
Fast algorithms dramatically decrease run time for certain tasks.
Designing them offers not only the promise of betterperformance
but also a better understanding of the problems underlying all

computational tasks.

An Introduction to Algorithm Design
Jon Louis Bentley
Carnegie-Mellon University

"Algorithm design-that's the field where people
talk about programs and prove theorems about pro-
grams instead of writing and debugging-progtams."
Statements along these lines have been uttered by
applications programmers and academicians alike.
But there are also some who say, "No! Prope1r
algorithm design has helped us to save kilobucks at
our installation every month." Here we will in-
vestigate the field of algorithm design (also known as

"analysis of algorithms" and "concrete computa-
tional complexity,;' among other names) and better
equip the reader to judge the field for himself.

I trust that anyone with even the slightest love for
mathematics burning somewhere in his heart (how-
ever deeply) will want to see.how mathematical tools
can be applied to the problems of programming. But
for the other readers (whose interest in mathematics
was probably squelched in freshman calculus), I offer
the same bait that hookedme on this field. I trace my
interest in the design of efficient algorithms to the
time when I was a business data processing program-
mer and had just finished reading an introductory
text on data structures. A colleague of mine had just
had his program cancelled-the operators, by count-
ing the turning rate ofthe tapes, had estimated that it
would take about three hours to process his one reel of
data. The programi itself was fbirly short and a quick
glance told us that the time was spent in scanning a
1000-element table. I suggested that instead of scan-
ning we try a new-fangled technique I had just read
about-binary search. We did, and the modified pro-
gram processed the reel of tape in five minutes, and
actually spent most of its time waiting for the tape!
Around that time I was also asked to help another
programmer who had already spent a month produc-
ing over a thousand cards ofcode for a particular pro-
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gram. A simple change in data structure and a few
days' work allowed us to redo the program in less
than two hundred lines of code. The redone program
was faster than the original would have been, used far
less code, and was miuch easier to understand. So
even if you have no aesthetic interest in algorithm
design (yet), please read on-the practical benefits
alone are rowarding enough.
Throughout this article I refer only to the discrete

aspects of algorithm design. I do not address prob-
lems in the.domain of numerical analysis, such as
stability, truncation error, and error propagation.
Even with this restriction, I include some very
humeric problems, such, as the manipulation of
sparse matrices, in *hich almost all elements are
zero, and the-fast Foutier transform.
A number of survey papers on discrete algorithm

design have appeared recently. Hopcroft' and Tar-
jan2 both give a thorough picture of the field. Weide's
survey3 concentraje's on. techniques for analyzing
discrete algdrithms, and accomplishes that task ex-

pertly. For those who are skeptical of sweeping
surveys, Knuth's excellent introductions4 6 examine
a few problemns in detait. Andifone isready to becomne
a serious student of the field, the standard texts are
Aho, Hopcroft, and tUllman's one-semestr, gradu-
ate-level introduction6 and Knuth's first three
volumes79 of hisd proposed seven-volume definitive
wdrklon algorithms. I hope to supplement those
works by providing a broad survey for the novice. For
this reason, I have kept' my list of referehces short;
both Tarjan atid Weide, cited above, contain ex-

cellent bibliographies.
This survey discutsses algorithm analysis from

three viewpoints. We fitst examine five problems and
sonie algorithms, fat solving them. Having con-
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sidered these concrete examples, we next take a
systematic tour of the field. We then investigate
some current research directions and conclude with
an assessment of the field's value to practitioners.

Some problems and fast algorithms
for solving them

The five problems presented here serve as
background to our general discussions of algorithm
design. We will not only give an algorithm for solving
each, but will also mention some real-world situations
in which our problems could exist and to which our
algorithms could be applied. We will analyze the
algorithms' efficiency and discuss what this analysis
shows. We will study the first problem-"subset
testing"-in detail and then treat the remaining
problems at a more superficial level. Before moving
on to our overview of algorithm design, we will con-.
sider what all this attention to efficiency gets us.
But first let me offer an explanation of our concern

with these examples. The subset testing problem will
raise familiar, issues and should cover some old
ground for many; it also gives us a nice illustration of
the tremendous time savings we can get byusing pro-
per algorithms. The next example-the substring
searching problem-provides an extremely in-
teresting blend of theory and practice. The fast
Fourier transform-FFT-is the third example. It is
known to many, uses some important algorithmic
techniques, and is eminently practical. Fourth, we ex-
amine a very old problem-matrix multiplica-
tion-and a recent and remarkably counterintuitive
solution. We conclude our examination of specific
problems by investigating algorithmic aspects of a
public-key cryptosystem. This system has recently
revolutionized the world of cryptography and pro-
mises to have a substantial impact on "secure" com-
puting.

We will see an application in which our
first algorithm would require over six
days of CPU time, while our final
algorithm can solve the problem in

four seconds.

Subset testing. Given a setA of size n and a set B of
size m 6 n, is B a subset of A?10 We can state this
"subset testing" problem as a programming exer-
cise: given an array A[1:nJ and B[1:m], both of (say)
32-bit words, is every word in B also in A? Disguised
versions of this problem arise in many contexts: setA
could be an employee master file, setB a list ofweekly
transactions, and the problem a question of finding
whether a master-file record exists for each weekly
transaction. Or A might be a table of real numbers x
with an associated table S containing sine x, B then
being a set of x values at which the sine function is to
be evaluated. But even though this problem does

have many such practical applications, that is notour
main motive in examining it here. Rather, it leads to
many of the basic problems in sorting and searching,
and points to interrelationships between those prob-
lems. It also exposes us to some common algorithm
design methods.
We will examine three solutions to this problem.

Finding the running time of each, by counting the
number of comparisons between elements, will
enable us to compare the solutions. The following
may also encourage the reader as he follows the dif-
ferent solutions: our first algorithm will require over
six days ofCPU time to solve a sample problem, while
our final algorithm will solve it in four seconds.

