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11.1 Introduction

With the increase in the availability and computational power of digital imaging devices, it
is natural to think about integrating artificial intelligence models with processing of digital
images and videos used for visual surveillance applications to improve their performance.
However, for such applications to be efficient, there is a need for addressing a number of
significant challenges. Accounting for the presence of regions that do not belong to objects
of interest, global ambient illumination variations in the environment over long periods of
time, and the real-time constraints inherent to visual surveillance applications are among
such obstacles. This chapter demonstrates two main categories of mathematical and com-
putational techniques developed to help improve the accuracy and efficiency of automated
visual surveillance systems.

11-1
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11-2 Background Modeling and Foreground Detection for Video Surveillance

First, a statistical modeling approach based on non-parametric density estimation is
presented with the goal of accurately detecting foreground regions in videos with quasi-
stationary background. Second, we show that pixel models may alternatively be learned
analytically to help with the issue of unknown probabilistic distribution of background pix-
els. In order to train pixel models analytically, Support Vector Machines are utilized to
learn the single-class of pixel models – namely the background. This can be achieved by
training Support Vector Data Descriptions (SVDD) for each pixel and by utilizing Support
Vector Regression (SVR). We demonstrate the applicability of each approach in different
surveillance applications - i.e. videos with non-empty backgrounds, indoor and outdoor envi-
ronments, videos with sudden global illumination changes, etc.- to highlight their strengths
and accuracy in delivering robust and reliable foreground regions. Such robust and accurate
foreground region detection mechanisms help improve the end results of automated visual
surveillance applications. The chapter concludes the contributions made within the proposed
unified framework for visual surveillance and presents a road-map for future investigations.

11.2 Literature Review

Detecting foreground regions in videos is an important task in high-level video process-
ing applications. One of the major issues in detecting foreground regions is that because
of inherent changes in the background (such as fluctuations in monitors and fluorescent
lights, waving flags and trees, water surfaces, etc.) the background may not be completely
stationary.

In the presence of these types of backgrounds, referred to as quasi-stationary, a single
background frame is not enough to accurately detect moving regions. Therefore the back-
ground of the video has to be modeled in order to detect foreground regions - e.g. newly
introduced objects to the scene, while allowing for quasi-stationary backgrounds.

There is also a great amount of diversity in scenarios where the background modeling
techniques are used to detect foreground regions. Applications vary from indoors scenes to
outdoors, from completely stationary to dynamic backgrounds, from high quality videos
to low contrast scenes and so on. Therefore, a single system that addresses all possible
situations while being time and memory efficient has yet to be devised.

11.2.1 Statistical Background Modeling

In the presence of quasi-stationary backgrounds, a single background frame is not enough
to accurately detect foreground regions. Pless et al. [16] evaluated different models for
dynamic backgrounds. Depending on the complexity of the problem the background models
employ expected pixel features (i.e. colors) [17], consistent motion [15], [35], or fusion of
color/contrast and motion [4]. They also may employ pixel-wise information [36] or regional
models of features [30]. To improve robustness to noise, spatial [14] or spatio-temporal [12]
features may be used.

In [36] a single 3-D Gaussian model for each pixel is built and the mean and covariance
of the model are learned in each frame. However, the system failed to label a pixel as
foreground or background when it has more than one modality due to fluctuations in its
values, such as in a fluctuating monitor.

A mixture of Gaussians modeling technique was proposed in [20], and [19] to address
the multi-modality of the underlying background. In this technique background pixels are
modeled by a mixture of Gaussians. During the training stage, parameters and weights of
the Gaussians are trained and used in the background subtraction where the probability of
each pixel is generated using the mixture of Gaussians. The pixel is labeled as foreground
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or background based on its probability.
There are several shortcomings for mixture learning methods. First, the number of Gaus-

sians needs to be specified. Second, this method does not explicitly handle spatial dependen-
cies. Even with the use of incremental expectation maximization, the parameter estimation
and its convergence is noticeably slow where the Gaussians adapt to a new cluster.

A recursive filter formulation is proposed by Lee in [11] to speed up the convergence.
However, the problem of specifying the number of Gaussians as well as the adaptation in
later stages still exists. This model does not account for situations in which the number of
Gaussians changes due to occlusion or uncovered parts of the background.

In [7], Elgammal et al. proposed a non-parametric kernel density estimation method
(KDE) for pixel-wise background modeling without making any assumption about its proba-
bility distribution. Therefore, this method can easily deal with multi-modality in background
pixel distributions without specifying the number of modes in the background. However,
there are several issues to be addressed using non-parametric kernel density estimation.

These methods are memory and time consuming since for each pixel in each frame the
system has to compute the average of all kernels centered at each training sample. The
size of temporal window used as the background model needs to be specified. Too small a
window increases speed, while it does not incorporate enough history for the pixel, resulting
in a less accurate model.

In order to update the background for scene changes such as moved objects, parked
vehicles or opened/closed doors, Kim et al. in [9] proposed a layered modeling technique.
This technique needs an additional model called cache and assumes that the background
modeling is performed over a long period of time. It should also be used as a post-processing
stage after the background is modeled.

Recently, we investigated two statistical methods for background modeling, based on
adaptive kernel density estimation (AKDE) [24], [22], and recursive modeling (RM) [25],
[23]. These techniques will be further investigated and discussed in this chapter.

There is a major drawback inherent to statistical modeling methods including the AKDE
and the RM techniques. The accuracy of these methods is limited to the accuracy of the
estimated probability density function for the background pixels. In this paper we present
a non-statistical method that addresses this difficulty.

