
Session _______ 
 

“Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition Copyright 
 2003, American Society for Engineering Education” 

 
Computer Vision Research Teaching Modules for Community College 

Computer Science and Engineering Courses 
 

Dwight Egbert, George Bebis, and Dave Williams 
University of Nevada, Reno and Western Nevada Community College 

 
 
Abstract 
 
This paper describes computer vision teaching modules we have developed for use in several 
courses at the University of Nevada as part of a Combined Research and Curriculum 
Development (CRCD) project, sponsored by NSF.  Modules developed to date include 
programming projects for  CS1 and/or CS2 courses, an image compression module for an 
introductory logic course, a digital camera interfacing module for a microprocessor course, and 
several programming modules for use in a data structures course. We have also found that these 
modules can be used effectively at the community college level and can provide resources to 
community college faculty that they might not otherwise have readily available. In fact, the use 
of computer graphics and image processing programs as teaching and motivational tools is 
becoming common at all levels of education. As an example, one of our modules used in CS1 
provides a brief background in computer vision concepts and allows students to write an image 
processing program with applications in computer vision. Using concepts learned in a first 
programming course students can read in a two dimensional array of data from a file that 
represents a black and white photographic image, perform one or more transformations on the 
data, and write the transformed data to a new file. A simple image viewer program can be used to 
display the before and after images and students can actually see and understand the effects of 
the transformation. In addition to learning more about the target subject it is the intent of the 
modules that students also have some fun with images. Many students do indeed enjoy the visual 
nature of the projects and are surprised that they can accomplish so much in lower division 
courses. Instructors wishing to include computer vision into their courses can easily modify a 
given module’s contents and adopt all or parts of any given module. The modules are available 
for free use or adaptation by other instructors and institutions. http://www.cs.unr.edu/CRCD/ 
 
Index Terms  
 
Computer Vision, Image Processing, Programming Projects, Teaching Modules 
 
Introduction and Background 
 
Students have long complained, and rightfully so, that traditional programming exercises suitable 
for introductory computer science and engineering classes are largely uninteresting and 
uninspiring. Students vastly prefer to write programs which have some perceived value to them 
or which pertain to their area of study. Regrettably, most programming tasks beyond the 
mundane are very difficult to implement at the introductory level, so beginning students are 
relegated to exercises which often provide little motivation to stretch their developing skills.  
However, computer vision and image processing provide a mechanism for implementing useful 



 
 

“Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition Copyright 
 2003, American Society for Engineering Education” 

and visually demonstrative programming projects which are well within the scope of beginning 
programmers.  Likewise, as the programming students progress additional processing functions 
can be built on previous work. 
 
In fact, the use of computer graphics and image processing programs as teaching and 
motivational tools is becoming common at all levels of education. The motivation for 
introducing computer vision and image processing into the high school (and even middle and 
primary school) curriculum is vividly described by Thomas et al [1]. 
 

“Vision is the sense through and by which we perceive and understand our world. … 
Learned eye-body coordination makes it possible for us to act and/or react smoothly and 
efficiently in all sorts of vision-guided situations. … It is also a powerful medium for 
communicating complex scientific ideas, especially those involving scientific processes. … 
We have never seen a technology so appealing to students of all ages as scientific 
visualization.” 

 
Thomas describes visiting a one-room elementary school in Montana and showing students 
images of Mars taken from the Viking spacecraft.  The students became involved in using the 
images to answer questions about Mars such as the size of craters and characteristics of other 
geologic features.  He states “Over the next hour the class took first an interest, then ownership, 
then pride in their investigation of Mars.” 
 
Several publications by Greenberg et al spanning almost ten years show a similar experience 
using image processing for upper elementary and secondary teaching [2] – [3].  Their project, 
“Image Processing for Teaching” (IPT) started as a response to the 1988 solicitation by NSF for 
Projects to Promote the Effective Use of Technology in the Teaching of Science and 
Mathematics.  Part of the motivation for the IPT project derives from a 1983 survey of teachers 
in which nearly 85% of the respondents noted that their preferred style for both teaching and 
learning was visual. 
 
Likewise, image processing has been used in general engineering education at the college level 
at several institutions.  For example, Shultz describes the use of digital signal processing and 
image processing research experiences in the undergraduate electrical engineering curriculum 
[4]. Jankowski also describes the use of Mathematica for digital image processing teaching 
modules in electrical engineering education [5]. Jimenez-Peris et al have described their 
approach to adding depth to CS1 and CS2 courses through the use of several interactive 
programming projects including games, image processing, and other applications [6].  Andrews 
et al have also included image processing projects in CS1 through the use of class libraries which 
include graphics primitives [7].  
 