Brute force. The simplest way to accomplish this
task is to compare every element in B to each of the
elements ofA until either its equal is found orwe have
examined all of A and determined that every element
ofB has no equal inA (in which case B is not A's sub-
set); this approach gives a simple, two-loop program.
If B is indeed contained in A, then each scan for an ele-
ment that is B's mate in A takes nl2 comparisons on
the average (you have to look halfway down the list).
Since there are m such scans made, the total number
ofcomparisons made by this program is about mlnl2).
So if m is very close to the size of n, then we will make
about n21/2 comparisons on the average.* Although
this algorithm is exceptionally simple to understand
and to code, its slow running time might prohibit its
use in certain applications. We will now turn our at-
tention to a faster algorithm.

Sorting. If you were given a randomIy ordered list
of phone numbers B (say a list of phone numbers in a
town) and another randomly ordered list A (say all
phone numbers in the county) and you were asked to
check whether B was a subset ofA (make sure every
town phone number is included in the county, list),
then you might use the brute-force algorithm just
discussed. If, however, you were handed a town
phone book and a county phone book and asked to
perform the same task, then your job would be much
easier. Since the two phone books are already sorted
by name, we can just scan through the two books to-
gether, ensuring that the county book contains all the
town names. This of course immediately gives us
another algorithm for subset testing: sort A, sort B,
then sequentially scan through the two, checking for
matches. To analyze the run time of this strategy we
observe that the scan will take about n comparisoifs,
and we heard somewhere that you can sort a list of
size n in about n log2n comparisons, so the total run-
ning time is (n log2 n) + (m lg2 m) + n comparisons.
We could pull a sorting routine out of thin air, but it

is not much more difficult to describe one called
Mergesort. The basic operation of Mergesort is merg-
ing two sorted lists of numbers, say X and Y, with
these lists either stored as arrays or linked together

*We won't try to analyze the case that B is not a subset of A; to doso
we would have to say exactly how it is not a subset, and that is very
dependent on the particular problem.
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with pointers. To do this we compare the first element
ofX with the first element ofY and give the smallest
as the first element of the new list, deleting it from its
source. We repeat this remove-the-smallest step until
both X and Y are empty. Since we used one com-
parison for each step, if there were a total of m
elements in X and Y, we will have used aboutm com-
parisons. We can now use this tool of merging to
Mergesort a set S of n elements. We start by viewing
S as a set of n sorted one-element lists. Wethen merge
adjacent pairs of one-element lists, giving nl2 two-
element sorted lists. The next step is to merge adja-
cent pairs of those lists giving n/4 four-element lists,
and the process continues. After log2 n iterations we
have one sorted n-element list, and our task is com-
plete. To analyze this we note that we use about n
comparisons for the merges at each of the log2 n itera-
tions, so the total number-of comparisons used is the
promised n log2 n.
We have thus shown how to solve the subset problem

with n(log2n + 1) + m log2 m comparisons. If m is

about the same size as n then our algorithm takes ap-
proximately 2n log2 n comparisons. Can we do better?

Hashing. Thinking about the phone book problem
leads to an interesting sorting approach to the subset
problem; ifwe rephrase the phone book problem then
the "human" approach will lead to an even faster
subset algorithm. Suppose that the county phone
book (A) was sorted and the town phone list (B) was
not; to ensure that A contains B we can "look up" inA
each number in B by the name of the subscriber. For
each of the m elements in B we would do a "binary
search" among the n elements of A. It is not hard to
see that a binary search in an n-element sorted table
takes at most log2 n comparisons, so this algorithm is
easily analyzed: it takes n log2 n + m log2 n com-
parisons, or approximately 2n log2 n ifm is the same
size as n. We therefore have a searching solution to
the subset problem: store the elements ofAin a table,
then for each element of B ensure that it is in the
table.
Although binary search is the best searching

method for many problems, there is another
strategy-hashing-even more appropriate for this
problem. By hashing we can store an element in a
table or check to see if it already is in a table in about
two comparisons, on the average.* With this ap-
proach we will be able to do subset testing in 2n + .2m
comparisons-2n to store A and then 2m to look up
each element of B. To store the n elements ofAwe will
have to allocate a hash table-an array of length
(1.5)n.** We then store the elements ofA in the table
one-by-one by the use of a hash function. This maps a
data value into an integer in the bounds of the hash
table. If that position in the hash table is empty, fine.
We insert the element. If the position is occupied,
however, we have a collision and must employ a colli-
sion resolution strategy, such as scanning up the
elements of the array until a free position is found.
Analysis shows that a proper collision resolution
strategy allows us to find an empty spot very
quickly-say, in two comparisons. When an empty
spot is finally found the element is inserted. After in-
serting all of A's elements into the table we then look
up all of B's elements. For any particular element we
calculate its hash function and look in that position.
If that position is empty then it is not in A; if the ele-
ment is in the position then we have found it; other-
wise we must employ the same collision resolution
strategy to see where it should be. Hashing is
something that a human would never use in search-
ing(humans aremuch better atcomparing things and
then looking in one of two directions than at
calculating weird hash functions), but it leads to a
very efficient algorithm. If m is about the same size
as n then the hashing approach uses only about 4n
comparisons, on the average, to do subset testing.

*For pessimists, however, we note that the worst case of hashing is
as bad as brute force-we might have to look at all of the elements in
the table.

