(As thecorpuscontainedneithermiddlenorpassiveverbs,thegrammatical
subjectalwaysidentifiedthesemanticAGENT.)

Modestlycomplex sentenceswereformedby allowing any or all of the nounsin a matrix clauseto be modified
by relative clauses.Suchclausesmight be of either the subjectextractedor objectextractedtype, as illustratedin
sentencefragments(9) and(10) respectively.

(9) ...thatsaw themonkey...

(10) ...thatthemonkey saw...

Additional syntacticvariety was provided by allowing variationsin word order that allow the indirect objectsof
ditransitiveverbsto appeareitherwith or without theprepositionto, asillustratedin sentencefragments(11)and(12).

(11) ...gavetheparrotto thecaptain...

(12) ...gavethecaptaintheparrot...

The experimentsdescribedbelow werebasedon a corpusof 310 sentencescreatedby this grammar. The corpus
includedintransitive,monotransitive,andditransitive verbs,andallowedmultiple relative clausespersentence,aver-
agingc. 1.9each,for a totalof 598clauses,but withoutnestingclausesmorethanonedeep.2

1In particular, sentenceswith relative clausessuchastheonein sentence(1) mightbeexpectedto appearin discoursecontexts wherethematrix
clauseconveys new informationandthe relative clauseconveys old information. Semanticmaterialsharedbetweensuchclausesis co-indexed
in the discourse,allowing an anaphoricunificationprocessto integratethe new materialinto a growing representationof the discourse.Taking
sentence(1) asanexample,if a discoursehaspreviously establishedthat, say, (PIRATE ��� CHASEMONKEY —) andthenew sentenceasserts
that (PIRATE� SEEPARROT —) � (PIRATE� CHASEMONKEY —), it is a straightforward guessthat �	��
� andthusthat (PIRATE ��� SEE
PARROT —). A numberof othersemanticclause-relationscanbeposited,suchascontingencyor cause-and-effect; for thepresentit shouldmerely
be notedthat specificationof the semanticrelationbetweenclauseswill be different from andperhapsmorecomplex thanthe purely syntactic
notionsof matrix clauseandsubordinateclause.

2Embeddingswere limited to a single layer becauseof the combinatorialexplosion of possibilitiesoffered by even sucha limited lexicon
andgrammaticalstructure.Nor wasit possible,in a hand-generatedcorpus,to exhaustall sentencepossibilitieseven with this limited depthof
embeddings.Exceptwherenotedotherwisein thetext, coveragewasvery nearlyexhaustive for simplesentencesandfor complex sentencesusing
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3 The Architecture

The architectureusedfor the experimentswasa modificationof that usedby St. JohnandMcClelland(1990) for
forming gestaltsemanticrepresentationsfor single-clausesentences.In thatarchitecturetwo relatedbut functionally
distinctnetworkswerejoinedtogether, with asharedhiddenlayerservingsimultaneouslyastheoutputof oneandthe
inputof theother(figure1).

[the busdriver] [was given]

[the rose] [by the teacher]

teacher

agent

GESTALT

PREVIOUS GESTALT

Processing Network

Decoding Network

Figure1: Architecture of the St. John and McClelland’s (1990) conjoined processing/decoding
networks. A singlePROBE layer is usedto querythe gestalt.A sentenceis fed into theprocessing
network onegrammaticalconstituentat a time to form thegestalt.Oncethegestalthasbeenformed,
a probeproducesa responseat theoutput.Theprobecanquerythefiller for a givensemanticrole, or
viceversa.

