## CS474/674 Image Processing and Interpretation Sample Midterm Exam

## Name:

- 1. [25 points] True/False Questions To get credit, you must give brief reasons for each answer!
- **T F** The filter shown below is a smoothing filter.
- 121
- 212
- 121
- **T F** Assuming an NxN image, the complexity of 2D FFT is O(N<sup>2</sup>logN).

**T F** The magnitude of the FT carries more information than its phase.

**T F** The Nyquist theorem assumes band-limited functions only.

**T F** Unsharp masking is a special case of high boost filtering.

**2. [15 points]** State and prove the convolution theorem in the continuous case. For simplicity, assume 1-D functions.

3. [15 points] Find and plot the discrete convolution of the following discrete sequences:



**4. [20 points]**. A 3 bits/pixel image of size 5x5 is given below. Find the following: (a) the output of a 3x3 averaging filter at (1,1), (b) the output of a 3x3 median filter at (1,1) and (c) the gradient magnitude at (1,1) using the Sobel masks shown below.

| IMAGE       |         |   |   |   |   |   |      |    |    |    |         |    |   |   |
|-------------|---------|---|---|---|---|---|------|----|----|----|---------|----|---|---|
| у<br>  <br> | x= <br> | 0 | 1 | 2 | 3 | 4 | <br> |    |    |    |         |    |   |   |
| 0           |         | 3 | 7 | 6 | 2 | 0 |      |    |    |    |         |    |   |   |
| 1           |         | 2 | 4 | 6 | 1 | 1 | <br> |    |    |    |         |    |   |   |
| 2           |         | 4 | 7 | 2 | 5 | 4 | <br> | -1 | -2 | -1 |         | -1 | 0 | 1 |
| 3           |         | 3 | 0 | 6 | 2 | 1 | <br> | 0  | 0  | 0  | andra . | -2 | 0 | 2 |
| 4           |         | 5 | 7 | 5 | 1 | 2 | <br> | 1  | 2  | 1  |         | -1 | 0 | 1 |
|             |         |   |   |   |   |   |      |    | -  |    | 110113  |    |   |   |

**4. [15 points]** What is the FT of  $cos(4\pi x)+cos(10\pi x)$ ? How many samples should we obtain according to the Nyquist theorem in order to avoid aliasing?

- **5. [10 points]** Given the 3x3 image shown below, compute the histogram equalized image (assume that the gray-levels are in the range [0..7]). Show all the steps.

**7. Graduate Students Only [10 points]** The pixel intensity values of a gray level image have the probability density function  $p_r(r)$  given by  $p_r(r)=2(1-r)$ , for  $0 \le r \le 1$ , and zero otherwise. It is desired to transform the gray levels of the image so that they have the probability density function  $p_z(z)=2z$ , for  $0 \le z \le 1$ , and zero otherwise. Assume that *r* and *z* are continuous random variables. Find the transformation that accomplishes that.