These representative examples are a few of the many ways to include visually stimulating 
projects into the curriculum at a variety of levels.  Our project emphasizes computer vision 
research and the teaching modules are one component which integrates computer vision with 
several basic topics covered in the computer science and engineering curriculum.  Teaching 
modules consist of Power Point presentations, programming assignments and/or laboratory 
experiments, and in some cases complete video taped lectures.  The modules can be easily 



 
 

“Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition Copyright 
 2003, American Society for Engineering Education” 

adapted to a variety of courses and integrated into the existing course material.  The modules can 
be adopted as-is or can be used as a resource for custom tailoring specific projects. 
 
The strengths of these teaching modules include 1) a basis of interesting and enjoyable program 
development topics that appeal to students, 2) a well-integrated foundation of accompanying 
instructional material to prepare students for the code they are about to write, 3) implementation 
of the assigned programming tasks in a manner suitable for students with a wide variety of skills, 
and 4) the ease with which the instructional material and programming tasks may be easily 
integrated into a wide variety of curricula and modified if desired to best serve the instructor's 
educational requirements. 
 
 Integrating Computer Vision Research into the CS and Engineering Curriculum 
 
Computer vision is an ideal area for integrating research with teaching. As described above, 
computer vision has an immediate appeal to most students due to their intimate relationship to 
visual experience and people's fascination with this sense. Students have the opportunity to 
literally "see" the results of applying theory to solve practical problems. We believe that using 
computer vision research results can provide a high level of motivation to students. It is also an 
excellent learning tool for teaching students to integrate and use their acquired knowledge.  
 
When confronted with a programming task that provides a challenge beyond their  own 
expectations and which rises above the typical text-based numerical problem, students become 
energized and often rise to the occasion. For example, most introductory computer science and 
engineering students would never expect their skills to develop sufficiently in one semester to 
permit them to write useful image processing functions. Once they discover this task is well 
within their reach, their effort and enthusiasm is observed to increase considerably. By 
combining the necessary theoretical material and instructional tools into an integrated package 
which is highly flexible for adaptation in a wide variety of programming courses, the integrated 
computer vision image processing module readily permits the completion of apparently 
sophisticated programming tasks by students with relatively minimal programming skills. 
      
Our CRCD project objective is to integrate computer vision research seamlessly into and 
throughout the curriculum and quantify its effectiveness. Our philosophy is that students should 
be introduced to research as soon as possible in the undergraduate program. In contrast to 
traditional approaches which tend only to add senior level research courses, our approach for 
immersing students into research involves the systematic engagement of students into research 
through well-structured research activities which start from their freshman or sophomore year 
and continue until their graduation.  
  
In order to introduce students to research as soon as possible, we have integrated computer vision 
results into traditional "core" courses. Not only does this integrated strategy expose the students 
to computer vision related research problems at an early stage of the curriculum but it also 
imparts cohesiveness to the course concepts and brings them closer to real life than is the usual 
practice. Students are introduced to the learning process by seeking answers to “what if” types of 
questions from them, encouraging them to predict the outcome of certain experiments and then 
asking them to explain their results. It should be emphasized that computer vision research 
results can be naturally integrated in these courses without detracting from the original teaching 



 
 

“Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition Copyright 
 2003, American Society for Engineering Education” 

goals. We have developed research components suitable for use in each of the following 
University of Nevada, Reno (UNR) courses:  
 
CS 201 –  Introduction to Computer Science I (sophomore level, frequently taken by 
freshmen) 
CS 202 - Introduction to Computer Science II (sophomore level)  
CS/EE 236 –  Introduction to Computer Engineering (sophomore level)  
CS 308 -  Data Structures (junior level, portions may apply to soph. specialized courses)  
CS/EE 336 -  Microprocessor Engineering (junior level, may apply to soph. technology courses)  
 
The integration of computer vision research into these course is being done through self-
contained modules in such as way as to make the integration easily transferable to similar 
courses. The modules include lecture notes and Power Point presentations, example student 
design projects and labs, recommended reading materials, a prerequisite list, and in some cases 
video taped lectures. The list of prerequisite knowledge can be used by instructors at other 
institutions to aid in deciding whether or not the research results are of an appropriate level for 
their course. They can also use single modules, multiple modules, or modify pieces of individual 
modules to enhance specific course goals. 
 