In St. JohnandMcClelland’s architecturethe upstreamProcessingNetworkhadthe taskof learningto extract
a distributed,case-basedsemanticrepresentation,which the authorscalled the sentencegestalt, from an incoming
streamof sentenceconstituents.ThedownstreamDecodingNetworkhadthe taskof learningto extract thebindings
betweenspecificsemanticrolesandtheir fillers from this gestaltrepresentation.By conjoiningthetwo sub-networks,
St. JohnandMcClellandwereable to sidestepthe usualrequirementof providing static targetsfor the Processing
Network: ratherthanhaving their valuesspecifiedin thetrainingset,thesentencerepresentationsin thegestaltlayer
wereformedby coercingthemto satisfya performancerequirementimposedby thedecodingnetwork. For example,
asshown in figure 1, the constituentsof the sentencethe busdriverwasgiventhe roseby teacher werefed into the
processingnetwork sequentiallyto form agestaltrepresentationof thesentence,afterwhichaprobewith aconstituent
suchastheteachermustreturntheroleplayedby thatconstituentin thesentence(or viceversa).Trainingthenetwork
with thesentencesandprobesforcedthenetwork to form suitablegestaltsfor thesentencesin theircorpus.

A shortcomingof thearchitecturelay in its inability to copewith sentencesconsistingof morethanasingleclause.
For example,with asentencesuchasexample(13),probingwith theroleagentshouldproperlyrespondwith thefiller
monkey for thematrixclause,but with piratefor therelativeclause.3

(13) themonkey thatthepiratechasedsaw theparrot

only the transitive verbs. Due to the combinatorialexplosion,the spaceof possiblesentencesusingthe intransitive andditransitive verbsis less
denselysampledthanthatof thesentencesusingonly thetransitive verbs.Deeperembeddingsandbetter-managedsamplingsof possible-sentence
spaceareon theagendafor futurework, which will usea machine-generatedcorpus.Note,however, thateven in the long termwe do not aim at
parsingembeddingsto anunboundeddepth— rather, thecapabilitiesof themodelshouldbesimilar to theobservedcapabilitiesof humans.

3SinceSt.JohnandMcClellanddid not make anovert distinctionbetweenlexical word andsemanticsymbolin theirmodel,I eschew usingthe
all-capsconventiondescribedin section2.1whenreferringto thefillers for his PROBE andRESPONSElayers.
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Similarly, probingwith thefiller monkey shouldproperlyrespondwith the role agent for thematrix clause,but with
patient for the relative clause. As the architecturemadeno provision for distinguishingbetweenclausesin such
circumstances,themodelwasnot capableof dealingwith multi-clausesentences.

Generallyfollowing a suggestionin St. John(1992),the architecturewasmodifiedin an attemptto addressthat
limitation. In the revisedarchitecture,theDecodingNetworkwasprovidedwith multiple probeinputs,onefor each
slot in theshallow semanticrepresentationsspecifiedby thecorpus(figure2). However, only asingleresponseoutput

PIRATE GIVE ? CAPTAIN

PARROT

the pirate that gave the parrot

to the captain saw the monkey

GESTALT

PREVIOUS HIDDEN LAYER

Processing Network

Decoding Network

Figure2: Architecture of the enhanced network. The enhancednetwork providesmultiple probe
layers,allowing disambiguationof queriesrelatingto specificclausesin a multi-clausesentence.A
sentenceis fed into theprocessingnetwork onewordatat time to form thegestalt;oncethegestalthas
beenformed,a queryis fed into the four probeinputsandthe responseto that queryappearson the
network’s output.Thefigureshows onepossiblequeryfor sentence(4).

wasprovided: theDecodingNetwork’s taskwasto learnto “fill in theblank” for a singleslot in a shallow semantic
representationwhen the probeswere loadedwith numeric representationsof the fillers appropriatefor a specific
clause,oneof whichwasreplacedby aquerymarker indicatingtheslot to befilled. I call suchaprobesetaquery. For
example,asshown in figure2, thewordsof sentence(4) werefed into theProcessingNetworksequentiallyto form a
gestaltrepresentationof thesentence,afterwhich probesbasedon thesemanticrepresentationsof thesentence’s two
clauses,(5) and(6), mustproducetheappropriateresponse.

