CS485/685 Computer Vision Spring 2010 – Dr. George Bebis Homework 3 - Solutions

1 Find a decomposition (i.e., write A as $P\Lambda P^{-1}$) for the following matrix:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$A \stackrel{?}{=} PAP^{-1}$$

$$A \stackrel$$

2. Consider the 3D point $\begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$. What would be coordinates of the point after applying the follow-

ing composite transformation: (i) rotation of 90 degrees about the x-axis, (ii) translation by $d_x = -2$, $d_y = 1$, $d_z = 1$ and, (iii) scaling by $s_x = 1$, $s_y = 2$ and $s_z = 0.5$. Show your calculations clearly.

$$R_{x}(90) = \begin{bmatrix} 0 & 0.00 & 0.00 & 0.00 \\ 0 & 0$$

3. Prove that the following matrix represents a rigid transformation $(a = \frac{\sqrt{2}}{2})$.

$$\begin{bmatrix}
 a & -a & 0 \\
 a & a & 0 \\
 0 & 0 & 1
 \end{bmatrix}$$

)
$$\begin{bmatrix} \alpha & -\alpha & 0 \\ \alpha & \alpha & 0 \end{bmatrix}$$
 where $\alpha = \frac{\sqrt{2}}{2}$
All we have to show is that the
 $2+2$ sub-matrix is orthonormal.
 $\begin{bmatrix} q \\ a \end{bmatrix} \cdot \begin{bmatrix} -q \\ a \end{bmatrix} = -q^2 + q^2 = 0$
And where $q = \sqrt{2}$ and $q = \sqrt{2}$

4 It is easy to show that the unit vectors $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ form a basis in R^3 . Prove that $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ form also a basis of R^3 . What is the representation of vector $\begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$ in this basis?

We need to show that:

(i) V_1, V_2, V_3 are linearly independent

(ii) every vector $V \in R^3$ can be written as a linear combination of V_1, V_2, V_3 (i) \Rightarrow if $G_1V_1 + G_2V_2 + G_3V_3 = 0$ \Rightarrow $G_1 = G_2 = G_3 = 0$ (i) \Rightarrow $G_1(0) = G_2(0) = G_3(0)$

(ii) Suppose
$$V = \begin{bmatrix} x \\ y \end{bmatrix} =$$
 $V = C_1V_1 + C_2V_2 + G_3V_3$
(iii) Suppose $V = \begin{bmatrix} x \\ y \end{bmatrix} =$ $V = C_1V_1 + C_2V_2 + G_3V_3$
 $V = C_1V_1 + C_2V_2 + G_3V_$

Graduate Students Only

5 Suppose A is a real $m \times n$ matrix. Prove that the squares of the singular values of A are the eigenvalues of A^TA . (hint: if A is a symetric matrix, it can be written as $A = P\Lambda P^T$ where the columns of P are the eigenvectors of A and Λ is a diagonal matrix with diagonal elements equal to the eigenvalues of A).

Then,
$$A^{T} = (UDV^{T})^{T} = (V^{T})^{T}D^{T}U^{T} = VD^{T}U^{T}$$
.

Then, $A^{T} = (VD^{T}U^{T})(UDV^{T}) = VD^{T}V^{T}$.

Then, $A^{T} = (VD^{T}U^{T})(UDV^{T}) = VDD^{T}V^{T}$.

Then, $A^{T} = (VD^{T}U^{T})(UDV^{T}) = VDD^{T}V^{T}$.

Then, $A^{T} = (VD^{T}V^{T})(UDV^{T}) = VDD^{T}V^{T}$.