 Computer Vision in CS1 and CS2 
 
The Introduction to Computer Science (CS 201 and CS 202) courses are typical CSAB CS1 and 
CS2 courses, the first two programming courses for most computer science and engineering 
students.  The introduction of computer vision research in these courses comes primarily at the 
end of the semester in CS1 or the beginning in CS2.  For example, an image processing final 
project in CS1 might be introduced by one lecture covering research principles and computer 
vision basics followed by a second lecture dealing with questions about the project. Usually, the 
project also brings out questions and discussion during parts of several more class periods as 
students progress through it. Image data are introduced as an example of two dimensional arrays.  
Basic concepts such as edges in images being changes in brightness are explained so that 
students can understand the processing they will perform.  The project as implemented at UNR 
consists of a menu driven image processing program with several functions including file read 
and write, negative, rotate, threshold, and basic filter.  The necessary programming does not 
involve anything beyond what is normally covered in the course. 
   
At the beginning of the project students are given a function to read a black and white portable 
gray map (PGM) file and use this as a model to write their own function to write data back to a 
file.  All other functions involve user input/output and simple array manipulations.  One of the 
image processing functions is an operation of the student’s choice.  Many students were very 
creative in their choice of operations and most students enjoyed the project.  The visual feedback 
made them feel they could actually accomplish a lot with only one programming course. 
 
While the modules are designed to be used as comprehensive programming exercise and will 
provide their greatest value in this mode, they also permit a high degree of flexibility for 
adaptation in lesser degrees of complexity. Once the necessary background material and 
relatively basic programming tools have been presented to students, they will be fully equipped 
to write the entire image processing program on their own. However, many (if not most) students 



 
 

“Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition Copyright 
 2003, American Society for Engineering Education” 

will have the greatest difficulty writing and perfecting the program overhead, particularly file 
I/O. Given sufficient time and opportunity, constructing the entire program is a very valuable 
exercise for students that constitutes an excellent final course project. First semester 
programming students enrolled in other courses will likely require a minimum of several weeks 
to properly complete a programming project of this magnitude, and additional lecture time 
beyond the initial module presentations will often be necessary to address the students' questions. 
 
Compared to program overhead, most students will find that the actual image processing 
functions are considerably more straightforward and rewarding to implement. Some curricula 
may not present all of the necessary programming material on a schedule which allows sufficient 
time for the entire project, some may not have enough available lecture time to devote to the full 
project, and other courses may prefer to focus on algorithm development in lieu of C++ 
mechanics. In these cases, students may be provided with the module background material in a 
single class lecture, given a source code framework containing all of the necessary program 
overhead, and then be tasked to develop just the actual image processing functions on their own. 
With this approach, students will spend the available time concentrating on the image processing 
algorithms which lie at the heart of this module. Relieving them of the responsibility to develop 
the entire program independently does omit the opportunity to further reinforce those necessary 
and valuable skills. However, in cases where time is short or the curriculum favors algorithm 
development over perfecting coding skill, the inherent flexibility of the module still permits its 
effective use in as little as one week's time. 
 
The Introduction to Computer Vision Lecture 
 
During the introduction to computer vision lecture the principles of scientific research are 
reviewed so that students are reminded of the scientific method before beginning their 
exploration into image processing and computer vision. The concept of images as two 
dimensional arrays is discussed at length. The relationship between our visual experience and the 
array element properties which must relate to that experience are demonstrated.  For example, an 
“edge” in an image is a result of a transition between dark and light pixels along either side of a 
line.  Likewise, thresholding a gray scale image to get a binary black & white image can be used 
to demonstrate regions and histogram analysis. 
 
An effective introduction to computer vision is to ask students to raise their hands if they 
recognize the object shown in Figure 1.  

 

 
Figure. 1  Image of a Whamo Frisbee used to introduce object recognition. (adapted from [8]) 



 
 

“Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition Copyright 
 2003, American Society for Engineering Education” 

After a few moments the object is identified as a chewed up Frisbee, common enough on college 
campuses.  Then, students are asked to explain how they identified the display as a Frisbee.  This 
first glimpse of  the difficulties involved in object recognition and computer vision demonstrates 
the difference between what we learn to do as humans and what we must do to extract 
information from arrays of numbers. 
 
