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Abstract— We evolve a neural network controller for a boat
that learns to maintain a given bearing and range with respect
to a moving target in the Lagoon 3D game environment.
Simulating realistic physics makes maneuvering boats diffi-
cult and thus makes an evolutionary approach an attractive
alternative to hand coded methods. We evolve the weights of
simple recurrent neural networks trained with a fitness function
designed to combine multiple fitness objectives based on speed,
heading, and position to create a robust maintain station be-
havior. Results with an enforced subpopulation neural-evolution
genetic algorithm indicate that we can consistently evolverobust
maintain controllers for realistically simulated boats in Lagoon.

I. I NTRODUCTION

The naval exercise known as maintain station consists
of a following boat matching the heading and speed of a
lead boat while staying in a specific position relative to the
lead boat. Typically, maintain station takes the form of naval
vessels moving together in a military formation. The physical
limitations placed on the maneuverability of boats comprise
the greatest challenge in coding the maintaining behavior.
Boats can take a long time to accelerate, have a limited ability
to turn, and are subject to drift when turning or decelerating.
The existence of these various physical constraints results
in a controller that requires careful tuning for each type of
boat that executes the behavior because of the differences
in maneuverability created by variations in size, mass, and
power.

Previous work using neural networks to solve the inverted
pendulum problem has shown that neural networks can learn
to cope with complex physical situations without any explicit
knowledge about the physics of a given system [1]. This
ability of neural networks to learn physics implicitly provides
an attractive alternative to hand coding because it allows for

the creation of a robust controller without the need to under-
stand the complex physics that govern the boat’s movement,
and these controllers could be evolved for different classes
of boats with minimal programmer interaction. Because our
goal involves creating a controller that both performs the
maintain station behavior and performs the behavior in a way
that a human observer would find believable, we performed
our experiment with three different fitness functions to deter-
mine the method of calculating fitness that produces the most
convincing results. We determine the best fitness function by
making a quantitative comparison of the growth of fitness
over time and also by making a qualitative evaluation to
determine which behavior would be most appropriate for use
in a game or simulation.

In this experiment, we successfully evolve a robust main-
tain station controller. We find that a fitness function that
factors in both the relative heading to the postion to be
maintained and the relative rotation between the maintaining
boat and the lead boat performs best in producing robust,
believable behavior.

The next section describes related work in neuro-evolution
and behavior based robotics. We then define the maintain sta-
tion behavior and the issues that arise in realistic simulations
in greater detail. Section IV presents the neuro-evolutionary
approach that we use to evolve the maintain station con-
troller. We then introduce Lagoon, our 3D simulation gaming
environment, describe the experiments conducted, and show
the results. The last section presents conclusions and future
work.

II. RELATED WORK

Reseach on controlling the behavior of simulated entities
draws on the influence of several related fields. Behaviors
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like maintain station that provide the ability for groups to
move together in formation are important because of the
advantages formations provide such as the ability to share
sensor information about the environment among multiple
agents. Work by previous researchers to solve this problem
have included techniques such as behavior based robotics
[2]. Behavior based robotics have been applied to the La-
goon simulation as well, showing that these robotics based
strategies translate well into a simulated environment [3].

However the goals for simulation programming can be
somewhat different than the goals of robotics. The controllers
used to drive the boats in the lagoon simulation will never
be used for controlling real boats. For controllers constrained
strictly to the virtual world we can make a number of as-
sumptions including infinite power supplies, perfect sensors
and complete control of the conditions in the world. We
can also crash or mishandle unlimited numbers of virtual
boats giving us the ability to test and evaluate thousands of
controllers without damaging expensive equipment. Taking
advantage of the computational resources at out disposal we
would like to create controllers using more automated means
such as an evolutionary method that could generate robust
behaviors with a minimum of programmer intervention.