**We can even use a smaller array; (1.1)n would probably work
almost as well.
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The subset testing problem, although a very simple
one, led us straight to some of the fundamental issues
in algorithm design. We very quickly arrived at
searching-the scan of the brute force algorithm was
just a naive search. From there we moved to sorting,
then to binary search, and finally to hashing, which
introduced us to a non-obvious data structure-the
hash table.* The approaches that we used to solve the
problem are some of the fundamental tools of algo-
rithm designers. We have also touched on aspects of
algorithmic problems such as time and space analysis
and worst-case versus expected-time analysis, which
we will study later.
But what has all this gained us? Although we may

have a better understanding of some of the basic com-
putational issues, does our understanding make any
difference in practice? Let's assume that we are
writing a program for subset testing where A and B
both contain one million elements, and that one com-
parison takes, say, one microsecond of computer
time. Under these assumptions, the n2/2 comparisons
required by brute force translates to 138 hours, or a
little shy of six days, of machine time; the 2n log, n for
sorting will give 40 seconds; and the 4n of hashing
will yield 4 seconds. Although we haven't calculated
all the costs of implementation, this example shows
how a simple analysis is sometimes all we need to
make an informed choice.

Substring searching. Does a given string contain a
specified substring pattern, and if so, where? This is
the substring searching problem, one familiar to
most who have used computer text editors. As I sat
down to type this paragraph, for example, I told the
editor to find the substring "Substring searching. " in
my text file so I would know where to begin my
paragraph.* Information retrieval systems use this
same operation as they identify abstracts which con-
tain certain keywords. Similar problems are en-
countered in many text formatting and macro pro-
cessing programs.

It is not hard to write a program to solve this prob-
lem. We first holdpattern's leftmost character under
string's leftmost character and start comparing. If
all the characters of pattern match the characters
above them, fine-we have found the substring in
position 1. If we find a mismatch then we slide pat-
tern over one and do the same thing again. This con-
tinues until we either find a match or come to the end
of string. The worst-case behavior ofthis algorithm is
very slow-for each n positions of string we might
have to compare all m positions of pattern. Thus in
the worst case we might have to make mn com-
parisons. Strings andpatterns that realize this worst-
case behavior are fairly pathological and the perfor-
mance of this algorithm in practice is fairly good, but
the question still haunts us-can we design an
algorithm that will always do better?

Knuth, Morris, and Pratt12 offer an algorithm that
beats the mn performance. They preprocess pattern
into a data structure that represents a program; that
program then looks forpattern in string. Preprocess-
ing pattern takes only m operations (where m is the
length of pattern) and the "program" they produce
looks at each character of string only once, so the
total running time of their algorithm is proportional
to m + n instead of mn. (Of course if the pattern is in
the ith position in string, then their algorithm takes
time proportional to i + m.) This result is exceptional-
ly interesting from a theoretical viewpoint, and also
provides a faster substring searching algorithm in
practice.
Boyer and Moore13 recently used the basic idea of

the Knuth, Morris, and Pratt algorithm to detive an
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**The text editor I use looks at a file as one long string of text,
sprinkled with special characters representing "carriage return."
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even faster method of substring searching. Their
method has the same worst-case performance (pro-
portional tom + n) but is faster on the average. They
accomplish this by making it unnecessary toexamine
every element of string. They haveimplemented their
algorithm on a PDP-10 so efficiently that when string
contains typical English text andpattern is a five let-
ter word in string, thenumber ofPDP-10 instructions
executed is less than i + n. This is at least an order of
magnitude faster than the naive algorithm.
The history of the substring searching problem

provides an insight into the relation of theory to prac-
tice. Knuth relates that his use of a machine from
automata theory, the "two-way deterministic push-
down automaton," led him to his discovery of the al-
gorithm. The easiest way to understand fast algo-

rithms is through the use of finite state automata,
which are commonly used in digital systems design.
It is noteworthy that in this one problem we can talk
about such diverse ideas as abstract automata and
PDP-10 instructions, with a lot of combinatorial
analysis in between!

The fast Fourier transform. The Fourier transform
is often studied in mathematics and engineering. It
can be viewed in a number of ways, such as the trans-
formation of a function from the "time domain" into
the "frequency domain" or as the decomposition of a
function into its "sinusoidal components." The con-
tinuous Fourier transform has a discrete counter-
part, which applies an operation to one set of n reals
yielding a "transformed" set of n reals. This problem
has applications in signal processing, interpolation
methods, and many other discrete problems.
The naive algorithm for computing the Fourier

transform of n reals requires approximately n2
arithmetic operations (adds and multiplies). The fast
Fourier transform of Cooley and Tukey'4 accom-
plishes this task in approximately n log, n arith-
metics. It achieves this by doing about n arithmetics
on each of log2 n levels; in this sense it is quite similar
to the Mergesort algorithm discussed earlier. There
are many different expositions of the algorithm, such
as those in Aho, Hopcroft, and Ulhnan'5 or Borodin
and Munro.16 It is interesting to note that in addition
to being faster, many of the numeric properties of the
FFT are better than those of the naive transform.
The fast Fourier transform has had a substantial

impact on computing. It forms the backbone ofmany
"numeric" programs. Practitioners in diverse fields
use the FFT to find hidden periodicities of stationary
time series. Signal processing uses it in filters to
remove noise from signals and eradicate blurring in
digital pictures. Numerical analysis utilizes it for the
interpolation and convolution of functions. Applica-
tions of the FFT in such diverse areas as electrical
engineering, acoustics, geophysics, medicine, eco-
nomics, and psychology are listed by Brillinger.17
Many special-purpose processors have been built
which implement this algorithm; some are multipro-
cessors which operate in parallel. The FFT is also
widely used in the design of "discrete" algorithms. It
is the primary element in many algorithms which
operate on polynomials, performing such operations
as multiplication, division, evaluation, and interpola-
tion. Not surprisingly, it is also employed in some of
the fastest known algorithms for operating on very
long integers, such as multiplying two 1000-bit in-
tegers. We will see an application of this problem
later.

