CS474/674 Image Processing and Interpretation Sample Midterm Exam

Name:

1. [25 points] True/False Questions - To get credit, you must give brief reasons for each answer!

T F The filter shown below is a smoothing filter.
121
212
121

T F Assuming an NxN image, the complexity of 2D FFT is $\mathrm{O}\left(\mathrm{N}^{2} \log \mathrm{~N}\right)$.

T F The magnitude of the FT carries more information than its phase.

T F The Nyquist theorem assumes band-limited functions only.

T F Unsharp masking is a special case of high boost filtering.
2. [15 points] State and prove the convolution theorem in the continuous case. For simplicity, assume 1-D functions.
3. [15 points] Find and plot the discrete convolution of the following discrete sequences:

4. [20 points]. A 3 bits/pixel image of size 5×5 is given below. Find the following: (a) the output of a 3×3 averaging filter at (1,1), (b) the output of a 3×3 median filter at $(1,1)$ and (c) the gradient magnitude at $(1,1)$ using the Sobel masks shown below.

4. [15 points] What is the FT of $\cos (4 \pi x)+\cos (10 \pi x)$? How many samples should we obtain according to the Nyquist theorem in order to avoid aliasing?
5. [10 points] Given the 3×3 image shown below, compute the histogram equalized image (assume that the gray-levels are in the range [0..7]). Show all the steps.

311
176
021
7. Graduate Students Only [10 points] The pixel intensity values of a gray level image have the probability density function $p_{r}(r)$ given by $p_{r}(r)=2(1-r)$, for $0 \leq r \leq 1$, and zero otherwise. It is desired to transform the gray levels of the image so that they have the probability density function $p_{z}(z)=2 z$, for $0 \leq z \leq 1$, and zero otherwise. Assume that r and z are continuous random variables. Find the transformation that accomplishes that.