After the introduction of object recognition we examine a small portion of the image and 
compare the visual effect with the data array and the histogram. Figure 2 shows the “M” in 
Whamo after it is re-sampled to 16 by 18 pixels  (for display purposes) together with a histogram 
of the image. The concept of a histogram and its use in image processing can be explained at this 
point. 
 

 
 

Figure. 2 “M” from Whamo and histogram after re-sampling to 16x18 pixels. 
 
During a brief discussion of image file formats the portable gray map (PGM) format is 
introduced and two version are demonstrated.  The simplest PGM format, the P2 ASCII format, 
can easily be demonstrated using a word processor. Figure 3 shows the “M” image in PGM P2 
format.  
 

P2 
# Created by IrfanView 
16 18 
255 
254 254 255 255 255 254 255 255 254 254 251 255 255 255 255 254  
254 254 235 248 255 255 254 255 254 254 254 255 227 241 255 255  
255 255 138 117 213 255 255 254 251 255 255 172 087 158 247 255  
255 254 113 039 105 230 255 251 254 255 200 079 039 134 242 255  
255 251 125 044 052 133 235 255 255 235 108 049 046 142 243 255  
255 254 123 084 081 049 124 243 255 162 052 056 048 133 243 255  
255 250 105 120 193 116 046 117 141 069 099 158 082 125 241 255  
255 248 102 125 234 210 073 048 051 058 186 210 093 123 241 255  
255 246 103 125 225 255 195 095 074 161 255 201 079 113 239 255  
255 249 103 125 225 255 255 224 212 246 255 185 073 111 236 255  
255 251 106 134 229 255 251 255 255 255 255 180 069 117 239 255  
255 247 101 136 230 255 251 254 255 255 255 180 069 120 240 255  
255 241 098 135 230 255 254 251 251 254 255 189 072 112 236 255  
255 244 101 136 231 255 254 254 254 251 255 191 072 111 236 255  
255 246 099 128 226 255 254 254 254 254 255 181 067 110 236 255  
255 241 084 120 225 255 254 255 254 254 255 173 051 111 239 255  
255 245 160 194 247 255 255 255 255 254 254 221 144 185 250 254  
254 254 247 251 255 251 254 255 255 254 254 255 246 250 254 255  

 
Figure. 3 “M” from Whamo 16x18 pixel image in PGM P2 format. 



 
 

“Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition Copyright 
 2003, American Society for Engineering Education” 

 
The first line contains “P2” to identify the format, subsequent comment lines begin with an 
ASCII “#” character, the next line contains the number of  columns and number of rows of 
pixels, and the next line contains the maximum gray value.  The rest of the file contains the pixel 
values in row order.  The image character of the file display can be detected if the smaller 
numbers representing dark pixels are somehow identified. 
 
The same image in PGM P5, binary, file format can easily be examined with DOS Debug or 
other file viewers.  Figure 4 shows a display of the hexadecimal and ASCII pixel values for the 
“M” image file in P5 format.   
 
 

 
 

Figure. 4  Debug display of PGM P5 image file format for “M” from Whamo . 
 
 
Both file displays show the different numeric values of array element for areas within and 
without the “M” demonstrating the relationship between intensity and array element value. 
However, it is visually difficult to quickly identify the “M”. This provides a basis for introducing 
the concept of thresholding images to make edges more detectable. A threshold value to be 
applied to the image is then chosen based upon the original histogram display.  The shape of the 
histogram is described and the meanings of peaks and valleys are discussed.  The program listing 
shown in Figure 5 demonstrates how simple it is to perform a threshold on a two dimensional 
array representing an image.  The four lines of code in bold are actually all that is required for 
the thresholding operation.  The rest of the function is overhead and I/O. Figure 6 shows the 
Debug display of the resulting P5 thresholded “M”. 
 
 



 
 

“Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition Copyright 
 2003, American Society for Engineering Education” 

 
int MakeThd(int pixelsTd[][640], int ppLineTd, int numLinesTd, int MaxGLTd, int CurAryTd) 
{ 
 int dmy1, dmy2, dmy3; 
 char dmystr[20]; 
 if(CurAryTd == 0) 
 { 
  cout << endl; 
  cout << "Enter the threshold value (between 0 and 255) >"; 
  cin >> dmystr; 
  dmy3 = atoi(dmystr); 
  cout << endl; 

    
  for(dmy1=0; dmy1<numLinesTd; dmy1++) 
  for(dmy2=0; dmy2<ppLineTd; dmy2++) 
     if (pixelsTd[dmy1][dmy2] < dmy3) pixelsTd[dmy1][dmy2]=0; 
     else pixelsTd[dmy1][dmy2]=255; 

  
  cout << "CURRENT IMAGE ARRAY IS THRESHOLDED FROM THE PREVIOUS IMAGE ARRAY." << endl; 
  return(0); 
 } 

 
Figure. 5  Sample C function to perform a threshold of a 2 dimensional image array. 