Furthermore, there is an additional issue with all statistical foreground detection tech-
niques including the AKDE and the RM methods. In all statistical methods the assump-
tion is that there are two classes, namely foreground and background, and that the model is
trained on background samples which are present during a short period of time (the AKDE)
or from the beginning of the video (the RM). Note that until a foreground object appears
in the scene, there is no information about the foreground class. This problem is addressed
by using thresholds in the classification stage to label pixels as foreground or background.

11.2.2 Analytical Learning of Background Pixel Models

To overcome the aforementioned disadvantage of statistical learning tools a non-statistical
background modeling technique is proposed in [26], based on Support Vector data descrip-
tion modeling (SVDDM). This novel technique in describing one class of known data sam-
ples, is called Support Vector Data Description Modeling [26]. The backbone of the proposed
method is a theory based on describing a data set using their Support Vectors [29], [28]. The
SVDDM uses Support Vectors to generate a description for the known data class; e.g. the
background. These Support Vectors along with the classifier information for each pixel are
stored and used in the classification stage to label pixels in new frames as foreground/back-
ground. The performance of this system is studied and its experimental results on real video
sequences are compared with other existing techniques in the literature.
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11-4 Background Modeling and Foreground Detection for Video Surveillance

11.2.3 Target Detection and Tracking

Target behavior analysis depends heavily on the reliability of target detection and tracking
which can provide important information about the location of targets and their temporal
correspondences over time. Both target detection and tracking have been investigated widely
over the last two decades with the majority of approaches employing detection alone, track-
ing alone, or hybrid schemes such ”detect-then-track” where detection and tracking work
sequentially and independently of each other [21].

Tracking methods can be divided into two main categories. In the first category, the state
sequence of a target is iteratively predicted and updated using prior information from past
measurements and likelihood information from current measurements, respectively. Various
filters have been employed to predict the state sequence of a target including Kalman filters
[2] and extended Kalman filters for linear predictions, as well as unscented Kalman filters [2]
for non-linear predictions. The most general class of filters, however, includes particle filters
[10], also called bootstrap filters [8], which are based on Monte Carlo integration methods.
Methods belonging in the second category use various target characteristics, such as color
or gray-level information, shape, and motion information. These methods perform tracking
by building the unique correspondence relationship in the appearance of the target from
frame to frame [3].

In tracking alone methods, the initial location of a target is usually specified manually.
The majority of methods employing detection along with tracking use a detect-then-track
approach where the target is detected in the first frame and then turned over to the tracker
in subsequent frames. The main problem with these methods is that they aim to resolve
detection and tracking sequentially and independently of each other. An important issue
considered in this work is improving the performance of target detection by feeding tem-
poral information from tracking back to the detection stage. In this context, we propose
a detect-and-track scheme where detection and tracking are addressed simultaneously in a
unified framework (i.e., detection results trigger tracking, and tracking re-enforces detec-
tion). One approach to deal with this problem is by using a Bayesian decision framework
which combines prior probability information provided by tracking with likelihood informa-
tion provided by frame-based detection [33]. However, the performance of target detection
depends heavily on the threshold used to distinguish between foreground and background
objects. Another approach is propagating the probabilities of detection parameters (e.g., at
several scales and poses) over time using condensation and factored sampling [32].

11.3 Non-Parametric Statistical Estimation of Pixel Distri-
bution for Background Modeling

In this section we present a non-parametric statistical learning approach for modeling back-
ground pixel probability distribution [27]. Our focus here is to find a common ground that
would cover a general scenario for background modeling. This solution is based on a non-
parametric framework. This base-line system is called Adaptive Kernel Density Estimation
(AKDE) [27]. To enhance the base-line statistical modeling technique, we derive a universal
modeling tool. The proposed general method is called Recursive Modeling (RM) [25]. This
technique addresses the issue of robust background training in slowly changing backgrounds,
non-empty backgrounds, and backgrounds with irregular global motion (e.g. hand-held cam-
eras).
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Algorithm 11.1 - The proposed AKDE modeling algorithm

1: for each frame at time t do
2: // Training Stage
3: for each pixel:=uv do
4: Σ [u,v]←CalcCovariance(framet)
5: th[u,v]←CalcThreshold(framet)
6: end for
7: // Classification Stage:
8: for each pixel:=uv do
9: Median [u,v]←CalcMedian(framet, [u,v],[w×w])

10: if Median[u,v]≤th[u,v] then
11: FGt[u,v]← 1 // Foreground Detected
12: else
13: FGt[u,v]← 0 // Background Detected
14: end if
15: end for
16: // Update Stage:
17: if Size(FG)≥Size(frame) then
18: for each pixel:=[u,v] do
19: OldestFramet[u,v]←frame[u,v]
20: end for
21: else
22: for each pixel:=[u,v] do
23: OldestFramet[u,v|FG[u,v]==0]←frame[u,v|FG[u,v]==0]
24: end for
25: end if
26: end for

11.3.1 The AKDE Algorithm

Algorithm 11.1 shows the pseudo-code for the AKDE algorithm, consisting of three major
stages: training, classification and update. In the training stage the background model is
generated. In new frames, pixel model values are used to estimate the probability that the
pixel belongs to the background model. Since we only have samples of the background class
before any foreground object appears in the scene, there should be a mechanism to label
low probability values to foreground models.

