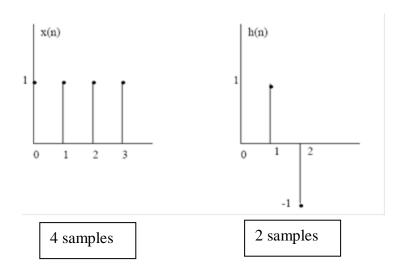
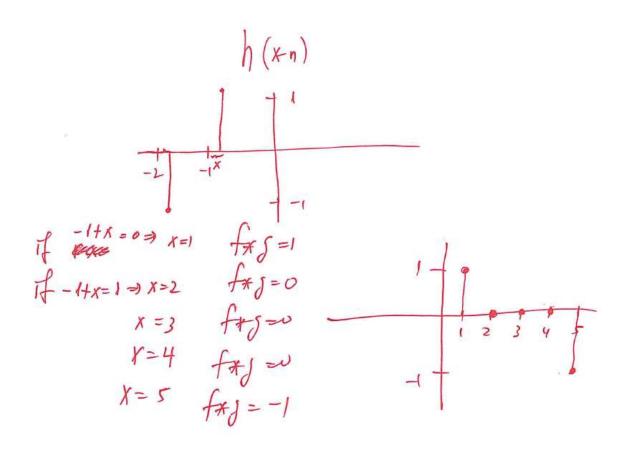
CS474/674 Image Processing and Interpretation Sample Midterm Exam - Solutions

for


Name:
 [25 points] True/False Questions – To get credit, you must give brief reasons each answer!
T F The filter shown below is a smoothing filter. 1 2 1 No negative weight. 2 1 2 1 2 1
(†) F Assuming an NxN image, the complexity of 2D FFT is O(N²logN). 1 D FF7: Nlog(N) Oversell N rows: N²log(N) N Columns N²log(N) T (E) The magnitude of the FT carries more information than its phase. The reconstruction usins phase preserves More in forwation. (f) F The Nyquist theorem holds true for band-limited functions only. The wax frequency w is finite. (f) F Unsharp masking is a special case of high boost filtering.
Correct, when k=1


 $g(x,y) = f(x,y) + kg_{mask}(x,y), \quad k \ge 0$

2. [15 points] State and prove the convolution theorem in the continuous case. For simplicity, assume 1-D functions.

lecture

3. [15 points] Find and plot the discrete convolution of the following discrete sequences:

4. [20 points]. A 3 bits/pixel image of size 5x5 is given below. Find the following: (a) the output of a 3x3 averaging filter at (1,1), (b) the output of a 3x3 median filter at (1,1) and (c) the gradient magnitude at (1,1) using the Sobel masks shown below.

			I	MAGE								
у 	x= 	0	1	2	3	4 						
0	1	3	7	6	2	0 [
1	I	2	4	6	1	1		(-	7		6	
2	i	4	7	2	5	4		U	7		Ux	1673
3	1	3	0	6	2	1 I	-1	-2	-1	-I	0	1
	ļ					1	0	0	0	-2	0	2
4	i	5	7	5	1	2 	1	2	1	-1	0	1

c)
$$G_{y} = (-3 - 14 - 6) + (4 + \frac{14}{9} + 2) = -3$$

 $G_{x} = (-3 - 4 - 4) + (6 + 12 + 2) = 9$
Unagritude = $\sqrt{G_{x}^{2} + G_{y}^{2}} = \sqrt{9 - 3}^{2} + 9^{2} = \sqrt{90} = 9.48 = 9$

4. [15 points] What is the FT of $cos(4\pi x)+cos(10\pi x)$? How many samples should we obtain according to the Nyquist theorem in order to avoid aliasing?

$$(0)(40x) = (0)(2.112x)$$

freq W=5 so
$$\Delta x \in L = \frac{1}{10}$$

at least 10 samples

5. [10 points] Given the 3x3 image shown below, compute the histogram equalized image (assume that the gray-levels are in the range [0..7]). Show all the steps.

$$\frac{111}{176}$$

$$\frac{r}{0} = \frac{1}{2} \frac{2}{3} \frac{4}{4} \frac{5}{6} \frac{7}{7}$$

$$\frac{1}{17} \frac{4}{4} \frac{1}{10} \frac{1}{0} \frac{1}{11}$$

$$\frac{1}{17} \frac{1}{17} \frac{4}{17} \frac{1}{17} \frac{1}{17$$

7. Graduate Students Only [10 points] The pixel intensity values of a gray level image have the probability density function $p_r(r)$ given by $p_r(r)=2(1-r)$, for $0 \le r \le 1$, and zero otherwise. It is desired to transform the gray levels of the image so that they have the probability density function $p_z(z)=2z$, for $0 \le z \le 1$, and zero otherwise. Assume that r and z are continuous random variables. Find the transformation that accomplishes that.

$$P_{r}(r) = \begin{cases} 2(1-r) & o \leq r \leq 1 \\ o & o \text{ there wise} \end{cases} \quad P_{t}(t) = \begin{cases} 2t & o \leq t \leq 1 \\ o & o \text{ there wise} \end{cases}$$

$$S = T(r) = \int_{0}^{r} 2(1-w) dw = 2 \int_{0}^{r} dw - \int_{0}^{r} w dw \int_{z}^{z} z dw - \int_{0}^{r} w dw - \int_{0}^{r} w dw \int_{z}^{z} z dw - \int_{0}^{r} w d$$