 
 

 
 

Figure. 6  Debug display of thresholded image file for “M” from Whamo . 
 
The result of the thresholding is now immediately obvious in the array element values which are 
either 0 or 255 (FF hex).  The concept of edge detection is now discussed and the  relative 
difficulties involved with detecting edges on raw as distinct from thresholded images can be 
demonstrated. Note that on the P5 format image files the length of the single comment line was 
carefully chosen so that the upper left hand pixel begins on the first column of the 16 column 
display.  This 16 column display is also the reason the “M” image was re-sampled to 16 by 18 
pixels. Such formatting considerations are only necessary for creating the teaching illustrations. 



 
 

“Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition Copyright 
 2003, American Society for Engineering Education” 

 
These and other concepts of computer vision, object recognition, and image processing are 
related to the programming principles and constructs which the students have been learning in 
the CS1 course.  The images in particular give meaning to arrays and make the two dimensional 
arrays come alive. A brief introduction to hexadecimal is also given to discuss the P5 format.  
However, knowledge of hexadecimal notation is not a prerequisite.  
 
The Programming Project 
 
The objective of our sample project is to write an image processing program with applications in 
computer vision which will read in a two dimensional array of data from a file that represents a 
black and white photographic image, perform one or more transformation operations on the data 
and write the transformed data to a new file. 
 
A sample executable program and image files are available on the laboratory server for students 
to test. Students can view the image data files both before and after performing transformations 
on them using a freeware program IrfanView [9] which can be downloaded from: 
http://www.irfanview.com. IrfanView also allows students to read in images in a variety of 
different formats and save them in the PGM format used for the project. An additional advantage 
of IrfanView is that it provides a hexadecimal display of the image file contents.  This allows 
students to examine their image files for correctness and relate image contents to the hex 
displays used in lecture.  An example hex dump from IrfanView is shown in Figure 7.  The 
simple image header format for PGM can be read from the first few bytes.  For example the 
basic code for PGM binary files is P5 linefeed (ASCII values 50, 35, 0A in hex) followed by, 
comment lines which start with # (ASCII 23 hex), image size parameters and finally by raw 
image data. 
 

 
 

Figure. 7  IRFANVIEW Hex display for sample PGM P5 Image . 
 



 
 

“Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition Copyright 
 2003, American Society for Engineering Education” 

As mentioned previously, one of the goals of the computer vision modules is to have some fun 
and add excitement to the learning process.  In this spirit, the author has chosen for this paper as 
an example image an ancestral photo circa 1870 from Murfreesboro, Tennessee which is about 
40 miles from the conference.  For their programming projects, students may use one or more of 
several provided sample image files to test their program, they may use one of the available 
digital cameras during a lab period to go out and take their own photos, or they may bring in one 
of their own photographic prints, slides or negatives to be scanned and converted to a data file. 
  
Students are provided with the specifications for the PGM file format and a sample C++ function 
which will read such a file into a two dimensional array.  The maximum array size is fixed and 
the read function has been written so that it does not contain any programming constructs which 
have not been covered in the CS1 course. The project is written in standard C++ and does not 
require special Windows functions.  In our course we use Visual C++ and the laboratory 
machines use thin client stations with the server running Windows 2000.  However, the 
programming project could just as easily be implemented on UNIX or LINUX systems.  
IrfanView is a Windows image viewer that is very easy and fast to use.  However, GIMP or any 
one of several other viewers could be used. Each semester the project transformations, format 
and design can be varied.  During the first semester we used this project we defined ten 
transformations and functions which each student must implement using a menu structure in 
their main program. An example menu listing of the ten operations is shown in Figure 8. 
 
 

Welcome to My Computer Vision Software (rev. 1.5) 
 

Please Select the Operation You Want to Perform. 
 