The query marker that replacesan individual role filler in a query is indicatedin the figure and the examples
below by a questionmarkin thepositionof theslot to befilled. For purposesof implementationit wastreatedasyet
anothersemanticsymbol,sinceit hadto fit into theprobelayers,which weredesignedto accepttherepresentations
of the ordinarysemanticsymbols.However, the querymarker wasnever requiredto appearin the responseoutput,
andthuswasnot consideredwhendeterminingwhich symbolanactualoutputmostnearlyresembled.Thenumeric
representationfor the query marker was given a valueof all-zerosso that it would not contribute anything to the
activationlevelsin thehiddenlayerof theDecodingNetwork.

Unlike the original model, the revisedarchitecturewasonly expectedto provide role fillers in responseto such
queries;it neverprovidedslotnames.As anexampleof aquery, recallthatthetwo clausesof sentence(13)shouldbe
associatedwith thesemanticfillers (MONKEY SEEPARROT —) and(PIRATE CHASEMONKEY —). Thuswhen
probedwith either(? SEEPARROT —) or (PIRATE CHASE? —), theresponseshouldbeMONKEY.

Noticethatwith four semanticrolesperclause,eachclauseallows for four distinctquery-responsepairs,eachof
which mustpotentiallyappearin a trainingsetfor full coverageof thesentence.Thusthecorpusprovideda pool of
2392trainingexamplesfor the598clausesin the310sentences.

Units in the input, probe,and responselayerswere designedto hold valuesin the range[0.0, 1.0], and units
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in hiddenlayersheld valuesin the range[-1.0, 1.0] for easeof learning(Haykin 1994). The logistic function was
usedto squashactivationsat theresponseoutput,andthehyperbolictangentfunctionwasusedto squashactivations
in the hiddenlayers. Recurrency wasmanagedby meansof a simplecopy-back,as in a simplerecurrentnetwork
(Elman1990);all otherconnectionswere“full” connections,designedto betrainedfrom initially randomweightsby
backpropagation.

Theinput layerof theProcessingNetworkacceptedasequenceof wordrepresentationsencodingtheplaintext of a
sentence.4 Simpleorthogonalrepresentationswereusedfor thewords,with oneunit in eachwordsetto 1.0andtherest
to 0.0. Similarly, theprobeandresponselayersof theDecodingNetworkacceptedandyieldedsimpleorthogonally
codedrepresentationsfor the semanticsymbols,so that the output of the trainednetwork could be interpretedas
confidencevalues(RenalsandRohwer1990).

Thesizesof theinput,probe,andresponselayerswerethusdictatedby thesizeof thelexicon. As thevocabulary
never exceeded17 lexical wordsand15 semanticsymbols,the largestinput layerusedin theexperimentswasof 17
unitsandthelargestprobeandresponselayerswereof 15 units.5

After exploratory experiments,the size of the gestaltlayer was fixed at 15 units and the hidden layer in the
DecodingNetworkwasfixedto 150units.Therecurrentlayerin theProcessingNetworkwasalsosetto 150unitsfor
thegrammar-processingexperimentsdescribedin section5, andit workedwell enoughin thetaskthatno tweaksto
its sizehaveyetbeentested.

Whena network with this architecturehasbeentrainedsuccessfullyit is possibleto obtainwell-formedgestalt
semanticrepresentationsof individualsentencesby cycling thewordsof theplaintext throughtheProcessingNetwork
and extracting the activationsfrom the gestaltlayer after the end of the sentence.To facilitate the generationof
sentencegestalts,andto allow theexperimentsto focuson thecapabilitiesof theProcessingandDecodingnetworks
in isolation,thelogicaldistinctionbetweenthetwo sub-networkswasreifiedby providing routinesallowing activation
valuesto be loadedinto, extractedfrom thegestaltlayerasneeded,andallowing thetwo sub-networksto betrained
andoperatedeitherindependentlyor in conjunction.

