
utomated reasoning 
A valuable tool in validating our work 

Automated reasoning is the attempt 
to prove statements with a computer in 
a law-like way. Applications include 
mathematical theorem proving; circuit 
design, validation, and diagnosis; pro- 
gram verification and validation; expert 
systems, and term rewriting systems. 

Automated reasoning requires a 
very precise representation for the 
expressions being reasoned over. One 
such representation is the first-order 
predicate calculus. Expressions in this 
language are formed from predicates, 
arguments, quantifiers. and variables of 
quantification. 

A theorem prover is an automated 
reasoning program which tries to deter- 
mine if a sentence follows logically 
from a set of axioms. If it does, it is 
considered a theorem. Most theorem 
provers are based on unification and the 
resolution principle. Given a set of 
clauses, they try to determine whether a 
set  of clauses,  which include the 
axioms and negation of what we are 
trying to prove, is unsatisfiable, that is, 
not true under any interpretation. Such 
unsatisfiability is shown by deriving 
the empty clause via resolution. 
Proving theorems this way is called a 
resolution refutation. 

In order for a computer to reason 
efficiently, the syntax must be simpli- 
fied. That is, the predicate calculus 
expressions must be translated into a 
form that allows the use of a single 
inference rule known as the resolution 
principle. 

The two most desirable features of 
an inference procedure are soundness 
and completeness. Soundness means 
that the inference procedure never 
draws false conclusions from true 
premises, and completeness means that 
the inference method is capable of 
drawing all possible conclusions which 
follow from the premises. 

A third feature which is extremely 
desirable, but can never be attained by 
any inference procedure for the predi- 
cate calculus, is decidability. An infer- 
ence procedure is decidable if an 
effective procedure exists for determin- 
ing if an arbitrary sentence follows from 
a given set of premises. Saying that no 
such decidable procedure exists for the 
predicate calculus is the same as saying 
there is no way of knowing if any proof 
procedure for the predicate calculus will 
ever terminate. Such proof procedures 
are called semi-decidable. 

The basic resolution principle is 
sound, but not complete or decidable. It 
can be made complete by adding the 
feature of factoring. Losing complete- 
ness is a common result of trying to 
speed up resolution but is acceptable 

One example of diagnosis from first 
principles is Reiter’s theory where the 
diagnosis of a faulty device is made 
based on the system description (SD) of 
a device featuring a finite set of system 
components, and a set of obsenations 
(OBS) of the device. SD and OBS are 
finite sets of sentences in first-order 
predicate logic where SD describes the 
system components and OBS describes 
the symptoms of the device. A diugno- 
sis for (SD, COMPONENTS, OBS) is 
a minimal set  of faulty COMPO- 
NENTS. A COMPONENT is only a 
member of this diagnosis set if consid- 
ering it non-faulty would cause a con- 
tradiction in the collection of logical 
statements describing the system (SD), 
the symptoms (OBS), and the other 
COMPONENTS which are considered 

Fig. la 

unlike the loss of soundness. 

Diagnosis from 
first principles 

One alternative to heuristic classifi- 
cation is diagnosis from first principles. 
Rather than relying on an expert’s gen- 
eral rules (heuristics) about how a set 
of symptoms are usually associated 
with a certain fault(s), diagnosis from 
first  principles relies on a device 
description to reason out how a device 
actually works. Such an approach elim- 
inates the difficult task of eliciting 
knowledge from an expert. Also, it 
only requires a detailed description of 
how the device should behave. 

Fig. lb 

non-faulty. 

noses of a faulty device could be con- 
structed. One way of searching for 
diagnoses is to have an algorithm 
which generates possible diagnoses and 
tests them. A more efficient algorithm 
for finding diagnoses is made possible 
by considering the notion of a conflict 
set. A conflict set is a set of COMPO- 
NENTS ( C l ,  C2, ..., C n )  which, if 
NOT considered faulty, causes a con- 
tradiction in the collection of logical 
statements describing the system (SD) 
and the symptoms (OBS). Reiter shows 
how to compute all diagnoses of (SD, 
COMPONENTS, OBS) given a theo- 
rem prover that will generate conflict 

Obviously, many different diag 
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sets for (SD, COMPONENTS, OBS). 
The key idea is to form minimul hitting 
sets which consist of a member(s) of 
each conflict set. The failure of the 
COMPONENTS in a hitting set would 
explain the faulty behavior of the 
device making the hitting set a possible 
diagnosis. Some diagnoses can be ruled 
out if they predict observations which 
have not actually been made. 

The approaches to diagnosis from 
first principles developed so far are 
limited. They require a complete device 
description in order to be sound and 
complete. They assume connections 
between components of a device are 
working properly, and they rely on rea- 
soning done over diagnosis theories 
formulated in full first-order logic 
which is only semi-decidable. 

Logic circuit design 
and validation 

We can also use automated reason- 
ing to help us design and validate logic 
circuits. One problem circuit designers 
can face is to take a circuit specification 
in terms of ANDs, ORs, and NOTs and 
produce a circuit using only the more 
common,  but less intuit ive,  gate 
NAND. For example, we might like to 
transform the circuit in Fig. l a  into the 
circuit in Fig.  1 b which only uses 
NANDs. 