Matrix multiplication. One of the most common
ways of representing many different kinds of data is
in a matrix, and one of the most common operations
on matrices is multiplication. How hard is it to mul-
tiply two n x n matrices? Using the standard high
school method takes about 2n arithmetic operations
to calculate each of the n2 elements of the product
matrix, so the total amount of time required by that
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algorithm is proportional to n3. People have been
multiplying matrices by this method for a century.
Surely this must be the best possible way to multiply
matrices-our intuition tells us that we just can't do
any be ter.
The high school algorithm for multiplying two-by-

two matrices uses eight multiplications and four ad-
dition,s.'It is fairly counterintuitive to learn that the
product'can be computed using only seven multipli-
cations at the cost of an increase of 15 additions. But
if that is counterintuitive, then.it is absolutely mind-
boggling to find that this fact alone allows us to con-
struct an algorithm for multiplying n x n matrices
that runs in:less-than n3 time! This algorithm, devised
by Sttassen,t8 decomposes eac)nz x n matrix into four
(n/2) XIn/2) matrices. It does,seven tnultiplications of
(n/2) x (n12)lnatrices and theh fifteen additions on
matrices of that size to find theproduct ofthe original
matrices. Notiqd, however,-atthprco'stofthose ad-
ditions is proportional to n2. Ifwe let T(n) be the time
required to muitiply n xn matrices, then T(n) satisfies
the'recurr6nce

T(1) = 1,
T(n) = 7T(n/2) + O(n2)

having the solution T(n) = 0(n2.81) (where 2.81 is an
approximation to 1og27). The Strassen algorithm
as originally presented is less efficient than the high
school algorithm urltil 'n is in the thousands. Recent
work, howeveXr, shows that it can be practical when n
is as small as 40. But practice aside, who can help but
be amazed by the fact that we can multiply matrices
faster than we thought we could?
The fast matrix multiplication algorithm provided

the basis for one of the all-time great revolutions in
the history of "theoretical" algorithm design, during
which a 'number of "'best" known' algorithms were
toppled from their thrones. Many of these were n3
matrix algorithms which we can now do in 6(n2.81)
time; among'these are matrix inversion, LU decom-
position, solutions to systems of linear equations,
and calculations of determinants. A number of prob-
lems which seemed tobe totally unrelated to matrices
were phrased in terms of them. As a result O(n281)
algorithms followed for such diverse problems as
finding thei transitive closure of a graph, parsing
context-free languages (an important problem in
compilers), and finding distances between n points in
Euclidean n-space. All of these algorithms stem from
the fact thatVtwo-by-two matrices can be multiplied
with seven multiplications.

Public-key cryptography. Communications sys-
tems which deal with the problem of transmitting a
message from a sender to a receiver across an m-
secure and possibly bugged channel, whileprotecting
the privacy of the message, are known as crypto-
systems. Such security needs often arise in military
applications; they also promise to play an ever in-
creasing role in applications such as electronic mail
and electronic funds transfer. A cryptosystem is
usually implemented by encoding and decoding
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algorithms which transform their inputs according to
keys they are given. To send personX messageM we
use the encoding algorithm and key to produce
messageM: transmittingM 'toX across the possibly
insecure channel. When X receives M' he uses the
decoding algorithm and key to determine M, while
any "eavesdropper" has only M. One difficulty with
this system is the distribution of. keys to the ap-
propriate parties. This mustusually be accomplished
by 'the use of expensive secure channels such as
human couriers.
An alternative, called a public-key cryptosystem,

was recently invented by Hellman and Diffie.19 In
their system each person has an encoding key and a
decoding key, as before. To send a message to person
X we encode it using X's encoding key, and then X
can decode it with his decoding key. The novel aspect
of this system is that we can make the encoding key
public without revealing the corresponding decoding
key. We can then view the encoding key as the ad-
dress of X's mail box, and anyone can put mail into
that box simply by encoding the message. Actually
unlocking the box, however, requires the decoding
key, which onlyX possesses. Although sucha system
solves almost all ofthe difficulties ofprevious crypto-
systems, one major obstacle remains: for most codes
knowledge of the encryption key immediately reveals
the decryption key. Thus all we need to complete our
public-key cryptosystem is an appropriate en-
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coding/decoding algorithm, provided such an algo-
rithm is possible.
A suitable encoding/decoding method was recently

developed by Rivest, Shamir, and Adleman.20 Their
method is based on algorithmic issues in the theory of
numbers. They view messages as multiprecision
(long) integers of 200 decimal digits, for example. The
coding procedure then transforms these messages by
sophisticated use of modular arithmetic and prime
number theory. The transformations require many
sophisticated algorithms. For instance, the process
of key selection is based on fast algorithms for
multiplying multiprecision integers and testing such
integers for primality; fast multiprecision exponen-
tiation algorithms then perform encoding and de-
coding. The fact that any method that "breaks" the
system must essentially find the factors of a very
large number is the basis of the system's security.
Although no one knows precisely how difficult this
factoring is, mathematicians have been working on
the problem for many centuries, and no one yet knows
of a fast method. Let me put this in perspective: ifwe
deal with 200 decimal digit integers, then the key
selection, encoding, and decoding algorithms require
only a few seconds of CPU time; the best known
method for breaking the system, however, would re-
quire ten million centuries ofCPU time.
We have only scratched the surface of the fas-

cinating field ofpublic-key cryptography. In addition
to use in cryptosystems, these methods can also be
used to provide "electronic signatures," i.e., verifica-
tions of identity. This cryptosystem is another in-
teresting example of the interactions between theory
and practice. It is based on number theory (perhaps
the purest ofthe areas ofpure mathematics) and com-
plexity theory, yet it promises to revolutionize the
practice of cryptography. The interested reader
should refer to the article by Rivest, Shamir, and
Adleman, cited above, or the exposition in Gardner.21
Although the algorithms we have mentioned do not
really solve an existing computational problem, they
solve aproblem in a totally different areaby casting it
in a computational light.

Most of the time, a fast algorithm makes
no difference. Sometimes, it drastically

increases throughput. But it always gives
us an understanding of our computational

problems.