The only parameter in kernel density estimation is the kernel bandwidth. In theory, as
the number of training samples grows without a bound the estimated density converges to
the actual underlying density regardless of the kernel bandwidth value [6]. In the AKDE
method a non-parametric model for each pixel is generated and its classifier is trained.
The training stage employs the history of pixel values. The algorithm then estimates the
probability of each pixel being background in new frames as the classification criterion. In
the classification stage, each pixel is classified as foreground or background based on its
estimated probability, computed by:

Pt(xt) =
1

N2π|Σ|1/2
N∑

i=1

e[−
1
2 (xt−xi)

TΣ−1(xt−xi)] (11.1)

where xt is the pixel feature vector at time t and xi are its values in the training sequence.
Σ is a positive definite symmetric matrix which is the kernel bandwidth matrix and N is
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(a) (b)

FIGURE 11.1 Adaptive threshold map: (a) An arbitrary frame. (b) Threshold map.

the number of frames used to train the background model. In order to capture dependencies
between features for each pixel, Σ has to be a full (non-diagonal) matrix.

Due to limited memory and computational power, a rather short term memory of the
background frames may be stored as training samples. This makes the non-parametric kernel
density estimation dependent on the choice of its kernel bandwidth. In order to achieve an
accurate and automatic background model, which is adaptive to the spatial information in
the scene, the kernel bandwidth matrix needs to be trained.

For each pixel the training samples are vectors XN = {xi : i = 1 · · ·N}, where N is the
number of training frames. The successive deviation of the above vectors is a matrix ∆X

whose columns are
[
xi − xi−1

]T
. For each pixel, the kernel bandwidth matrix is defined

such that it represents the temporal scatter of training samples [27].

Note that for pixels that change more frequently the kernel bandwidth matrix has larger
elements, while for pixels that do not change much its elements are smaller. Moreover,
since the kernel bandwidth matrix is computed using successive deviations, it accounts for
temporal dependencies in pixel feature vectors.

To allow for the pixel probability estimation adaptation to the different amount of
change, the classifier threshold values need to be trained for each pixel during the training
stage. For each pixel a threshold value (th) is selected such that its classifier results in 5%
false reject rate. That is, 95% of the time the pixel is correctly classified as belonging to
background model [27].

This adaptive classifier threshold training can be seen in Fig. 11.1, where (a) shows
an arbitrary frame of a sequence containing a water surface and (b) shows the trained
threshold map for this frame. Darker pixels in Fig. 11.1(b) represent smaller threshold
values and lighter pixels correspond to larger threshold values. The thresholds in areas that
tend to change more (the water surface) are lower than those in areas with less amount of
change (the sky).

In the classification stage, each pixel background probability in new frames is estimated
using equation (11.1) to label the pixel. If we directly apply the trained threshold of each
pixel to its estimated probability, due to impulse (salt and pepper) noise, isolated pixels
may be erroneously classified. One of the properties of this type of noise is that, if strong
noise affects a pixel, it is less likely to affect its neighbors with the same strength.

Median filtering is known to be a suitable tool to remove this type of noise. In order to
remove the process noise we apply the median of estimated probabilities in a region around
a pixel. After estimating the probability of each pixel in the new frame, the median of
probabilities in its 8-connected neighborhood is compared with its threshold to label each
pixel as background or foreground. Fig. 11.2 shows the effect of enforcing spatial consistency
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(a) (b) (c)

FIGURE 11.2 Original frame (a), and detected foreground regions by applying thresholds directly on

the estimated probability (b), and on median of probabilities in a neighborhood (c) ( c©(2009) Springer).

using the median of probabilities in foreground region detection.

11.3.2 Recursive Modeling (RM)

One of the main disadvantages of the kerned density estimation approaches to background
modeling is the number of background frames needed to train probabilistic models – i.e. N
from equation (11.1).

The Recursive Modeling (RM) technique, in pseudo-code, is shown in Algorithm 11.2.
θBt is the background model and θFt is the foreground model for each pixel. Let xt be
the intensity value (or the chromaticity vector) of a pixel at time t. The non-parametric
estimation of the background model that accurately follows its multi-modal distribution
can be reformulated in terms of recursive filtering [25]:

θ̂Bt (x) = [1− βt] · θBt−1(x) + αt ·H∆ (x− xt) (11.2)

where x ∈ [0, 255] and θBt is the non-normalized background pixel model at time t. The
background model represents the probability of each pixel belonging to the background and
must be normalized accordingly; i.e.

∑255
x=0 θ

B
t (x) = 1.

θ̂Bt , before normalization, is updated by the local kernelH (·) with bandwidth ∆ centered
at xt. Parameters αt and βt are the learning rate and forgetting rate schedules, respectively.
The kernelH should satisfy the following conditions:

∑
xH∆(x) = 1 and

∑
x x×H∆(x) = 0.

Fig. 11.3 shows the process of using the proposed RM technique. The trained model
(solid line) converges to the actual one (dashed line) as new samples are introduced. The
actual model is the probability density function of a randomly generated sample population.

Scheduled Learning

In order to speed up the modeling convergence and recovery from stale models a schedule
for learning the background model at each pixel based on the pixel’s history is utilized.
This schedule makes the adaptive learning process converge faster, without compromising
the stability and memory requirements of the system. The learning rate changes according
to the schedule αt = 1−α0

h(t) + α0. In this context, αt is the learning rate at time t and

α0 = 1/256 × σθ is a small target rate. σθ is the model variance. The function h(t) is a
monotonically increasing function h(t) = t− t0 + 1. We denote the time at which a sudden
global change is detected as t0.