1.  Load current image array from file. 
2.  Reload current image array from same file. 
3.  Write current image array to file. 
4.  Create a negative of the current image array. 
5.  Specify filter array contents. 
6.  Filter current image array. 
7.  Threshold current image array. 
8.  Rotate current image array 90 deg. clockwise. 
9.  My own transformation of current image array. 
10. Exit program. 

 
Enter Menu Item > 

 
Figure. 8  Example Main Menu Display for Student programming project . 

 
 
All image transformations are performed on a “current image array” so that multiple 
transformations can be accommodated.  This is consistent with many graphics and CAD systems 
which use a “current position” and/or a “current object”.  An example screen display is shown in 
Figure 9 which shows the main menu running in a DOS window together with three different 
images being displayed by three different instances of IrfanView. The top left image in Figure 9 
is the original file, the bottom left is a thresholded image and the bottom right is a negative 
image that has also been flipped horizontally.   



 
 

“Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition Copyright 
 2003, American Society for Engineering Education” 

This is representative of the kind of user interface that can be achieved with readily available 
image viewer programs today.  This does not impose the burden of direct Windows or graphics 
programming on students in a first programming course.  Instead, they can concentrate on the 
programming principles they have been studying during the semester and still have the 
advantages of dynamic and fun image displays.  They can get direct visual feedback showing the 
effects of their programming functions.   
 
The programming project described here can provide the basis for many different image 
manipulation functions and transformations. Successful coding of the more elementary 
processing tasks is usually within the grasp of even the most reluctant programmers. For 
example, the concept of thresholding is easily explained and understood, and its proper 
implementation in C++ (as presented above) follows directly from this understanding. Other 
processing functions are no more difficult to comprehend but slightly more difficult to perform. 
For example, cropping an image requires the manipulation of output array dimensions (as does 
rotating a non-square image). Once the student is able to successfully crop one side of an image, 
writing a single function which permits simultaneous cropping of any or all of the four sides of 
the image simultaneously is an exercise which parallels the process of progressive enhancement 
usually practiced with real-world code development. Students should be encouraged to begin 
with processing tasks well within their current abilities and to further hone their skills by 
subsequently tackling the more advanced aspects of the module. 
 

 
 

Figure. 9  Example  Screen Display for Student programming project . 
 



 
 

“Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition Copyright 
 2003, American Society for Engineering Education” 

Within each module, students with rapidly maturing abilities will have an abundant opportunity 
to pursue significantly advanced processing tasks or user interface development. In fact, at least 
one student was able to use the image displays to find and correct a programming bug which 
caused the output images to be distorted with a specific pattern. Certain functions will require 
more creativity to achieve than will others. Perfecting an algorithm which gradually fades an 
image from normal contrast at one edge of an image to a solid shade (white, gray, or black) at the 
opposite edge will likely require considerable thought and algorithm refinement from most 
students before a sufficiently smooth gradation is achieved. Similarly, correctly pixellating an 
image (changing the shade of an entire block of pixels to a single value representative of the 
entire block) requires consideration of many ancillary factors beyond the basic mechanics 
required of the code (which is not an easy task by itself). Left to their own devices, some 
students may settle on using the mean value or median value of the pixels within each block 
while others may devise a more complicated algorithm. Without understanding the reasons why, 
students will be able to differentiate between acceptable and unacceptable results and will be 
driven to experiment with various possible solutions before settling on the version which 
produces the best results in their estimation.  This is an excellent illustration of the advantages of 
results presented in an intuitive, visual format. Extensive numerical verification of program 
results is not required; the image either looks right, or it doesn't. 
 
With even minimal thought, a large number of additional processing tasks may easily be 
realized. The module presents a representative set of possibilities, but individual instructors are 
free to augment those provided with others of their own creation. Students, especially those with 
more developed coding abilities or imaginations, should be encouraged to devise their own. The 
intuitively simple concept of modifying visual images and the almost limitless number of ways 
in which they may be modified will encourage students to combine their creativity and 
blossoming programming skills as they would during actual program development. In order to 
achieve a particularly interesting effect, students may discover the need to learn additional C++ 
language skills. Encouraging them to take this step on their own will demonstrate the unbounded 
nature of computer programming. In essence, there are only two levels of programming: that 
which has already been done, and that which is awaiting implementation by someone with 
sufficient creativity. 
 
While they are perfectly suitable for use in traditional curricula, the computer vision modules 
also lend themselves perfectly to alternative instructional techniques. Many programming classes 
consist of lecture and independent student development of code based on the concepts and 
practices presented in lecture. As some students may not respond particularly well to this 
approach, the modules have been designed to permit their presentation in alternative instructional 
formats. 
 