We have now examined five cases in which proper
algorithm design has led to a sophisticated algorithm
that is much faster than a naive algorithm. Algo-
rithm designers have invested a lot of work in devel-
oping these algorithms-but what difference will it
all make in practice?
To be honest, most of the time a fast algorithm

makes no difference at all. Knuth has gathered em-
pirical evidence showing that most of the run time of
a program is spent in just three percent of the code. If

an algorithm for a problem is not in the eritical three
percent of the code, it makes little difference if the
algorithm is fast or not. A complicated algorithm is
often a liability rather than an asset. It will usually
mean more coding and more debugging time, and can
sometimes even increase the run time (when the
overhead of "starting up" a fancy algorithm costs
more than the time it saves).
Sometimes, however, a fast algorithm can make all

the difference in the world. If a certain computation is
indeed the bottleneck in the system flow, then an
algorithm of half the running time almost doubles
system throughput. Many text editors spend a vast
majority of their time in string searching; the fast
algorithm for substring searching can speed up many
text editors by a factor of five. My experience with
the searching program I mentioned in the introduc-
tion, where we reduced the running time from three
hours to five minutes, is another good example of an
appropriate use for a fast algorithm. In the inner
loops of many programs, proper algorithm design is
critical.
Fast algorithm design, although only occasionally

yielding large financial savings, almost always gives
us something of a different value-a fundamental un-
derstanding of our computational problems. This is
usually reflected in cleaner programs; but even more
important is the understanding of how difficult it is
to compute something. After- a student has spent a
month or two investigating the problem of searching,
he knows not only how to search faster, but also why
he can do it that fast andwhy he can't do it any faster.
Such a student has learned something of the founda-
tions of his field.

Algorithm design-a systematic view

In the section above we saw a number of specific
problems and specific solutions; here we will show
that there is more to the field than isolated examples.
Algorithm design is a coherent discipline-one needs
a specific set of concepts to define, a computational
problem and a specific set of tools to design an op-
timal algorithm to solve it.

Problem dimensions-a microscopic view. The sub-
set testing problem showed that there can be many
different algorithms for solving a particular problem.
In order to say which one is best in a particular ap-
plication we have to know certain dimensions along
which to measure properties of the algorithm. For ex-
ample, in one application we may need a subset
algorithm that must be very space-efficient and have
good worst-case running time; in another context we
might have a lot of available space and only require
good expected running time, not caring if we infre-
quently must take a lot of time. We have thus iden-
tified three dimensions of a computational problem:
time analysis, space analysis, and expected vs. worst-
case analysis. We will now in'vestigate these and
other dimensions of computational problems.
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Time and space analysis. The two most important
resources in real computational systems are time
(CPU cycles) and space (memory words). These are
therefore the two dimensions of a problem most fre-
quently studied. Running time was the primary sub-
ject we examined in the examples cited earlier. Most
of the algorithms we discussed used very little extra
space after storing the inputs and outputs-the
hashing algorithm we used for subset testingwas the
only exception. Since in large computer systems we
can have huge quantities of extra space for the asking
and the paying, we have often ignored the space re-
quirements of algorithms. With the rise in popularity
of mini- and microprocessors with very small mem-
ories, however, space analysis is once again an impor-
tant issue.

Model of computation. In covering the examples
earlier in this article, we were able to make reference
to the time and space requirements of various algo-
rithms without reference to their implementation on
any particular computer. Our intuitive notions were
robust enough to lead to sophisticated algorithms
that would certainly beat their naive competitors on
any existing machine. But to analyze an algorithm in
detail we must have a precise mathematical model of
the machine on which the algorithm will run.
We could choose as our model a particular com-

puter, such as an IBM 650 or a DEC PDP-10, and
then ask how many microseconds of time or bits of
storage a particular algorithm requires. There are
two problems with this approach. First, we will prob-
ably analyze the expertise of the algorithm's im-
plementer more than we willthe algorithm's intrinsic
merit; and second, once we have completed an
analysis using an IBM 650 we still know very little
about the algorithm's behavior on a PDP-10. One
way of dealing with these difficulties is to invent a
representative computer and then compare the
performances of competing algorithms on that
machine. Knuth22 has described one such machine
which he named the MIX computer. It has much in
common with most existing machines without many
idiosyncrasies of its own. If algorithm A is faster
than algorithm B when implemented on MIX, then it
is likely to be faster on most real machines, too.
Another solution is not to analyze the implementa-

tion of the algorithm on any particular machine at all,
but simply to count the number of times the algo-
rithm performs some critical operation. For the
analysis of the FFT and matrix multiplication we
chose to count the number of arithmetic operations.
We know that the FFT uses exactly n lg2 n
multiplications. To estimate its running time for a
given implementation we can look up the execution
speeds of the instructions around the multiplication
instruction, sum those, and then multiply by n log2 n
to get an estimate for the running time. It is usually
easy to determine the running time of a particular
program if we know the-number of times the critical
operation is to be performed.* Once we have chosen a

critical operation to count it is very easy to specify a
model of computation. To count arithmetic opera-
tions we usually employ the "straight-line program"
model in which an algorithm for a particular value of
the problem size (n) is represented by a sequence of
statements of the form

XiXj OP Xk

where OP is add, subtract, multiply, or divide. If the
sequence for a particular value of n is m instructions
long then we say that the execution time of our pro-
gram is T(n) = m. If our critical operation were com-
parison, thenwe would probably choose the "decision,
tree" model. Theseand other models are described by
Aho, Hopcroft, and Ullman.23
The above models allow us to analyze algorithms

for their suitability as "in-core" programs on single-
processor machines. If a program has very little main
memory available and must store most of its data on
tape, then some tape-oriented model such as the Tur-
ing machine is the most accurate model of the com-
putation. If a program is to be run on a multi-
processor machine then our model must express this
fact, and the model employed will vary with the mul-
tiprocessor architecture.* Many other models of com-
putation have been proposed to describe diverse com-
puting devices. The two important things in choosing
a model are that it be realistic, so the results will ap-
ply to the situation itpurports to model, and that it be
mathematically tractable, so we can derive those
results.