According to this schedule the learning occurs faster (αt = 1) shortly after a global
illumination change is detected and decreases to converge to the target rate α0. In section
11.6 we discuss the effect of this schedule on improving the convergence and recovery speed.
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11-8 Background Modeling and Foreground Detection for Video Surveillance

Algorithm 11.2 - The proposed Recursive Modeling (RM) algorithm

1: Initialization(∆, α0, β, κ, th)
2: for each frame at time t do
3: for each pixel:=uv do
4: xr ← framet[u,v]
5: // Training Stage:
6: αt ← 1−α0

ht
+ α0

7: updateDelta(∆)
8: θBt (x)← (1− βt)θBt−1(x) + αt ×H∆(x− xt)
9: if (θBt (x) ≤ th) then

10: θFt (x)← (1− βt)θFt−1(x) + αt ×H∆(x− xt)
11: end if
12: // Classification Stage:

13: if (ln(
median(θBt (x)

θFt (x)
≤ κ) then

14: frame[u,v] ← background
15: else
16: frame[u,v] ← foreground
17: end if
18: // Update Stage:
19: updateKappa(κ)
20: updateTh(th)
21: end for
22: end for

11.4 Support Vector Data Description Background Model-
ing

This section presents analytical background modeling techniques based on single class Sup-
port Vector classification techniques [26].

To overcome the main disadvantage of statistical learning tools in explicitly addressing
the dependence of statistical models to probability estimation accuracy and the single-
class classification problem a series of novel analytical background model learning tools are
proposed in this section. In the following we present the SVDDM theory and the algorithm
which detects foreground regions using this theory in detail.

11.4.1 The SVDD Theory

A normal data description is a description which gives a closed boundary around the data.
A simple normal data description can be considered as a sphere with center a and radius
R > 0, which encloses all of the training samples xi. The data description is achieved by
minimizing the error function F (R, a) = R2 subject to ‖xi − a‖2 ≤ R2 for every smaple.

In order to allow for outliers in the training data set, the distance of each training
sample xi to the center of the sphere a should not be strictly smaller than R2. However,
large distances should be penalized. Therefore, after introducing slack variables ǫi ≥ 0 the
minimization problem becomes:

F (R, a) = R2 + C
∑

i

ǫi (11.3)
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(a) (b)

FIGURE 11.3 Recursive modeling: Model after (a) 10 frames. (b) 467 frames ( c©(2009) Springer).

subject to the new constraints:

‖xi − a‖2 ≤ R2 + ǫi, ∀i (11.4)

where C controls the trade-off between the sphere volume and the description error.
The minimization problem in equation (11.3) can be solved by introducing the con-

straints of equation (11.4) to the error function using Lagrange multipliers:

L (R, a, αi, γi, ǫi) = R2 + C
∑

i

ǫi −
∑

i

αi
[
R2 + ǫi −

(
‖xi − a‖2

)]
−
∑

i

γiǫi (11.5)

where αi ≥ 0 and γi ≥ 0 are Lagrange multipliers. Optimization is achieved by minimizing
for the value of L with respect to R the radius of the circle. According to our detailed
explanation in [26], and after solving the minimization problems while replacing the results
into equation (11.5) we have:

L =
∑

i

αi(xi · xi)−
∑

i,j

αiαj(xi · xj) ∀αi : 0 ≤ αi ≤ C (11.6)

A set of αi values can be achieved using equation (11.6). If a sample xi satisfies the
inequality in equation (11.4) its corresponding Lagrange multiplier will be zero (αi = 0).
For all the training samples for which the equality in equation (11.4) is satisfied the Lagrange
multipliers become greater than zero (αi > 0).

Note that the center of data descriptor from equation (11.3), a, is a linear combination
of the training samples. Only those training samples xi which satisfy (11.4) by equality are
needed to generate the description since their coefficients are not zero. These samples are
called Support Vectors of the data descriptor.

The main assumption in the above theory states that the data description is normal
–i.e. the data boundary is the smallest sphere surrounding the training samples. However,
this simple, normal description is not enough for more complex data which does not fit into
a sphere, i.e. the description needs more complex boundaries. To achieve a more flexible
description, instead of a simple dot product of the training samples (xi · xj) in equation
(11.6), we perform the dot product using a kernel function K(xi,xj) = Φ(xi)·Φ(xj). This is
done by using a mapping function Φ which maps the data into another (higher dimensional)
space. By performing this mapping any complicated boundary (description of data) in low
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11-10 Background Modeling and Foreground Detection for Video Surveillance

dimension can be modeled by a hyper-sphere in a higher dimension. Several kernel functions
have been proposed in the literature [31], among which the Gaussian kernel gives a closed
data description:

K(xi,xj) = exp

(
−‖xi − xj‖2

σ2

)
(11.7)

According to the above theory the proposed SVDDM method generates a Support Vector
data description for each pixel in the scene using its history. These descriptions are then
used to classify each pixel in new frames as a background or a novel/foreground pixel. In
the following section the actual implementation of the system is presented.

11.4.2 The Algorithm

The methodology described above is used in our technique to build a descriptive boundary
for each pixel in the background training frames in order to generate its model for the
background. These boundaries are then used to classify their corresponding pixels in new
frames as background or novel (foreground) pixels. There are several advantages in using
the SVDD method in detecting foreground regions:

• It explicitly addresses the single-class classification problem. Existing statistical ap-
proaches try to estimate the probability of a pixel being background, and use (a set
of) thresholds to classify pixels. It is impossible to have an estimate of the foreground
probabilities, since there are no foreground samples in the training frames.

• The SVDD method has lower memory requirements compared to non-parametric den-
sity estimation techniques. This technique only requires a very small portion of the
training samples, the Support Vectors, to classify new pixels.

Algorithm 11.3 shows the proposed algorithm in pseudo-code format. The only critical
parameter is the number of training frames (N) that needs to be initialized. The Support
Vector data description confidence parameter C is the target false reject rate of the system,
which accounts for the system tolerance.