One challenge of using an evolutionary approach like a
genetic algorithm is that these methods often solve problems
in unexpected or unintuitive ways [4] [5]. We add a
new level of complexity to the problem of evolving a
controller when we demand that it not only perform a task
but perform it in the same way that a human might perform
it. Previous papers such as work on the evolutionary A*
variant called GAMMA discus the importance of considering
the believability of evolved agents for use in simulations
[6]. Along these same lines a number of complex training
regiments have been designed to encourage the believability
of evolved agents including user modeling and training by
example using lamarkian neuroevolution [7] [8] [9].

III. PROBLEM

The maintain station behavior can be divided into two
separate phases. In the first phase, the maintaining boat has
to navigate to a target point in the world defined as an offset
from the lead boat. In most cases a moving lead boat implies
a moving target point. In the second phase, the maintaining
boat has reached its target point and now must maintain its
position on that target point by matching the heading and
speed of the lead boat. If the lead boat alters course in any
way, the maintaining boat must automatically adjust to the
new heading and speed.

Figure 1 shows the maintain vector, the combination of
target heading and target position that describes the desired
position and heading of the target boat. The combination
of a projected location of the target point used to calculate
fitness called the projected point with the maintain vector
describes all the information needed to evolve a controller.
The base of the maintain vector, referred to as the target
point, gets positioned at a location defined by a desired
direction and desired distance relative to the lead boat. We

Fig. 1. The Maintain Vector

rotate the maintaining vector so that it matches the heading
of the lead boat (target heading). Since the magnitude of
the maintain vector changes the fitness landscape, we set
the magnitude of the maintain vector (d in Figure 1) to be
100, a value that works well for our experiments. All sensor
and fitness values are based on the maintain vector and not
on the location of the lead boat. Training boats based on
the maintain vector increases the flexibility of the behavior
because the maintaining boat does not need to be aware of
the lead boat’s actual position allowing the behavior to be
adapted to any arbitrary arrangement of lead and maintaining
boats.

In the general case of the maintain station behavior the
boats would also need a strategy to deal with the avoidance
of obstacles in the environment. Both land and other boats
could pose a threat to the integrity of the formation. We
will not discuss the complex problem of obstacle avoidance
in this paper but will consider this to be part of our future
work.

IV. A PPROACH

We use the ESP evolutionary algorithm to train main-
taining boat controllers within the Lagoon simulation [10].
A type of genetic algorithm created specifically for use in
neuro-evolution, ESP stands for enforced sub populations.
One sub population of neurons is created for each neuron po-
sition in the neural network architecture. At each evaluation,
networks are created by randomly combining one neuron
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Fig. 2. Fully Connected Recurrent Network

from each of the individual sub populations into a complete
network. At the end of the evaluation, each neuron receives
a fitness score equal to the fitness score of the network that
it participates in. To protect good neurons from incurring an
unfair bias by participating in poor networks, we evaluate
each neuron in three different networks in each generation
of the genetic algorithm.

The neural networks we use are fully connected simple
recurrent neural networks with a single layer of recurrence
[11]. Figure 2 shows the design of the network used for the
experiment. In a recurrent neural network, the values in the
hidden layer of the network are retrieved from the previous
forward propagation of the network and then are used as
inputs to the network in the current propagation. This allows
information from past observations to influence the current
behavior of the network. The position of the maintaining
boat relative to the position of the maintain vector defines the
neural net input. The outputs of the neural network represent
a desired heading and a desired speed for the maintaining
boat.

We evaluate an evolving controller by placing a lead boat
and a maintaining boat in random positions and with random
headings in the open ocean. The lead boat travels along its
heading and the maintaining boat must maneuver toward
it and then follow at the specified offset. How well the
boat maintains its relative position defines fitness within our
simulated environment. The next section describes Lagoon,

Fig. 3. Lagoon Screenshot

our 3D, naval combat simulation.

V. L AGOON

For our experiment we use the Lagoon real-time 3D naval
combat simulation game [12] [13] [14]. Lagoon has several
features that make it a good platform for AI research. It has
been designed so that it can be run without graphics and
can be simulated at speeds faster than real time allowing
for quicker evaluations. It also has a flexible controller
architecture that made it simple to incorporate neural network
based controllers that can be substituted for the normal hand
coded controllers. Figure 3 shows a screenshot from Lagoon.