4 Experiment I : Distributed Semantic Representations

The first set of experimentsconcentratedon the propertiesof representationsthat could be inducedin the gestalt
layerby trainingtheDecodingNetworkin isolation.Theseexperimentswereaimedatfindingoutwhetherthedesired
gestaltrepresentationscouldbeformedfor multi-clausesentencesandwhethertheDecodingNetworkcouldbetrained
to extractinformationfrom themselectively, decouplingthis processfrom thetaskof parsingthewordsequences.

Gestaltrepresentationsfor sentencesin the corpuswere createdand refinedas follows. The plaintext of each
sentencewasfed oncethroughtheuntrainedProcessingNetwork, without backpropagation,forming whatamounted
to a wild guessat a representationfor thesentencein thegestaltlayer. Eachsuchrepresentationwassaved(andthe
recurrentlayercleared)beforeproceedingto thenext sentence.ThereaftertheProcessingNetworkwasignoredand
work continuedusingtheDecodingNetworkalone.Usingthesavedguessesasinitial valuesfor thegestaltsentence
representations,thedecodingnetwork wastrainedin isolationandtheFGREPmechanismwasusedto coercethem
towardmorefelicitousvalues(MiikkulainenandDyer1989,1991).Sincetheinputs(thegestaltrepresentations)were
modifiedduringthis trainingprocesstherewasnoobviouswayto testfor generalizationto unseeninputs,sotheentire
corpuswasusedfor bothtrainingandtesting.

For this procedure,� wasa constant0.1, � wasa constant0.9, andthe FGREPlearningratewas ��������� . The
network was trainedfor 500 epochsand the experimentwasrepeatedwith four different randomseeds.The seed
controlledbothgenerationof the initial randomweightsfor thenetwork andsortition in theorderof presentationof
the trainingexamples.The orderof presentationwasscrambledby queryratherthanby sentence, so thatnumerous
queriespertainingto a singlesentencewould not appearsuccessively within an epoch. Whentestedon the gestalt
representationsresultingfrom the FGREPping,for one seedthe trainednetwork gave an incorrectresponsefor a

4The inputs to St. Johnand McClelland’s original network wereencodingsfor phrase-sizedchunksof sentencesratherthan encodingsfor
individual words,considerablyreducingtherequirednumberof passesthroughtherecurrentlayerwhenprocessingasentence.Sincetheenhanced
architectureusedindividual wordsfor its inputs,it requiredasmany as13passesthroughtherecurrentlayerfor thelongersentences.

515units: 14 for thesymbolsassociatedwith thewordsin table1, and1 morefor thenull symbolindicatedby thedash.Thosewordsservinga
strictly grammaticalfunction,that, the, andto, did nothaveassociatedsemanticsymbolsasthey werenotdirectlyassociatedwith specificfillers in
thecase-rolestructures.Thequerymarker, beingrepresentedby all-zeros,did not participatein theorthogonalrepresentationof thesymbols,and
sodid not requireanadditionalunit for its representation.

6



singleoneof the2392queries;for theotherthreeseedstherewerenoerrorsin thetrainednetworks.6 Reasonablyhigh
confidencevalueswereobtainedregularly aswell, namelyoutputvalues ����� � for thecorrectanswerand ������� for
all otherpossibleanswers.Few exceptionswerefound;indeed,themostcommonresultswereboundedby thestricter
values0.85and0.15.

Theutility of therepresentationscreatedin theseexperimentswastestedby examiningthesimilarity of indepen-
dently createdrepresentationsfor similar content. If the representationsgeneratedby this procedureareto serve as
gestaltsemanticrepresentationsfor sentencesit is essentialthatsentencesbearingthesamecontentbeassociatedwith
very similar representations,without regardto word-ordervariationsin the the plaintext. The similarity properties
of therepresentationsgeneratedby theexperimentweretestedthroughclusteranalysis,yielding a similarity treefor
the 310sentencesin the corpus.Thoughthe resultingtreeof similarity relationshipsdoesnot captureall the possi-
ble dimensionsof similarity betweenthe sentencesin the trainingdata,it sometimesrevealsstriking successes.For
instance,theclosestpairof representationsin theclustertreecorrespondedto sentences(14)and(15),