We can do this by first defining our 
outputs in terms of our inputs: 01  = 
or(and(i1,  i2),  not ( i3))  and 02 = 
and(not(i3),i2). Next, we define the 
relations between ANDs, ORs. and 
NOTs and NANDs with: 

not(x) + nand(x,x) 
or( x, y) -+ nand(not( x),not(y)) 
and(x,y) -+ not(nand(x,y)) 

We will also simplify our results with: 

nand(nand(x,x),nand(x,x)) -+ x. 

With these equalities and our origi- 
nal specification of our output, we use 
demodulation to produce the desired 
circuit  containing only NANDs. 
Demodulation is the substituting or 
rewriting of one term by another equiv- 
alent one, such as not(x) by nand(x,x). 
Demodulators are applied when the 
first clause unifies with the term we are 
attempting to rewrite. The resulting 
term is the unifier applied to the second 
clause of the demodulator. 

By repeatedly applying the demodu- 
lators to our given circuit we can pro- 
duce circuits containing only NANDs 
such as in Figure lb. 

If. on the other hand, the specifica- 
tion is given as a table such as: 

xo 1 

then we can represent it as table(i1, 
table(i2,0,l),table(i2,1 ,O) )  where 
table(input,x,y) is interpreted as: if 
input is 1 retum x else retum y. 

Using the demodulator table(input, 
x,y)+and(or(not(input),x)or(input,y)) 
and others listed in Figure 2 we can 
produce a circuit with ANDs, ORs and 
NOTs through demodulation. We can 
then also use the previous demodula- 
tors to  put the circuit  in terms of 
NANDs.  Circuit  validation is  the 
process of assuring that a circuit per- 
forms as desired. For example, we 
might want to validate that the circuit 
nand(nand(x,y),nand(x,y)) is equivalent 
to and(x,y). Part of this is accomplished 
by using the previous equalities for 
NAND but rewriting in the other direc- 
tion. Validation, however, is harder 
than circuit design where we can sim- 
ply stop when all terms are NANDs. 
Terms in validation must have a canon- 
ical form to assure that all equivalen- 
cies are found. Subtle equalities such as 
or(x,or(x,y)) + or(x,y) must be added. 
In validation we must also assure that 
we never loop in trying to find our 
proof such as infinitely rewrit ing 
or(x,y) -+ or(y,x) + or(x,y) + .... 

Program verification 
and validation 

Computer software’s growing com- 
plexity makes proving the correctness 
of the software extremely complicated. 
Traditionally, programs are proven 
“correct” by running the program on 

Fig. 2 

many sets of data and showing that the 
output is correct. Data is chosen to rep- 
resent normal values and values at the 
extremes. The choosing of this data is 
not always straightforward; and, even 
when it is, this is not enough to show 
that the software is correct for all data. 
We can instead attempt to formally 
prove program correctness using auto- 
mated reasoning techniques. 

A procedure is proved correct if all 
inputs satisfying the input assumptions 
yield results satisfying the exiting 
requirements. Note that program cor- 
rectness implies nothing more than this. 
Thus, the burden is placed on the pro- 
grammer to give the complete specifi- 
cations for a procedure.  If an 
incomplete specification is given, then 
the proof that the procedure is “correct” 
means only that the procedure meets 
the specification given. It does not nec- 
essarily mean that the procedure pro- 
duces the desired result. 

For example, if we give the exit con- 
dition that an absolute value procedure 
returns a value greater than or equal to 
zero, we are not being complete. A 
function that always retums “ I ”  meets 
that specification. We obviously need 
to add that the output is equal to the 
input or the negative of the input. 

Hantler and King give a method for 
symbolic execution of a procedure. 
Symbolic execution does not use exact 
values, such as testing when x=3, but 
instead keeps track of variables and 
how they are manipulated. In their 
method, constraints are added to vari- 
ables as warranted by execution of the 
procedure and all possible paths are 
considered. For example, if the state- 
ment 

IF x<O THEN 

ELSE 
y=3*z 

y=2*x 

is executed, then two branches of exe- 
cution must be considered with x<O as 
a constraint on one branch and x>=O 
on the other. Also y will be modified 
accordingly for each branch. 

The symbolic execution of assign- 
ment statements is handled in the obvi- 
ous way. Statements are executed 
similar to “while” statements except 
that the enclosed statements may be 
executed any number of times. To take 
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this into consideration. we add a “cut” 
statement to the beginning of the loop. 
This cut statement has a specification 
which acts as both input and output 
requirements. We test that the value 
coming in meets these specifications 
and continues to do so after the loop is 
performed. If this is shown. we know no 
matter how many times the loop is per- 
formed the requirements will be met. 

Procedure calls could be handled by 
inserting the code where it  is called 
from (and renaming variables) but this 
would mean repeatedly verifying the 
same code if it were called several 
times in the program. Instead we prove 
correctness once for the procedure sep- 
arately and then use an abbreviated pro- 
cedure at all other times. The procedure 
checks input assumptions, adds its exit 
conditions to the constraints, and gives 
new symbols to modified variables. 

Automated reasoning is used in  
proving a program’s correctness by 
having demodulation rules defining 
how each type of statement affects the 
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program state (variable values, position 
i n  the program, and current con- 
straints). We then type in our program 
with the input assumptions and our 
demodulators work on it from the ini- 
tial state trying to prove that all exit 
conditions are met. If this happens. the 
program is proved correct. 

Automated reasoning can be applied 
to many area5 which most often have a 
common need: solving problems with 
unification and a tedious and repetitious 
proof procedure. The field is expanding 
and is being used either as integral or 
peripheral parts of different fields. 
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