Exact or approximate analysis. Once we have
chosen a model of computation we can analyze an
algorithm's performance by counting the resources
(time or space) it uses as a function of n, the problem
size. How accurately should we do that counting?We
could be very precise, calculating the answer exactly,
or we might settle for an approximate answer. There
are levels of approximation, all the way from the first
two terms of the answer to rough upper and lower
bounds. It is certainly desirable to get the exact
answer, but this is sometimes very difficult. The first
one or two terms of the cost function are adequate for
most purposes, and in many cases we need only the
function's asymptotic growth rate. We saw in the
subset testing problem an example in which the run
time for one program was 138 hours while another
program took just 4 -seconds to carry out the same
task. Even if our analysis had missed a factor of ten,
that could not affect our choice for large problems.
We often use the "big-oh" notation to describe the

complexity of a problem. No matter what the respec-
tive constants are, an O(n 10o2 n) algorithm will be
faster than an O(n2) algorithm for large enough n. As
we solve larger and larger problems by computer, we
are more and more frequently in the domain of "large
enough n." Asymptotically fast algorithms also have
another advantage. If we get a new machine one hun-
dred times faster than our old one, using an O(n log2n)

*We must be careful, however, not to ignore certain "bookkeeping" *The interested reader should refer to Kung25 for a discussion of
operations that may become critical in implementations. some of these issues from an algorithmic viewpoint.
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algorithm will allow us to solve a problem almost
one hundred times larger in the same period of time.
Using an 0(n2) algorithm will permit the new
machine to solve a problem only ten times larger in
that time. Thus, a function's asymptotic growth rate
is usually enough to tell us how much an increase in
problem size will cost under each type of algorithm.

Average or worst-case analysis. Many algorithms
perform a sequence of operations independent of
their input data; the FFT and matrix multiplication
algorithms are both data-independent. The analysis
of a data-independent algorithm is straightfor-
ward-we simply count the number of operations
used. The operation of algorithms such as those for
sorting and substring searching, however, are
dependent on their input data. One algorithm can
have very different running times for two inputs of
the same size. How dowe describe the running time of
such an algorithm? Pessimists want to know the
worst-case running time over all inputs and realists
want to know the average running time. (We are rare-
ly concerned with the best-case running time, for
there are very few optimists in computing.)
Most mathematical analysis of algorithms has

been done for the worst case. Even in data-dependent
algorithms it is usually easy to identify the worst
possible occurrence and analyze it as in a data-
independent algorithm. In certain applications (air
traffic control is often cited) it is important to have an
algorithm that never surprises us with a very slow
case. For most applications, however, we are more in-
terested in what will usually happen; expected-time
analysis provides this information. Relatively little
work has been done on expected-time analysis. The
two major stumbling blocks are in the choice of a
realistic and tractable probability model of the inputs
and in the intrinsic difficulty of dealing with expec-
tations instead of single cases. It would be desirable
to have a single algorithm efficient in both expected
and worst-case performances.

Upper and lower bounds. Most naive sorting
algorithms (such as "bubble sort") require O(n2) com-
parisons in the worst case. Earlier we investigated
Mergesort, which never uses more than O(n lg2 n)
comparisons. Should we continue our search, hoping
to find an algorithm that uses perhaps only O(n) com-
parisons? The answer to this question is no, for we
can show that every sorting algorithm must take at
least O(n log2 n) comparisons in the worst case. The
proof of this theorem uses the "decision tree" model
of computation, described nicely by Aho, Hopcroft,
and Ullman.24 The Mergesort algorithm gave us an
upper bound of O(n log2 n) on the complexity of sort-
ing; this theorem gives us a lower bound. Since the
two have the same growth rate, we can say that
Mergesort is optimal to within a constant factor
under the decision tree model of computation. Notice
that we have now made the important jump from
speaking of the complexity of an algorithm to speak-
ing of the complexity of a problem.
Lower bound results are usually much more dif-

ficult to obtain than upper bounds. To find an upper
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bound we need only give a particular algorithm and
analyze it. For a lower bound, however, we must show
that in the set of algorithms for solving the problem
there are none more efficient than the lower bound.
There are some trivial lower bounds we can easily
achieve: most problems require- examination of all
their inputs, so we usually have an easy lower bound
of the input size. The number of nontrivial lower
bounds discovered to date is very small.
A precise model of computation is important in

proving lower bounds. Previously we gave three algo-
rithms we can use for testing set equality:* brute
force, sorting, and hashing. The importance of the
computational model becomes clear when we learn
that we can prove each of those algorithms optimal
under different computational models! Brute force's
O(n2) performance is optimal if only equal/not-equal
comparisons can be made between elements of the
two sets. If the model of computation includes
only less-than/not-less-than comparisons, sorting's
O(n lg2 n) comparisons are optimal. If the model is a
random access computer such as MIX, hashing's
average-case linear performance is provably best.

Exact and approximation algorithms. The best-
known algorithms for many problems are quite slow,
requiring, say, 0(2n) time. A very few of these prob-
lems have actually been proved to have exponential
lower bounds. Others belong to a fascinating class
called the NP-complete problems, either all solvable
in time polynomial in problem size, or all of exponen-
tial complexity. Unfortunately, nobody yet knows
which, but most of the money is on exponential. Ex-
amples of NP-complete problems include the travel-
ing salesman problem (finding a minimal-length tour
through a set of cities), bin packing, and the knapsack
problem. Literally hundreds of problems are known
to be NP-complete. Lewis and Papidimitriou26 pro-
vide an excellent introduction to this class. There are
other problems, not proven to be hard, for which no
one has yet been able to design fast algorithms. So
when we have a problem we don't know how to solve
efficiently, what can we do?
The answer is amazingly simple: don't solve it.