(14) thepiratesaw themonkey thatcaughttheparrot

(15) themonkey thatthepiratesaw caughttheparrot

Sincetheserepresentationswereassociatedwith differentsentences,they werecreated,stored,andrefinedindepen-
dentlyby thetrainingalgorithm.However, their clause-level case-rolefillers areidentical,namelythosein thesetof
shallow semanticrepresentationsshown in (16) and(17). Underthesimplifying assumptionsof themodel,theclose
similarity of therepresentationsfor thetwo sentencesis preciselythecorrectbehavior.

(16) PIRATE SEEMONKEY —

(17) MONKEY CATCH PARROT —

Otherminimal clustersshowed additionalsentencesof varyingdegreesof similarity pairedoff in the samefashion.
The results,thoughqualitative, seemto show thatsimilar sentencesresultin similar representations,suggestingthat
thegestaltscanindeedbeusefulastargetsfor sentenceprocessing.Theexperimentin section5 provedto bea more
demandingtestof theutility of therepresentations.

5 Experiment II : The Virtual Parse

A differentsort of experimenttestedthe ability of the ProcessingNetwork to learn to transducethe plaintext of a
sentenceinto gestaltrepresentationssuchasthosecreatedby theexperimentsdescribedin section4, andto generalize
thatability to previouslyunseenexamples.Thisexperimentwasconductedasfollows.

A subsetof thesentencesin thecorpuswasrandomlyselectedto serve asa trainingset,anda disjoint subsetof
similar sizewasrandomlyselectedto serve asa validationset. The remainingsentenceswerereservedasa testset.
In a first phaseof training, thosequeriespertainingto thesentencesof the trainingset(only) wereusedto train the
DecodingNetworkby a modificationof the proceduredescribedin section4, asdescribedbelow, andafter training
wascompletethe resultinggestaltrepresentationsfor thosesentencesweresaved for useastargetsfor training the
ProcessingNetworkindependentlyin a secondphase.

Thetrainingin thefirst phasewasdoneaccordingto theproceduredescribedin section4,exceptthattheDecoding
Networkwastestedonthetrainingexamplesevery10 "! trainingepoch,andtrainingwasstoppedwhenall querieswere
answeredcorrectlyor whenanarbitraryceilingof 5000epochshadbeenreached,whicheveroccurredfirst. (As before,
sincetheFGREPmechanismmodifiedthe input representationsastrainingprogressed,it did not make senseto use
theunmodifiedrepresentationsof thevalidationsetto controltrainingfor thisphaseof theexperiment.)A snapshotof
theweightsandFGREPpedgestaltrepresentationswassavedafterany testthatshowedanimprovementin thenumber

6Whencountingthe numberof correct responseshereandbelow, the network’s responsewas identifiedasthe semanticsymbolhaving the
representationclosestin Euclideandistanceto theactualactivationsin theRESPONSElayer.

Of interest— andpossiblyof substantialimportance— is thefactthatapplyinganidenticaltrainingregimento anetwork wheretheinitial values
of the gestaltrepresentationsweregeneratedrandomly(ratherthanby passingthe plaintext throughthe untrainedProcessingNetwork) resulted
in anerror ratewell over two ordersof magnitudehigherthanthatdescribedabove. For example,training for 500epochsresultedin anaverage
of 87.7errorsacrossthreedifferentrandomseeds(vs.anaverageof 0.25for themethoddescribedin the text), andtraining for 1000epochsstill
resultedin anaverageof 113.0underthesamecircumstances.It is temptingto concludethatthesurfaceformsof thesentencesencodethesemantic
informationin robustenougha form thatsomeof theinformationstructureis preservedevenafter“filtering” by theuntrainedProcessingNetwork.