As presented above, the visual results provided by this particular module are simple to evaluate. 
Allowing students to compare the methodology, operation, and visual results of their own 
algorithms to the anonymous work of other students has proven to be very beneficial to all. All 
traces of authorship should be stripped from student programs before they are made available to 
the entire class. Students may then be asked to evaluate and comment upon each program. Even 
those students with lesser skills are able to quickly identify bad attributes and incorrect results of 
most programs, while almost all students can immediately identify desirable features or 



 
 

“Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition Copyright 
 2003, American Society for Engineering Education” 

techniques which they may quickly add to their own repertoire. This also provides the students 
with some perspective and appreciation for the instructor's burden when grading their 
programming assignments. As anyone who has done so can testify, evaluating code written by 
students can be an adventure, and sharing an appreciation of that adventure with those 
responsible often leads to some measure of student improvement. 
 
Similarly, students having difficulty with programming concepts often find that working 
cooperatively in a group with other students is sufficient to get them back on track. Working in a 
lab environment, groups of students may be challenged to develop the full slate of image 
processing functions in increasing order of complexity. Such groups should be carefully chosen 
to accomplish the desired objectives. Students of dissimilar abilities may be grouped together in 
cases where the more advanced students are willing and able to mentor those in need of 
assistance. Allowing the stronger students to complete the work while the weaker students 
merely observe will not serve the latter group well. In those cases, groups should probably be 
composed of students of comparable abilities. The broad range of available image processing 
functions will provide an entry point to the exercise and material of increasing complexity which 
is suitable for the entire range of student abilities. 
 
Alternatively, students can write stand-alone functions or instructors can provide other 
frameworks, in their own programming style, for students to expand upon. This permits students 
to focus on algorithm development in cases where time constraints prohibit completion of the 
entire program by students or when algorithm concepts are deemed to be more important than 
generating the program overhead. 
 
 
Conclusions 
 
Many beginning computer science and engineering students find the task of writing their first 
complete programs to be quite daunting. Some students will even confuse themselves into 
thinking that they don't know where to begin a program of their own. Others will encounter 
seemingly insurmountable obstacles (fundamental programming errors or perplexing syntax 
errors) which may seriously diminish confidence in their budding ability and which may even be 
sufficient to cause them to drop the course. In these cases, multiple tasks with an escalating level 
of difficulty all contained within a single captivating programming exercise may prove beneficial 
to instill the confidence necessary to gain mastery of the material. As the actual image processing 
functions vary in complexity from exceedingly simple to highly sophisticated, students who 
begin with easier functions gain the programming skill and confidence necessary to tackle the 
more difficult functions, all within the same application. This obviates the need to begin an 
entirely new programming exercise to increase the level of sophistication or to introduce new 
programming concepts.  
 
At this point we are pleased with the integration of computer vision research into our own core 
courses even though we will continue to make improvements. An integral part of this program is 
the assessment of results.  One of several instruments we use is a survey of students in each 
course after the computer vision modules have been completed.  The survey results for two 
semesters in our own CS1 course are discussed in a previous paper [10]. The survey results show 



 
 

“Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition Copyright 
 2003, American Society for Engineering Education” 

that most students thought the computer vision module helped them with the basic course content 
which was one of our main goals.  Future plans also include working more with community 
college instructors and assessing their requirements. 
 
Computer vision systems are already becoming commonplace, and vision technology will soon 
be applied across a broad range of business and consumer products. This means that there will be 
strong industry demand for computer vision scientists and engineers, for people who understand 
computer vision technology and know how to apply it in real-world problems. As a result of our 
integrating computer vision research experiences throughout our curriculum, many students may 
consider pursuing careers in computer vision. Likewise, the use of the computer vision modules 
by community colleges may encourage some students to continue their education to complete a 
baccalaureate or graduate degree. 
 
For the majority of the students who will not pursue a career in computer vision, such a 
background will prove helpful in other areas such as pattern recognition, graphics, robotics, 
multimedia, virtual reality and medical imaging.  All computer programming students will 
benefit from the fundamental skill required of the craft: the translation of a given problem into a 
properly constructed and tested algorithm which provides the desired results. This invaluable 
skill is lacking in many new students. The computer vision modules provide a level of 
curriculum enhancement which increases the students' interest, participation, and achievement in 
this important educational process, all presented within the framework of an enjoyable 
programming topic which many of them would have scarcely believed to be within their present 
abilities. We have also demonstrated that even the first programming course can support the 
introduction of computer vision research in a way that is meaningful to the course content. 
Computer vision and image processing provide valuable and interesting implementations for 
demonstrating basic programming concepts. 
 