Lagoon provides a complex physics model for moving
boats in the simulated environment. For our experiment each
boat has linear and rotational velocity, linear and rotational
inertia and a friction equation that governs the way that boats
move through the water. Each boat is moved by means of a
throttle that provides forward thrust and a rudder that applies
torque. We controll the rudder and throttle indirectly through
the use of a class in Lagoon called the helmsman. Each boat
has a desired speed and a desired heading that the helmsman
class uses to determine an appropriate throttle and rudder
setting for the boat.

VI. REPRESENTATION

The inputs for the neural network are generated from three
vectors based on sensor points surrounding the target point.
Figure 4 illustrates the arrangement of the three sensor points
around the target location. Sensor pointA exists 100 units
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Fig. 4. The Three Vector Sensor

from the target point in the direction of the target heading.
Sensor pointsB and C are positioned 100 units from the
target point and rotated so that the three points form an
equilateral triangle.

To compute the three egocentric sensor vectors, we first
compute three angles finding the number of degrees from
the location of the following boat to each of the three sensor
points. Subtracting the maintaining boat’s desired heading
from each of these three values now gives us egocentric (with
respect to the following boat) rotation angles. These angles
are then converted into three normalized vectors. Thex and
y components of these three normalized vectors compose the
six sensor inputs of the network 2. This three vector design
was chosen because it not only provides information about
the direction to the target point but also provides information
that can be used to deduce the rotation of the maintaining
boat relative to the maintain vector. Finally, the values of
the three vector sensor are continuous from1 to −1 and
back without the break between 0 and 360 degrees that the
sensors would report if the values were given directly as
angles instead of as vector components.

The outputs of the network 2 control the desired heading
and desired speed of the boat. The first output value is scaled
so that it represents a value between 36 and -36 degrees.
We add this value to the current desired heading of the
boat. Lagoon then determines the best rudder position for
achieving the desired heading. The second output is scaled
between 0 and the maximum full speed of the boat. We
use this value directly as the new desired speed for the

Fig. 5. Fitness Components

maintaining boat. Since the neural network has no direct
knowledge of it’s speed, heading or it’s current desired
heading it must learn to navigate based entirely on the
egocentric angles provided by its sensor.

VII. F ITNESS

We compared three potential fitness functions to determine
which of the three produced the most convincing maintain
station behavior. The behavior has three primary objectives

• Match the speed of the lead boat
• Match the heading of the lead boat
• Maintain position on a specified point relative to the

lead boats position

However, not all of these objectives are equally important.
For example, a boat could keep very close to the target point
by driving around it in circles, but this behavior would lack
the appearance of intelligence to a human observer making
the result undesirable for use in a game or simulation. Con-
versely, if the following boat perfectly matches the heading
of the lead boat it will appear much more intelligent even
if it lags some distance from the target point. Thus, each
of the three fitness functions was designed to emphasize
heading as the most important objective and distance as the
second. Matching speed gets rewarded implicitly because the
sooner a boat reaches the target point the higher its maximum
potential score becomes. Passing the point due to excessive
speed results in lowered fitness. Fitness values are calculated
at each time step in the simulation and then summed over
the course of an entire evaluation.
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To determine fitness, three vectors are first calculated
based on the location of the boat and the maintain vector.
Figure 5 illustrates the three vectors that are used in the
fitness calculations. We project vector~vH in the direction
of the following boat’s desired heading, vector~vP from
the following boat’s position to the projected point and
vector ~vL projected in the direction of the target heading.
Finally, these three vectors are normalized before use in the
fitness function equation. In addition to the three vectors,we
calculate a distancedT representing the Euclidean distance
between the following boat and the target point. Combining
this information together we create three different fitness
functions.