Solve a related problem instead. Instead of designing
an algorithm to produce the exact answer, we can
build one to produce an approximation to the exact
answer. So instead of finding a minimal tour for the
traveling salesman, we might provide him with a tour
we know is no more than 50 percent longer than the
true minimum. Or if someone asks if a number is
prime or composite, instead of providing the true
answer we might respond "I don't know, but I'm
99.999999 percent sure that it's prime." Problems
abound for which the best known exact algorithms re-
quire exponential time, but for which we can quickly
find approximate solutions. Garey andJohnson27 ex-
atnine these issues.

These problem dimensions-such as time anal-
ysis, space analysis, and expected vs. worst-case
*We gave them originally for subset testing,;but recall that two sets
are equal if and only if each is a subset of the other.

analysis-are the categories in which algorithm
designers think. When someone brings a designer a
problem, his first task is to understand the abstract
problem. Next he must understand what kind of solu-
tion the person wants, and he uses the dimensions to
describe the desired solution. Using the vocabulary
introduced here it is easy to describe concepts such as
a "fast expected time and low worst-case storage ap-
proximation algorithm for task X, to be run on a mul-
tiprocessor machine." There are other infrequently
used dimensions we have not covered, such as code
complexity-how long is the shortest program to
solve a problem? But the dimensions we have ex-
amined can describe most algorithmic results.

Problem areas-a macroscopic view. The vocabu-
lary above can describe a particular algorithmic prob-
lem at a precise level of detail. Here we change our
perspective and examine large classes of problems,
but use the same terminology.

Ordered sets. There are many problems on sets that
depend only on a "less than" relationship being de-
fined between the elements of the set. In many cases
the set contains integers or real numbers, while in
other cases we define a "less than" relation between
character strings (JONES is less than SMITH). The
problems discussed earlier in the section on subset
testing all deal with ordered sets. The algorithms in
that section are appropriate if the elements ofthe sets
are numbers, character strings, or any other type of
"orderable" object. Knuth28 provides an excellent in-
troduction to the applications of, and algorithms for,
ordered sets.
The "median problem" is another problem defined

for ordered sets: given an n-element set we are to find
an element which is less than half of the elements and
not less than the other half. A naive algorithm would
count for each element the number of elements less
than it, and then report the median as the element
with exactly half the others less than it. This
algorithm makes approximately n2 comparisons. We
can devise an O(n log2 n) algorithm by sorting the
elements and then reporting the middle of the sorted
list. In 1962 C. A. R. Hoare described an algorithm for
the median problem, with linear expected time. For
over ten years no one knew if there was an algorithm
with linear worst-case time; Blum et al. finally offered
one in 1973.29 Much additional work has been doneon
this problem, exploring facets such as minimal
storage, detailed worst-case vs. expected running
time analysis (upper and lower bounds), and approxi-
mation algorithms.

Algebraic and numeric problems. Many aspects of
algebraic and numeric problems have a discrete
flavor, and discrete algorithm design can play a
significant role in such problems. Matrix multiplica-
tion is perhaps the clearest example: we can describe
(and appreciate) the fast algorithm without reference
to any of its numeric properties. We can also view the
FFT "non-numerically." Another numeric problem
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that can assume a purely discrete character is sparse
matrix manipulation (in a sparse matrix almost all
elements are zero). Borodin and Munro, cited earlier,
describe applications of discrete algorithm design to
numeric problems such as polynomial manipulation,
extended precision arithmetic, and multiprocessor
implementations of numeric problems.

Graphs. Graphs can represent many different
kinds of relations, from the interconnections of an
airline system to the configuration of a computer
system. Tarj.an's survey30 discusses many computa-
tional problems relating to graphs. One important
problem involves determining ifwe can imbed a given
graph in a plane without any edges crossing. We
might use this to check if we can imbed the connec-
tions of a given circuit on a printed circuit board or in-
tegrated circuit. The first algorithms for testing
planarity ran in O(n3) time on n-node graphs; after
much effort by many researchers, Hopcroft and Tar-
jan finally designed a linear-time planarity algorithm
in 1974.31 Another graph problem is constructing a
minimal spanning tree of a weighted graph, i.e., a
minimal-weight set of edges connecting all nodes.
Researchers have proposed and analyzed a wide
variety of algorithms for this problem. Some are
superior for very dense graphs, others for relatively
sparse graphs, and still others forplanar graphs. Effi-
cient graph algorithms exist for problems such as
computer program flow analysis and finding maxi-
mal flows in networks. And since a sparse matrix is
usually represented by a graph, graph algorithms can
apply to sparse matrix problems.

Geometry. Shamos' paper32 is an outstanding in-
troduction to computational geometry, the field con-
cerned with developing optimal algorithms for geo-
metric problems. Many application areas are in-
herently geometric (such as circuit layout) and other
problems can be viewed geometrically (such as
treating a set of multivariate observations as points
in a multidimensional space). Shamos describes an
important structure, the Voronoi diagram, whiich
allows many geometric problems dealing with n
points in a plane to be solved in O(n log2 n) time.
Among these are determiningthe nearest neighbor of
every point, and constructing the minimal spanning
tree of the point sets, both important tasks in many
data analysis procedures and previously requiring
O(n2) time. Many other important problems have
been solved after being cast in a geometric
framework. One result, for example, revealed that the
standard simplex method of linear programming is
not optimal for two- and three-variable programs
with n constraints. The simplex method has worst-
case running times of O(n2) and 0(n3), respectively;
an O(n log2 n) method has proved optimal for both the
two- and three-variable case.

Other areas. We have glimpsed a few fields studied
by algorithm designers. The results in many other
areas must go unmentioned. These include algo-
rithms for problems in compilation, operations
research, data base management, statistics, and

character string handling. These results have led
both to fast algorithms and to a new algorithmic
understanding of the various fields.