The background model in this technique is the description of the data samples (color
and or intensity of pixels). The background training buffer is a First In First Out (FIFO)
buffer with Round Robin replacement policy. The data description is generated in the
training stage in which for each pixel Support Vectors and their Lagrange multipliers (αi)
are trained.

The Support Vectors and their corresponding Lagrange multipliers are stored as the
classifier information for each pixel. This information is used for the classification step of
the algorithm. The training stage can be performed off-line in cases where there are no
global changes in the illumination or can be performed in parallel with the classification
stage to achieve efficient foreground detection [26].

In the classification stage, for each frame its pixels are evaluated by their corresponding
classifier to label them as background or foreground. To test each pixel zt the distance to
the center of the description hyper-sphere is calculated:

‖zt − a‖2 = (zt · zt)− 2
∑

i

αi(zt · xi) +
∑

i,j

αiαj(xi · xj) (11.8)

A pixel is classified as a background pixel if its distance to the center of the hyper-sphere
is smaller or equal to the data descriptor’s radius (i.e. ‖zt − a‖2 ≤ R2).
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Algorithm 11.3 - The SVDDM algorithm

1: // C: Confidence, N: No. of frames, σ: Bandwidth
2: Initialization(C, N, σ)
3: for each pixel:=uv do
4: xuv ← framesuv[1 · · ·N ]
5: // Training Stage:
6: SVDDuv ←trainSVDD(xuv [1 · · ·N ])
7: end for
8: for each frame at time t do
9: for each pixel:=uv do

10: xuv ← framesuv[t]
11: // Classification Stage:
12: DVuv ←classifySVDD(xuv [t], SVDDuv) // DV=Description Value
13: if (DVuv > 0) then
14: pixel:=uv← foreground
15: else
16: pixel:uh← background
17: end if
18: // Update Stage:
19: if (t%10) then
20: SVDDuv ←trainSVDD(xuv [t−N · · · t])
21: end if
22: end for
23: end for

R2 is the distance from the center of the hyper-sphere to its boundary which is also
equivalent to the distance of each support vector to the center of the hyper-sphere:

R2 = (xk · xk)− 2
∑

i

αi(xi · xk) +
∑

i,j

αiαj(xi · xj) (11.9)

11.5 Unified Framework for Target Detection and Tracking

Figure 11.4 illustrates the proposed framework for integrating target detection with track-
ing. This framework includes three main modules: (i) background modeling, (ii) target
detection, and (iii) target tracking. The purpose of background modeling is to construct the
intensity variation model of the pixels belonging to the background. Here, a SVR approach
is exploited to fit the intensity distribution of background pixels using a Gaussian kernel.
Target detection is performed by subtracting those pixels that fit the background model. Fi-
nally, the tracking module is used to establish a unique correspondence relationship among
the detected targets over time.

In order to improve target-to-target correspondences over time, we calculate confidence
coefficients based on shape, size, color and motion (i.e., velocity) information. Most impor-
tantly, the shape confidence coefficient computed in the tracking module is further exploited
to iteratively update the threshold used in the detection stage to decide whether a pixel
belongs to background or not. The detection threshold can be iteratively increased or re-
duced to improve detection results by considering the temporal correspondences of targets
between adjacent frames. A voting-based strategy has been adopted to enhance matching
results during target tracking under illumination changes and shape deformations due to
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FIGURE 11.4 Framework for target detection and tracking ( c©(2008) Springer).

perspective projection. Specific details are provided in the following sections.

11.5.1 Background Modeling and Initialization of Target Location

In order to effectively detect the precise location of targets in a scene but also to avoid
missing small targets, an accurate background model is required. Moreover, an effective
way is required to incorporate background changes by updating the background model fast
and effectively. The target detection state and background modeling may employ any of
the statistical techniques presented in Section 11.3, the Support Vector Data Description
in Section 11.4, or Support Vector Regression proposed in [18] and [13].

11.5.2 Integrating Target Detection with Tracking

When multiple targets are present, the proposed system maintains a list of targets which
are actively tracked over time. The tracking is implemented through target feature match-
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ing within continuous frames. This matching can build the correspondence relationships
between the previously tracked targets and each potential targets at the current frame,
detected by thresholding the outputs of background models. If the matching is successful
and reliable, then the target is added to the list of targets for further tracking.

Specifically, the matching procedure searches iteratively for target candidates in the
current frame that have similar shape and appearance with target models defined in the
previous frame. First, we compute a similarity score based on weighted normalized shape
projection histograms. Then, to discriminate between targets having similar shape, we com-
pute additional information based on target’s size, color and motion and apply a voting-
based strategy. Targets that have been tracked consistently over a number of frames are
added to the list of targets for tracking. This list is properly maintained to include new
targets and remove targets that disappear from the scene. The same procedure is also used
to handle undesired merging of targets. Potential targets in the list of detected objects are
tracked using shape projection histograms only. The ratio between projection histograms
of candidate and model targets, called confidence coefficient, is used to localize the targets
accurately as well as to define the range of detection threshold.

In the following, we describe the framework for integrating target detection with track-
ing. First, we discuss our target representation scheme. Then, we describe the algorithm
used to predict the location of targets in subsequent frames. Finally, we present the feedback
mechanism for optimizing the detection threshold.

Target Representation

Our target representation scheme is based on shape, size, color and motion information. In
order to make it robust to perspective projection, scale, and rotation transformations, we
employ normalized shape projection histograms.