Teaching modules and support material can be downloaded from links found at our project 
website: http:// www.cs.unr.edu/CRCD/. 
 
Acknowledgments 
 
The work reported here has been funded in part by a grant from the National Science 
Foundation, Combined Research and Curriculum Development, (#0088086). 
 
Bibliography 
 
[1]  Thomas, D. A., K. Johnson, and S. Stevenson, “Integrated Mathematics, Science, and Technology: an 
Introduction to Scientific Visualization”, Journal of Computers in Mathematics and Science Teaching, Vol. 15, No. 
3, 1996, 267-94. 
 
[2]  Greenberg, R., R Kolvoord, M. Magisos, R. Strom, and S. Croft, “Image Processing for Teaching”, Journal of 
Science Education and Teaching, Vol. 2, No. 3, 1993, 469-80. 
 
[3]  Greenburg, R., “Image Processing for Teaching: Transforming a Scientific Research Tool Into an Educational 
Technology”, Journal of Computers in Mathematics and Science Teaching, Vol. 17, No. 2, 1998, 149-60. 
 



 
 

“Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition Copyright 
 2003, American Society for Engineering Education” 

[4]  Shultz, R. R., “Experience in the Integration of Digital Signal and Image Processing Research into the 
Undergraduate Electrical Engineering Curriculum”, Proceedings of the XXXX American Society for Engineering 
Education Annual Conference & Exposition, Session 2632. 
 
[5]  Jankowski, M., “New Courseware Modules and Software for Digital Image Processing”, Proceedings of the 
2001 American Society for Engineering Education Annual Conference & Exposition, Session 1320. 
 
[6]  Jimenez-Peris, R., S. Khuri, and M. Patino-Martinez, “Adding Breadth to CS1 and CS2 Courses Through Visual 
and Interactive Programming Projects”, Proceedings of the 1999 ACM Special Interest Group for Computer Science 
Education, 252-56. 
 
[7]  Andrews, P., D. Broline, W. Slough, and N. Van Cleave, “A Set of CS1 Labs Utilizing Graphical Objects and 
Inheritance”, Proceedings of the 2001 ASEE/IEEE Frontiers in Education Conference, T3C-10-14. 
 
[8]  Hecht-Nielson, R., Course Notes: Hecht-Nielson Neurocomputer Application Course, San Diego, CA, January 
1988. 
 
[9]  Skiljan, Irfan, IRFANVIEW Freeware Image Viewer, http:// www.irfanview.com, (last accessed May 24, 2001). 
 
[10]  Egbert, D., G. Bebis, M. McIntosh, N. LaTourrette, and A. Mitra, “Computer Vision Research as a Teaching 
Tool in CS1”, Proceedings ASEE/IEEE Frontiers in Education Conference, November 6-9, 2002. 
 
Biographical Information 
 
Dwight Egbert received his Ph.D. in Electrical Engineering from the University of Kansas in 1976. He is in his 
seventeenth year as a full-time academic engineer with the University of Nevada, Reno College of Engineering. He 
is currently the Director of Computer Engineering Undergraduate Programs and Director of the College of 
Engineering Computer Center. He has authored more than 80 original research papers and reports dealing with 
computer applications in computer vision, remote sensing, image processing, and neurocomputing. 
 
George Bebis completed his Ph.D. degree in Electrical and Computer Engineering in 1996 at the University of 
Central Florida, Orlando, FL. From 1996 to 1997 he was a visiting assistant professor at the University of Missouri-
St. Louis.  During the summer of 1998, he was a summer faculty visitor at Lawrence Livermore National Laboratory 
(CASC). Currently, he is an associate professor in the Computer Science Department at UNR and the founder-
director of the UNR Computer Vision Laboratory.  
 
Dave Williams is the Engineering Instructor at Western Nevada Community College in Carson City, Nevada. He is 
a Registered Professional Engineer and has practiced as a consulting engineer for 30 years in the field of antenna 
design and analysis, computer simulation and modeling, and electromagnetic compatibility, and holds the Ph.D. 
degree in Electrical Engineering from the University of Nevada, Reno. 
 