The "building blocks" of algorithm design. Wan-
dering through a computer room we cannot help but
be impressed by the complexity of a large-scale com-
puting system. The novice might find it hard to be-
lieve that the human mind could design anything so
complicated. Although he is not too far from the
truth, many undergraduates are able to understand
the basics of computer organization after only one or
two semesters. They are able to comprehend the com-
plexity notby sheer force ofconcentration, but rather
by understanding the "building blocks" from which
computers are made. A similar experience awaits the
novice algorithm designer. The algorithms surveyed
above deal with many problem areas, but are rather
simple to comprehend once we understand the
"building blocks" of algorithm design. Here we will
describe three important classes of these "blocks."

Data structures. Algorithms deal with data, and
the algorithm designer uses data structures as tools
to organize data. Earlier we saw simple data struc-
tures such as arrays and matrices, and a fairly com-
plex data structure, the hash table. There are more
exotic types, such as linked lists, stacks, queues,
priority queues, and trees. Each provides an ap-
propriate way to structure data for a particular task.
Tarjan33 briefly describes many of these structures;
Knuth34 provides detailed descriptions of a large
number of interesting structures.

Algorithmic techniques. Structured programming
demands that a programmer express a complicated
sequence of commands as a series of refinements by
which the program can be understood at different
levels. In each of these refinements the programmer
applies a basic, well understood method to a well
defined problem. Good programmers used this tech-
nique long before it was verbalized; good algorithm
designers use a similar strategy even though they in-
frequently discuss it. The constructs available to the
algorithm designer are similar to those available in
structured programming, though somewhat more
powerful. We will describe some of these constructs
very briefly; more detail can be found in Tarjan35 and
Aho, Hopcroft, and Ullman.36
We have already seen many common algorithmic

constructs. Most of the algorithms we described use
iteration in one form or another-this says "do x over
and over until the task is accomplished." Iteration is
present in almost all programming languages as DO
and WHILE loops. A more powerful construct is recur-
sion, giving us a way to express recursive problem
solving inprogramming languages. To define a recur-
sive solution to a problem we say (essentially) "to
solve a problem of a certain size, solve the same prob-
lem of a smaller size." We used recursion to describe a
binary search: to binary search a table of size n we
binary searched a table of size n/2. A particular ap-
plication of recursion, divide-and-conquer, says "to
solve a problem of size n, first divide it into sub-
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problems each of size only a fraction of n, then solve
those subproblems recursively, and finally combine
the subsolutions to yield a solution to the original
problem." We can view Mergesort as a textbook ex-
ample of divide-and-conquer: to sort a list of n
elements we first break the list into two sublists each
of n/2 elements, then sort those recursively, and final-
ly merge those together. The FFT and the O(n2.81)
matrix multiplication algorithms are other applica-
tions of the divide-and-conquer technique. Once we
understand the fundamental principles of divide-and-
conquer algorithms, we can easily grasp each of these
instances.

Researchers have identified and studied many
other algorithmic techniques. Dynamic program-
ming, a technique from operations research, has
found many applications in algorithm design.Search
strategies such as breadth-first search and depth-
first search have yielded efficient graph algorithms.
Transformation allows us to turn an instance of one
prowem into another; we saw earlier that there are
many transformations to turn almost totally un-
related problems into instances of matrix multipli-
cation. Perhaps the single most important algorith-
mic technique is the use of optimal tools to solve the
subproblems we create for ourselves in designing a
new algorithm.

Proof techniques. Once an algorithm designer has
devised an algorithm and "knows in his heart" that it
has certain properties, he must prove that it does.
(Perhaps this separates practitioner from theorist.)
His must first prove that his algorithm indeed com-
putes what it purports to; he will use many of the
tools of program verification here. Next he must
analyze his algorithm's resource requirements, using
many different mathematical tools. Finally he must
prove his algorithm optimal by giving a lower bound
proof. Weide37 discusses the different methods of
analysis used in these steps.

Current directions

Algorithm design has grown rapidly in the past
decade. Essentially unknown as a field ten years ago,
it is now one of theoretical computer science's most
active areas and sees widespread use in applications.
Continued emphasis on performance ensures even
more algorithm research. Here we will examine some
of the directions in which the field is moving.
One constant trend has been from "toy" problems

to "real" problems. This involves many detailed
analyses and expected-resource analyses, for in ap-
plications we are often seriously concerned about
20-percent differences in average running time.
Much recent work has centered on approximation
algorithms, since many applications do not require
exact answers. On the theoretical side, the outstand-
ing question is the complexity of the NP-complete
problems-are they exponential or not? Another im-
portant theoretical problem is the search for some
underlying theory of algorithm design; we still have
no theoretical explanation for what makes a class of
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problems easy or hard. Tarjan has mentioned the
need for a "calculus of data structures"-a set of
rules leading to the best possible structure for a given
situation.
An outgrowth of this work will be the development

of "algorithm engineering." This field will supply the
programmer with tools similar to those electrical
engineering gives the circuit designer. Before
algorithm design turns into algorithm engineering
we will need to develop many more specific algo-
rithms and provide a theoretical base for the field.We
will know that the field has become an engineering
discipline as soon as theoretical computer scientists
assert that designing algorithms is no longer bona
fide research because "it's such a well-understood
process."

Algorithm design offers much to individuals in-
volved in computing-related activities. The mathe-
matician and theoretical computer scientist can view
the field as a rich source of problems needing precise
mathematical treatment. These problems are mathe-
matically fascinating and call for some of the most
powerful tools of discrete mathematics. The applica-
tions programmer with little interest in elegant
theorems can also benefit, since proper algorithm
design occasionally yields significant financial sav-
ings. But even placing aside benefits to specific prac-
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titioners, I feel that anyone involved with computing,
regardless of his position in the practical-to-
theoretical continuum, should have some familiarity
with the field. The study of algorithms is the study of
the very heart of computing, and it provides us with
a new way of thinking about our computational
problems. R
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