Normalized Shape Projection Histograms: The location of a target is denoted by
(xi, yi) and it corresponds to the location of the best-fitting ellipse. To compute the projec-
tion histograms, we project the target horizontally and vertically by counting the number
of pixels in each row and each column correspondingly. To make the projection histograms
invariant to target orientation, first we transform the target to a default coordinate system.
This is done in two steps: (i) we find the best-fitting ellipse of the target, and (ii) we align
its major and minor axes with the x- and y-axis of the default coordinate system. The main
assumption here is that the targets are approximately 2-D; this is a valid assumption in our
application since the depth of the targets is much smaller compared to their distance from
the camera.

Weighted Shape Projection Histograms: In order to reduce the effects of back-
ground noise and image outliers, we introduce weights to improve the robustness of match-
ing. This is done by employing an isotropic kernel function k(·) in a similar way as in [3].
In particular, the role of the kernel function is to assign smaller weights to pixels farther
away from the center bin of the projection histogram. Then, the weighted target model
histograms, denoted as HT

x and HT
y are calculated according to [34].

To predict the location of targets in subsequent frames, we search a window of size
W ×H . Candidate targets are identified in this window by thresholding the outputs of the
background models [34].

Predicting Target Location

To find a target location in subsequent frames, we need to define a similarity measure
between the target model, computed in previous frames, and the target candidate, detected
in the current frame. A Manhattan distance based measure between the corresponding
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weighted shape projection histograms of model and candidate targets is used.
To accurately localize a target in the search window, we minimize the objective function

shown below in the case of horizontal shape projection histograms:

Φ = min
k

M∑

m=1

[H
CS

k

xk (m)−HT
x (m)]

=
∑

k

wk

M∑

m=1

[H
CS

k

xk (m)−HT
x (m)]

=
∑

k

wk
∑

xi∈R

[H
CS

k

xk (xi − x+M/2)

−HT
x (xi − x+M/2)] (11.10)

−→ min over S and xk

where S is the threshold used to find the target candidates in the search window and
wk restricts the spatial position xk of the target candidates around the geometric center x

of the target model. H
CS

k

xk (m) is the weighted shape projection histogram of the k-th target
candidate detected using threshold S [34]. A similar calculation is applied on the vertical
direction.

To perform the above minimization, an iterative scheme which gradually decreases the
value of the threshold S used for target detection and changes the spatial center position
of the search window is applied. The objective function is updated iteratively as follows:

Φ(l) =
∑

k

wk

M∑

m=1

[H
C

S(l)
k

xk(l)
(m)−HT

x (m)]

=
∑

k

wk
∑

xi∈R(l)

[H
C

S(l)
k

xk(l)
(xi − xk(l) +M/2)

−HT
x (xi − x+M/2)] (11.11)

where l corresponds to the iteration number.

Confidence Coefficient

A key issue in implementing the above idea is how to choose an appropriate function for
decreasing S as well as to change the geometric center (x, y) of the candidate targets at
each iteration l. For this, we use the ratio between the weighted shape projection histogram
of the target model and the candidates. We refer to this ratio as the confidence coefficient.
Its horizontal component is defined as follows:

ξx(l) =
∑

xi∈R(l)

√√√√H
S(l)

xk(l)
[xi − xk(l) +M/2]

HC
x [x− xk(l) +M/2]

(11.12)

where xi is the horizontal spatial location of pixels belonging to the candidate target
R(l). Similar calculation applies for the vertical location. The confidence coefficient becomes
a weight factor in the iterative procedure used to update the spatial location of the targets
as well as to select the threshold range for target detection (see next section). Specifically,
using the confidence coefficient, the center of the search window is updated as follows:
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TABLE 11.1 Per-pixel memory requirements for the AKDE, the RM and the

SVDDM.

Memory Req. Intensity Chrominance both asymptotic

The AKDE [24] N + 8 8N + 20 9N + 40 O(N)
The RM [23] 1024 2048 3072 O(1)
The SVDDM [f(C,σ) × 5] ≥ 10 [f(C,σ) × 8] ≥ 24 f(C, σ) ≥ 32 O(1)

xk(l) = xk(l − 1)× ξx(l − 1) and yk(l) = yk(l − 1)× ξy(l − 1) (11.13)

Adaptive Threshold Optimization

The confidence coefficient is also used to update the threshold S used in the target detection
stage. Specifically, let us denote the threshold at the l − 1 iteration as S(l − 1), then the
threshold at the l iteration S(l) is updated as follows:

S(l) = S(l − 1)−
[
1−

√
ξ2x(l − 1) + ξ2y(l − 1)

]
(11.14)

This procedure decreases Dx and Dy while iteratively moving the spatial center of the
search window closer to the geometric center of the target. The procedure terminates when
the distance between the weighted shape projection histogram of target model and the
target candidates is smaller than a threshold. However, when the confidence coefficient is
too low, we increase the detection threshold to avoid under-segmentation which could cause
differences in the shape of the targets in successive frames (see Fig. 11.10).

Tracking Multiple Targets

Using shape information alone to track multiple targets is not sufficient as it might lead
to false matches. To eliminate such matches, we need to use additional information based
on the target’s size, color and motion. The key idea is using a voting strategy based on a
majority rule – for more information please refer to [34].

It should be mentioned that the same equations used to compute the confidence co-
efficient in the case of shape projection histograms (i.e., Eq. (11.12)) can also be used to
compute a confidence coefficient using size, color, and motion information.

11.6 Experimental Results and Comparison of Proposed
Methods

In this section we compare the performance of proposed techniques using several real video
sequences that pose significant challenges. In the real video experiments conducted below,
N = 300 frames are used in the background training stage unless otherwise stated, corre-
sponding to 10 seconds of the video’s sequence. The background training buffer is a First
In First Out (FIFO) buffer with Round Robin replacement policy.