Fitness function 1 rewards the maintaining boat for point-
ing directly at the projected point. We scale the dot product
of ~vH with ~vP to return a value between zero when the
boat points in the wrong direction to two when the boat
points in the correct direction. Scaling of the dot product
ensures a positive fitness value. Fitness based on facing the
projected point instead of the target point prevents a boat that
passes slightly in front of the target point from receiving an
inappropriately low fitness.

Multiplying the inverted square root of the distancedT to
the dot product encourages the boat to come as near to the
target point as possible. However, the distance component
plays a secondary role to the heading component because a
boat facing in the wrong direction will receive a fitness of
zero no matter how close it comes to the target point.

(1 + ( ~vH · ~vP )) ∗ 1/
√

dT (1)

Fitness function 2 rewards the maintaining boat for point-
ing either directly toward or directly away from the projected
point. The lowest fitness values are awarded when facing
perpendicularly to the projected point. This logic may seem
counterintuitive but was shown to produce very good results
in the first part of the experiment. We conjecture that the
success of this fitness function results from the increased
number of boats that achevie high fitness in the earlier
generations of the experiment. In fitness function 1, boats
that run from the projected point are severely punished and
quickly leave the population. In fitness function 2, these
individuals are rewarded and can remain in the population
for a long time. Periodically, one of these fleeing individuals
can mutate to become a follower instead. Selection pressure
will be identical to fitness function 1 in later generations
assuming that all fleeing boats have left the population and
only followers remain.

This change in fitness results from using the absolute value
of the dot product in the equation to ensure a positive value
instead of scaling it from zero to two.

(abs( ~vH · ~vP )) ∗ 1/
√

dT (2)

Fitness function 3 adds a third component to fitness
function 1 that considers how well the maintaining boat
matches the target heading. In the first two functions, the

Fig. 6. Experiment 1 - Fitness 1

boats gain reward for facing the projected point and rely on
the fact that the projected point moves to encourage them to
match the target heading. Of the fitness functions presented,
only function 3 explicitly rewards the boats for aligning with
the lead boat.

The new fitness component in function 3 comes from the
dot product of ~vH with ~vL scaled to return a value from
zero to two.

(1 + ( ~vH · ~vP )) ∗ (1 + ( ~vH · ~vL)) ∗ 1/
√

dT (3)

VIII. E XPERIMENT

We perform two experiments in the paper. In the first
experiment, the lead boat travels in a straight line in a random
direction at half of its maximum speed. Each evaluation
lasts for three minutes in order to give the maintaining boat
enough time to be scored adequately for both the acquiring
and maintaining phases of the behavior. The speed of the lead
boat in the second experiment was selected at random at the
start of each evaluation from between 25 and 75 percent of
the lead boat’s maximum velocity. Cases where the speed of
the lead boat approaches either 0 or 100 percent of maximum
velocity pose special challenges and are outside the scope of
this paper. We perform a different set of experiments for each
of the three fitness functions proposed below. Results for the
experiments are averaged over ten random seeds.

We use ESP with a population of 200 individuals evolved
over 500 generations. We create new populations at each
generation using binary tournament selection with a 70
percent probability of single point crossover. Exponential
mutation was used with a 10 percent proability and lambda
value of 10. Each neural network has six sensor inputs, eight
hidden nodes, and two output nodes.

IX. RESULTS

We quantitatively evaluated each of the evolved controllers
by comparing their fitness values. Referring to graphs of
fitness over time (figures 6, 7, 8, 9, 10, 11) we can see that
all of the experiments learned at virtually the same rate and
achieved virtually the same maximum fitness (fitness values
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Fig. 7. Experiment 1 - Fitness 2

Fig. 8. Experiment 1 - Fitness 3

Fig. 9. Experiment 2 - Fitness 1

Fig. 10. Experiment 2 - Fitness 2

Fig. 11. Experiment 2 - Fitness 3

scaled for comparison) regardless of the fitness function or
experimental setup. Each of the graphs displayed shows the
average fitness values for an experiment run over ten different
random seeds.