7



of queriesansweredcorrectly. In caseswheretheceiling wasreached,thesnapshotwasusedto restorethe weights
andgestaltrepresentationsto thestateproviding thebestperformance;otherwisethefinal weightsandrepresentations
wereretained.Thesamelearningparameterswereusedasbefore.

For eachtraining epochin the secondphaseof training, eachsentencein the training sethad its newly formed
gestaltrepresentationfixedasa targetin thegestaltlayerwhile therepresentationsof thewordsin theplaintext were
propagatedsequentiallythroughtherecurrentProcessingNetwork,without backpropagationuntil theendof thesen-
tencehadbeenreached.At theendof thesentencetheProcessingNetwork(only) wastrainedoncebybackpropagation
andthe recurrentlayer wasclearedbeforeproceedingto the next sentence.This processwasinterruptedat regular
intervals for testingthroughputon the sentencesin the validation set— that is, for eachsentencein the validation
set the representationsof the words in the plaintext werepropagatedsequentiallythroughthe recurrentProcessing
Networkwithout training it, the resultingactivationsin the gestaltlayerwereheld fixedwhile all queriespertaining
to thecurrentsentenceweretriedsequentiallyin theDecodingNetworkwithout training,andthenumberof incorrect
responseswasaccumulated.Trainingcontinueduntil sucha teston thevalidationsetresultedin moreerrorsthanhad
theprevious test,at which point it wasterminatedto avoid overtraining.A final testwasthenrun on the previously
unseentestset, andperformancestatisticswerecollected.

Thisprocedurefor trainingtheProcessingNetworkwasdoneusinga constant� of 0.001andan � of 0.1.Valida-
tion testsweremadeevery5000 "! epoch,with anabsolutelimit of 50,000trainingepochs.Theentireexperimentwas
repeatedwith trainingandvalidationsetseachconsistingof 1, 2, 5, 10,15,20,and25 percentof thesentencesin the
corpus,with theremainingsentencesreservedfor testing,andeachsuchvariantwasrepeatedfive timeswith different
randomseeds.Theperformanceson throughputwith thetestsetaregivenin figure3.7

6 Discussion

The resultsof the experimentswere generallyencouraging. Even so, a few caveatsare in order with respectto
scalability. For instance,continueduseof orthogonalrepresentationsfor the lexical words and semanticsymbols
cannotbe sustainedon the scaleof a realistic lexicon, andeven for this toy corpusthe sizeof a hiddenlayer was
allowedto grow relative to thesizeandnumberof theprobeinputsholdingthesymbolrepresentations(asdescribed
in section3 above). Allowing suchgrowth in thelayerson bothsidesof a full connectiongeneratesmorethanlinear
growth in a network’s trainingtime,andcannotbesustainedto arbitrarysizes.

Incrementsto thecomplexity of thetrainingdatahada similar effect. For example,whenthefirst few sentences
with ditransitiveverbswerefirst addedto thecorpus,a fourth filler hadto beaddedto all existingclausestructuresso
thatall trainingexampleswould matchthearchitecturewith thefourth probelayeradded,eventhoughit wasthenull
filler thatwasrequiredfor all theseexisting clauses.In additionto the incrementof training time resultingfrom the
additionof new connectionsto thenetwork, anew queryhadto begeneratedfor eachclausesothatthenew fillers for
thefourthslot couldbeprobedfor. Thiscausedthenumberof trainingexamplesto grow by #$ , evenbeforereckoning
in thosefor thenew sentences.Thusit maybethatit wasthegrowth in thenetwork architectureandin thenumberof
trainingexamplesthatallowedthemodelto maintainits performancewhenthenew complexity demandwasplaced
on it. Someof this growth canbemanagedin futureexperimentsby limiting training to a randomlyselectedsubset
of a largecorpusimplicit in a toy grammar, sothattherangeof lexical andstructuralpossibilitiesis well represented
without thehugecorpusneededfor exhaustivecoverage.