11.6.1 Support Vector Modeling vs. Statistical Methods

From Table 11.1 we notice that the memory requirements of the AKDE technique presented
in [24] and the SVDDM are lower than those of the RM method [23] if the number of training
frames is small enough. That is, for situations when a small number of frames can cover
most changes that occur in the background, by using a sliding window the AKDE method
needs less memory than the RM technique. Note that SVDDM requires even less memory
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(a) (b) (c) (d)

FIGURE 11.5 Handshake sequence (a). Detected foreground with AKDE (b), RM (c), SVDDM (d).

(a) (b) (c)

FIGURE 11.6 Water sequence (a), detected foreground region using AKDE (b) and SVDDM (c).

than the AKDE and like the RM its memory requirements are independent of the number
of training samples.

Suitable Scenarios to Employ Statistical Background Modeling

For videos with rapidly changing backgrounds, the AKDE method has a better performance
in terms of memory requirements and speed. Fig. 11.5 shows the detection results of the
AKDE, RM and the SVDDM algorithms on the Handshake video sequence where the pixel
values corresponding to monitors fluctuate rapidly. As it can be seen from this figure,
capturing dependencies between chrominance features results in more accurate foreground
regions (Fig. 11.5(b)), showing that AKDE performs better than both the RM and the
SVDDM. Note that in this particular frame the color of foreground objects is very close to
the background in some regions. The SVDDM technique results in very smooth and reliable
foreground regions. Moreover, it uses the confidence factor C to guide the classification.
This may lead to missing some parts of the foreground which are very close in color to the
background.

Suitable Scenarios to Employ Support Vector Background Modeling

In videos with slowly changing or non-periodic backgrounds, the AKDE method needs more
training frames to generate a good model for the background. This increases the memory
requirements and drastically decreases its training and foreground detection speed. In these
situations the SVDDM technique is a very good alternative, since its detection speed and
memory requirements are independent of the number of training frames. Although the
SVDDM like AKDE still require a large number of training frames, once the background
model is trained the SVDDM only retains Support Vectors as pixel classifiers. As seen in
Fig. 11.6 the SVDDM results are better than those of the AKDE.
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(a) (b) (c)

FIGURE 11.7 Mall sequence (a), RM background model after 5 frames (b), and after 95 frames (c)

( c©(2009) Springer).

From this figure we can conclude that the SVDDM method has a better performance
compared to the AKDE in situations where the background has a slow and irregular motion.
Also in the AKDE there is a sliding window of limited size which may not cover all changes
in the background resulting in an inaccurate probability density estimation but the model
built in the SVDDM uses the decision boundaries of the single training class instead of
bounding the training accuracy to the accuracy of the probability estimation.

Suitable Scenarios to Employ the RM Background Modeling

Fig. 11.7 shows the background model in the Mall video sequence in which the background is
never empty. In this situation off-line methods fail unless a post-processing on the detected
foreground regions is performed to generate models for uncovered parts of the background.
In the RM method however, the background model is updated at every frame from the
beginning of the video. When an object moves, the new pixel information is used to update
the background model to the new one. Fig. 11.7(b) and (c) show the background model
after 5 and 95 frames, respectively. In this scenario consistent background regions are tem-
porarily occluded by transient moving objects. Therefore the background itself contributes
more consistent information to the model. As a result, the model converges to the empty
background.

In situations when the camera is not completely stationary, such as the case of a hand-
held camera, the off-line methods are not suitable. In these situations there is a consistent,
slow and irregular global motion in the scene, which cannot be modeled by a limited size
sliding window of training frames. In such cases the RM method is highly preferable.

Fig. 11.8(a) shows an arbitrary frame of the Room video sequence. In this video a camera
is held by hand and the scene only consists of the background. Fig. 11.8(b) compares the
modeling error using different techniques. The modeling error using a constant window size
in the AKDE (the dotted line) is between 20%-40%, and it does not decrease with time.
This shows that the system using the AKDE method with a constant sized sliding window
never converges to the actual model. The dashed line shows the modeling error using the
RM method with a constant learning rate, and the solid line shows the modeling error of the
RM with scheduled learning. We conclude that the model generated by the RM technique
eventually converges to the actual background model and its error goes to zero.

Another important issue in the recursive learning is the convergence speed of the system
(how fast the model converges to the actual background). Fig. 11.8(c)-(d) illustrates the
convergence speed of the RM with scheduled learning, compared to constant learning and
kernel density estimation with constant window size.

Fig. 11.8(e)-(f) shows the comparison of the recovery speed from an expired background
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(a) (b)

(c) (d)

(e) (f)

FIGURE 11.8 Room sequence (a), modeling error (b). Water sequence (c), Convergence speed (d).

Lobby sequence (e), Recovery speed (f).

model to the new one. In Fig. 11.8(e) lights go from on to off through three global but
sudden changes occurring at frames 23, 31 and 47. The scheduled learning RM method
(solid curve) recovers the background model after these changes faster than non-scheduled
RM and the AKDE with constant window size. The constant, large learning rate recovers
more slowly (dashed curve) while the AKDE technique (dotted curve) is not able to recover
even after 150 frames.

Comparison Summary

Table 11.2 summarizes this study and provides a comparison between different traditional
methods for background modeling and our proposed method. The comparison includes the
classification type, memory requirements, computation cost and type of parameter selection.

11.6.2 Integration of Background Modeling and Tracking

The integration framework has been evaluated by detecting vehicles and pedestrians using
visible and thermal video sequences. The visible video sequence was captured at a traffic
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TABLE 11.2 Comparison between the proposed methods and traditional techniques.