In addition to comparing the fitness values of the evolved
controllers we visually inspected them to ensure that they
could in fact perform the maintain station behavior. All of the
controllers were observed starting from at least five random
starting locations and in only one out of the three hundred
of these random scenarios did a boat completely fail to find
and follow the lead boat. This is a99.67% success rate. The
comparison of the graphs together with the observations of
the learned behavior suggests that on average the evolved
controllers are quantitatively equivalent.

Since all of our fitness functions generated controllers
that passed the quantitative examination the next step is
to qualitatively examine them to determine which of the
controllers would be the best for use in a game or simulation.
Qualitatively, we observed that at least 70 percent of the
boats in each experiment behaved believably. Several boats
were seen to pass the target point very quickly, stop to allow
the target point to pass in front of them and then repeat
this behavior to follow the lead boat. Other boats followed
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the target boat by swinging back and forth in a sinusoidal
motion, altering the shape of the wave to maintain proximity
to the target point. While these strategies can achieve a high
fitness they are not suitable to represent a human driver in a
simulation because the behavior is not readily perceived as
human like. We suspect that the largest problem across all
experiments was that maintaining boats found it difficult to
precisely control their speed. Bad controllers such as the stop
and go followers and sinusoidal followers descried above
may have evolved these behaviors as a way of avoiding
the need to control their speed effectively. This result was
not very surprising considering that the boats received no
direct information about the relative speed of the lead boat.
In the best results recurrent observations of the lead boat’s
position seem to have generated implicit information about
the relative speed but this seems to have occurred in only
about 10 percent of the observed behaviors.

Discussing the general trends observed in the behaviors
created by different fitness functions the boats evolved with
function 1 were dubbed the strict followers. These boats had
a very optimal strategy for finding the maintaining position
that included fast speeds and sharp turns. In general they
maintained position on the target point very well but did not
tend to approach the point gracefully.

Boats evolved with function 2 were dubbed the casual
followers. These boats showed a very graceful approach to
the targeted point with slower approach speeds and longer
more graceful turns. However these boats are more likely to
struggle while maintaining the target point with several of
the evolved boats learning to drive either behind or even in
parallel with the target point.

Boats created using function 3 were dubbed the sensible
followers. These overall were the best looking of all of the
results combining the more precise maintaining of the first
function with the more graceful maneuverability of the sec-
ond function. However the most believable of these behaviors
were elusive with only about half learning to balance both
approach and maintain effectively and the remainder focusing
on either one phase of the maintain behavior or the other.

X. FUTURE WORK

There are a number of variations of this experiment
that could be attempted to try and create more consistant
evolution of the maintain station behavior including changing
the fitness function or varying the sensor configuration.
Specifically relative speed sensors should be added to the
network to test our conjecture that the presence of this
information could allow maintaining boats to control their
speed more precisely. Also the experiment could be expanded
to include new behaviors. Now that we have established a
good method of evolving a maintain station behavior in the
open ocean a logical next step would be to evolve boats
that also have some evasive capabilities. A behavior with
the ability to maintain formation while avoiding collisions
with other boats would be an extremely useful behavior for
simulations like Lagoon. The basic problem of avoidance
centers around the task of determining when to avoid a

nearby boat and when to ignore it. For example boats in
a formation should not try to avoid each other unless one of
them falls out of position. Future experiments could include
expanding the network to contain some radar sensors and
then training the networks in the presence of other boats to
determine whether or not they would be capable of making
this determination.

XI. SUMMARY

In conclusion we have observed that it is possible for
a neural network to learn to perform the maintain station
behavior in the open ocean. Also we have shown that a fitness
function that scores a boat based on it heading and rotation
relative to a maintaining vector can consistently evolve robust
and believable solutions to this problem. The three fitness
functions we tested showed that different solutions to the
problem exist, and that while many different approaches to
the problem are capable of maximizing a fitness function
some of these solutions are more desireable for use in
simulated worlds based on their resemblance to perceived
human actions.
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