For theparsingexperimentreportedin section5, however, overall trainingtime increasedat a ratelessthanlinear
with the increasein sizeof the training set. It maybe possibleto attribute this to the regularitiesin the structureof
language,if unlike examplesreinforceeachotherratherthancounteractingeachotherduringtraining. Whatever the
explanation,thetrendis contraryto ordinaryexpectationswhile traininganetwork, andmaybodewell for longer-term
scalability.

Developingandworkingwith thecorpusalsorevealedproblemsthathavenotyetbeenaddressedto any significant
extentby themodel.Oneis thematterof identifying thecontentof a representationwithout prior knowledgeof what

7To bemorespecific,thepercentageslistedwereactuallytheprobabilities thata given sentencewould beselectedfor the trainingset(or the
validationset).Theactualsizesof thesesetsthusvariedsomewhataroundthenominalsizegivenby thepercentages.Sincearandomseedgoverned
this selectionprocess,andvaryingtheseedwasusedto ensurethatdifferentsetsof sentenceswereselectedfor eachof thefive runswith thesame
probabilityparameter, therewasnoassurancethatthetrainingsets(northevalidationsets)weredisjointbetweentherunswith differentseeds.Care
wastaken,however, to ensurethatthetraining,validation,andtestsetsweredisjoint within a givenrun.

N.B. — The averagesreportedin the tablewerenot weightedaccordingto the actual numberof sentencesin the testsets;they aremerelya
simpleaverageof theerrorratesof thefive instancesof eachnotionalsetsize.
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Figure3: Degree of generalization on throughput testing. Theresultsshown aretheaveragesuccess
ratesfor five independentlyrandomizedrunson eachof the indicatedtraining setsizes. Training on
a relatively smallsubsetof thecorpusallowedthesystemto learnto performthesemanticparsewith
high reliability.

it is. It maybepossibleto modify themodelso that informationcanbeextractedby meansof lesscompleteor less
specificqueries,suchasby working from thegeneralto theparticular, so thata representationcanbe identifiedin a
relatively few steps.

Thequality of generalizationon thethroughputexperimentwasa pleasantsurprise;therewasno expectationthat
suchgoodperformancewouldbeobtainedbysuchasimpleprocessorandtrainingregimen.Noscalabilityexperiments
weredonefor the grammarprocessor, andit remainsto be seenhow well longersentencesanddeeperembeddings
maybelearned,but sincethemodeldoesnotaspireto managingunboundedembeddingsthereseemsto bereasonable
hopethatit canbetrainedto succeedonsentencesof a complexity similar to thoseregularlymanagedby humans.

It may in fact be possibleto modelsomeaspectsof the traditionalperformance/competencedistinctiondirectly
by meansof this or a similar architecture. Performancelimitations on a network are a familiar phenomenon.In
the currentcaseit may be expectedthat excessively long sentenceswould causea compoundingof errorsdue to
repeatedpassesthroughtherecurrentlayeruntil theactivationpatternsarescrambledbeyondinterpretation,or perhaps
a sufficiently complex sentencewould saturatetheability of the gestaltlayer to maintainsuperimposedclause-level
patterns.Detectingcompetencein the network will be a moresubtlechallenge. It is the very natureof simulated
neuralnetworks to learnassociationsamongthe elementsin their training sets,and it may reasonablybe expected
thatthisnetwork “noticed” thatwhenever, say, RUN filled theACT slot, thenull symbolmustnecessarilyfill boththe
PATIENT andBENEFICIARY slots.Otherfillers for ACT will have their own setsof optionsandrestrictions.If the
network did learntheseasexpected,it hasin somesenselearnedtheargumentstructure of theverbsassociatedwith
the variouspossiblefillers of the ACT slot. A carefullyplannedexperimentmaybe ableto extract this information
directly from the weightsin the trainednetwork, thoughadmittedlyour knowledge-extractioncapabilitiesarestill
quite limited. How thenetwork might have acquiredcompetencewith respectto otherpatternssalientin thecorpus,
suchasthefactsthatany nouncanbemodifiedby arelativeclauseandthattheobjectsof aditransitiveverbmayhave
their orderreversed,dependingon thepresenceor absenceof theprepositionto, is lesseasilyvisualized;but this is
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a promisingareafor furtherresearch,sinceobservationof thetrainednetwork indicatesthat it did make useof these
regularitieswhengeneralizingits performanceto previouslyunseensentences.