SVDDM AKDE RM KDE Sp-tmp [12] MoG [20] Wallflower [30]

Automated Yes Yes Yes No No No No
Post proc. No No No No Yes No No
Classifier SVD Bayes MAP Bayes Bayes Bayes K-means
Memory req.∗ O(1) O(N) O(1) O(N) O(N) O(1) O(N)
Comp. cost∗ O(N) O(N) O(1) O(N) O(N) O(1) O(N)

∗ : Per-pixel
N : number of training frames

(a) (b) (c)

FIGURE 11.9 (See color insert.) Results using the proposed method (a) and frame-based (b). Final

tracking results (c).

intersection and contains a total of two hours of video with a sampling rate 4 frames/second.
The thermal video data was captured at a university campus walkway intersection over
several days (morning and afternoon) using a Raytheon 300D thermal sensor core with
75mm lens mounted on an 8-story building [5].

In the following, the performance of the integration algorithm is demonstrated in terms
of the following aspects: (1) detection alone, (2) integrating detection with tracking, (3)
undesired merging of targets, and (4) comparisons with the state-of-the-art.

Fig. 11.9 presents comparison results between frame-based detection without feedback
from tracking and the proposed method which integrates detection with tracking. Fig. 11.9
(a) and (c), show detection maps and tracking results using the proposed method. Fig. 11.9
(b) presents detection results using frame-difference and no threshold optimization. Among
the results shown, it is interesting to note that the small target, labeled by a green rectangle
in Fig. 11.9 (c), is very difficult to detect using frame-based detection and non-optimized
thresholds as shown in Fig. 11.9 (b).

Table 11.3 shows quantitative comparisons in terms of true positives and false alarms
for frame-based detection and the proposed approach. Obviously, the proposed approach
has lower false alarm and higher true positive rates than frame-based detection.

TABLE 11.3 Quantitative comparisons in terms of True Positives (TP), False Alarms (FA), and

Ground Truth (GT)

Data sets Methods Ground truth True Positive False Alarm

Visible video Frame-based detection 346 296 30
Integrating detection with tracking 346 340 5

Thermal video
Frame-based detection 371 371 35
Integrating detection with tracking 371 371 0

Figs. 11.10 (a) and (b) show another quantitative comparison between frame-based
detection and the proposed method by counting the number of pixels in two different seg-
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mented regions moving away from the camera. The red curve indicates ground truth size.
The green and blue curves show the performance of the proposed method and frame-based
detection respectively. From the figure, the green curves are closer to the red curves, indi-
cating that the proposed method higher accuracy compared to frame-based detection.

Fig. 11.10 (c) shows the adaptive threshold values over time for two targets with different
motion characteristics (i.e., a car and a pedestrian). As it can be observed, the thresholds
were iteratively decreased based on the confidence coefficient computed from the shape
projection histogram matching process. To avoid under-segmentation, the threshold was
reset to a higher value when the confidence coefficient fell below a certain value. Finally,
Fig. 11.10 (d) demonstrates the average number of iterations for each frame.

(a) (b)

(c) (d)

FIGURE 11.10 (See color insert.) (a),(b): Comparison results between the ground truth (red), frame-

based detection (blue) and the proposed approach (green). (c): Adaptive threshold. (d): Average number of

iterations ( c©(2008) Springer).

Tracking Merged Targets

The proposed detection and tracking approach can handle undesired target merging using
the track-to-track stitching scheme reported in [1]. The voting-based matching scheme de-
scribed is used to track accurately the targets when their shape is deformed due to perspec-
tive projection. Fig. 11.11 demonstrates how our proposed approach handles the undesired
merging of targets. When two targets merge with each other, as shown in Fig. 11.11(b), a
new track is assigned to these targets. After the undesired merge is resolved, the tracks are
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recovered by stitching their new tracks with previous ones [1].

(a) (b) (c) (d)

FIGURE 11.11 An example of handling undesired merging of targets. Targets merge in (b) and the

issue is resolved in (c).

11.7 Conclusion

In this chapter we have presented a number of novel techniques for learning background pixel
models based on both statistical and analytical tools. As statistical modeling techniques,
the non-parametric density estimation and recursive modeling approaches are discussed.

The advantage of the adaptive kernel density estimation method (AKDE) over existing
techniques is that instead of a global threshold for all pixels in the video scene, different
and adaptive thresholds are used for each pixel. By training these thresholds the system
works robustly on different video scenes without changing or tuning any parameter. Since
each pixel is classified by using adaptive thresholds and exploiting its color dependency,
the background model is more accurate. The modeling method (RM) updates a statistical
model for background pixels on-line. This method is superior and more robust than other
techniques for situations in which background changes are slow and not periodic.

To overcome the issues inherent to statistical learning models, an alternative modeling
tool is proposed to label pixels in video sequences into foreground and background classes
using a Support Vector data description. The advantages of training Support Vectors for
background modeling include:

• The model accuracy is not bounded to the accuracy of the estimated probability
density functions.

• The memory requirements are lower than those of non-parametric techniques and are
independent of the number of training samples.

• Support vector data description is more suitable for novelty detection since it explicitly
models the decision boundary of the known class.

Furthermore, to enhance the quality of foreground detection, a framework for improving
video-based surveillance by integrating target detection with tracking is presented. From
Section 11.5, on-line SVR was used to model the background and to accurately detect the
initial locations of the targets. To predict the location of targets in successive frames shape
projection histograms were exploited. At the same time, a confidence coefficient based on
shape matching was computed to suppress false alarms. Using weights derived from the
confidence coefficient of shape matching, we were able to optimize the threshold used in the
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target detection stage. Additional cues based on size, color, and motion were used to elim-
inate false positives when tracking multiple targets. Experiments show good performance,
especially on small targets and targets undergoing perspective projection distortions.
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