Theseobservationsbearonwhatis perhapsthemostinterestingpropertyof thenetwork, namelytheovertdisplay
of discreteswitching behavior in a static architectureoperatedby meansof weightedconnections.For example,
successfullyprobinga givengestaltrepresentationwith differentqueriesrequiresthenetwork to performthe logical
equivalentof extracting the information from a “dif ferentpart” of the representation.Given the representationof
sentence(18), which containsthe information schematizedin (19) and (20), a successfuldecodingnetwork must
be able to switch betweenthe responsesMONKEY, SEE,andPARROT whenprobedwith (? SEE PARROT —),
(MONKEY ? PARROT —), and (MONKEY SEE ? —), respectively. It must also, of course,be able to switch
betweenthevariouselementsof thesentence’s secondclausestructureaswell, andevenbeableto determinewhich
clauseto extracttheanswerfrom.

(18) themonkey thatsaw theparrotchasedthecaptain

(19) MONKEY CHASECAPTAIN —

(20) MONKEY SEEPARROT —

Suchpatternsmay, of course,belearnedby roteif presentin thetrainingset;but theability to generalizethebehavior
to previouslyunseenexamplesin thethroughputtestsseemsto indicatethattheDecodingNetworkis enactinga state
switchbasednot only on thepositionof thequerymarker, but alsoon thepresenceor absenceof somesignalin the
gestaltlayer.

More interestingyet is the behavior of the network undervariationsin word order. For otherwiseidenticalsen-
tencescontainingthevariantsshown in (9) and(10) or in (11) and(12), theProcessingNetworkmustpropagatethe
informationforward— regardlessof whichclauseit occursin — to thegestaltlayeranddepositit therein a form that
theDecodingNetworkcaninterpretasa signalrequiringswappingof thefillers for therolesAGENT andPATIENT
or PATIENT andBENEFICIARY whenprobingfor thosefillers on thevariantsentences.

7 Conclusion

The representationexperimentsseemto indicatethat this or somerelatedmodelwill make it possibleto coercea
suitablestaticrepresentationfor thevaryingcomplexity of linguistic objectssuchassentences.Themodelpromises
to scalewell in termsof architecturalelementsand numberof training epochs,thoughsubstantialpruning of the
numberof examplesin large corporareflectingcomplex grammarswill still be neededin orderto retainreasonable
training times. The experimentsraisequestionsaboutthe robustnessof the representationsunderambiguity, anda
substantialchallengeremainswith respectto thetaskof extractinginformationfrom arepresentationwithouta priori
informationregardingits content.However, underthecontrolledenvironmentof themodeltherepresentationsseem
to beconvenientandreliableenoughto serveastargetsfor furtherexperimentsonsentence-processingtaskswhile the
known problemsareinvestigatedfurther.

The sentenceprocessingexperimentsweresuccessfulbeyond expectationwhile usingan extraordinarilysimple
architectureandtrainingregimen.They offer hopethat furtherexperimentswill bearout thehypothesesuponwhich
themodelwasbuilt, andoffer theimmediatechallengesof learningto processacorpusof greatersizeandcomplexity
while shaving pointsoff theerrorrates.Meanwhilea better-instrumentedversionof themodelandabetter-controlled
corpuswill offer theopportunityto comparethemodel’sbehavior to observablehumanbehavior andbegin a process
of empiricalcorrectionto theanatomyof themodel.
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