
Packing bag-of-features

Hervé Jégou

INRIA

herve.jegou@inria.fr

Matthijs Douze

INRIA

matthijs.douze@inria.fr

Cordelia Schmid

INRIA

cordelia.schmid@inria.fr

Abstract

One of the main limitations of image search based on

bag-of-features is the memory usage per image. Only a few

million images can be handled on a single machine in rea-

sonable response time. In this paper, we first evaluate how

the memory usage is reduced by using lossless index com-

pression. We then propose an approximate representation

of bag-of-features obtained by projecting the corresponding

histogram onto a set of pre-defined sparse projection func-

tions, producing several image descriptors. Coupled with a

proper indexing structure, an image is represented by a few

hundred bytes. A distance expectation criterion is then used

to rank the images. Our method is at least one order of mag-

nitude faster than standard bag-of-features while providing

excellent search quality.

1. Introduction

Searching for images of the same object or scene in a

large number of images has recently received increasing at-

tention [9, 4, 11, 5]. The most popular approach today, ini-

tially proposed in [12], relies on a bag-of-features (BOF)

representation of the image. The idea is to quantize lo-

cal invariant descriptors, for example obtained by an affine

invariant interest point detector [8] and a description with

SIFT [6], into a set of visual words. The frequency vector of

the visual words then represents the image and an inverted

file system is used for efficient comparison of such BOFs.

Recent extensions of this method improve the quantization

and its speed [9, 11], the post-processing based on a global

spatial geometric verification [10], the matching distance of

descriptors [4] as well as the efficiency and compactness of

the representation [1, 2].

The main advantages of the BOF representation are 1) its

compactness, i.e., reduced storage requirements and 2) the

rapidity of search due to an inverted file system. In detail,

instead of storing a set of 128 dimensional SIFT descriptors

for each image, we only have to store one entry for each

existing visual word. Furthermore, the inverted file system

compares vectors by taking into account only the non-zero

entries of the vectors. It is, therefore, very efficient if the

vector is sparse. Such a BOF approach allows a single ma-

chine to handle several million images. However, it is im-

possible to scale up to one billion (1000 million) of images,

i.e., to web-scale applications.

In this paper, we first show the advantages and lim-

itations of index compression applied to a binary BOF,

which obtains excellent search results for large vocabulary

sizes. Compressing the inverted file significantly reduces

the memory requirements, typically by a factor 4, with-

out modifying the search results. To our knowledge, this

well established method in the text retrieval community has

never been considered for large scale image indexing.

Second, we present an approach scalable to web-scale

search, which keeps the data in main memory and indexes

it efficiently. We, therefore, need to generate an extremely

compressed feature vector for each image, in order to store a

large set of images in main memory. Our approach first pro-

duces several small descriptors from a BOF representation

of the image, referred to as miniBOF vectors. Each mini-

BOF provides partial information about the original BOF

and is indexed separately. A fusion strategy based on a dis-

tance expectation criterion is then proposed to merge the

answers returned for the different miniBOFs. It allows the

ranking of the database images even if only a subset of im-

ages is returned by each indexing structure. This method is

at least one order of magnitude more efficient than standard

BOF. Most importantly, the memory usage per image is typ-

ically a few hundred bytes, which is two order of magnitude

lower than for a standard BOF.

Most similar to our work is the min-Hash method of

Chum et al. [1, 2] which stores a constant amount of data per

image and has a reduced search complexity. The technique

is very appropriate for near duplicate detection where a

small number of “sketches” (combinations of visual words)

is sufficient to represent an image. However, in the pres-

ence of complex viewing changes, as for example in the

University of Kentucky dataset [2], the number of bytes

stored is similar to a classic BOF. Also related to our ap-

proach is the work of Weiss et al. [13] which reduces the

global GIST descriptor to a small binary code with spectral

hashing. However, the subsequent search is exhaustive and

the GIST descriptor not invariant to rotation, cropping and

strong changes in viewpoint. Furthermore, their approach

is only applied to evaluate the similarity of patterns with the

same layout.

The paper is organized as follows. Section 2 presents the

bag-of-features implementation used in this paper as well

as the datasets and the performance measures. A prelim-

inary study analyzes binary BOFs as well as inverted file

compression in Section 3. Our indexing method based on

miniBOFs is, then, presented in Section 4 and supported by

the experiments in Section 5.

2. Background: bag-of-features and datasets

In the following, we briefly present the BOF representa-

tion and the evaluation datasets used in this paper.

2.1. Bagoffeatures representation

Producing a BOF representation is performed by first ex-

tracting local image descriptors. Interest regions are ex-

tracted with the Hessian-Affine detector [8] and described

with the SIFT descriptor [6]. Clustering of the descriptors

is then performed with a k-means quantizer, where the num-

ber of clusters k is a parameter of the approach. Note that

an independent dataset is used in our experiments to com-

pute the clusters. The cluster centroids are in the following

referred to as visual words.

Each SIFT descriptor of a given image i is assigned to the

closest visual word (Euclidean distance). The histogram of

visual word occurrences is weighted using the tf-idf weight-

ing scheme of [12] and subsequently normalized with the

L2 norm, producing a frequency vector fi of length k.

2.2. Datasets and evaluation criteria

We perform our experiments on two annotated datasets:

the INRIA Holidays dataset [4] and the University of Ken-

tucky recognition benchmark [9]. For both datasets we have

used the descriptor extraction procedure of [4] 1. To eval-

uate large scale image search we use a distractor dataset of

one million images downloaded from Flickr, Flickr1M. A

second dataset of one million images, Flickr1M∗, is used to

learn the parameters of our approach. These datasets have

the following characteristics:

dataset #images #queries

Holidays 1,491 500

Kentucky 10,200 10,200

Flickr1M 1,000,000 0

Flickr1M∗ 1,000,000 0

We use the evaluation measures proposed by the authors,

i.e., the mean the average precision (mAP) [10] for Hol-

1This procedure is described at http://lear.inrialpes.fr/people/jegou/data.php

idays: for each query image we obtain a precision/recall

curve, compute its average precision and then take the mean

value over the set of queries. We also evaluate the recall in

the top N returned images, denoted by recall@N, which

measures how the system filters the dataset images. On

Kentucky the performance measure is the number of rele-

vant images in the top 4 images, i.e., this score is equal to 4

× recall@4.

Finally, as the goal of this paper is to go beyond the cur-

rent limitations on the number of database images, we will

evaluate the memory usage, the amount of memory to be

read when performing a query, and the average number of

“hits”, i.e., the number of documents returned by the sys-

tem. For an inverted file system, this quantity is the average

number of database BOF vectors that share at least one non-

zero position with the query BOF vector.

3. Preliminary discussion

We want an image representation that is invariant to a

large class of transformations (rotation, cropping, change in

viewpoint, etc) and meets the following requirements: 1) it

represents an image with a low number of bytes and 2) it is

associated with an efficient indexing strategy that limits the

amount of memory to be read at query time. The second

point is especially important when the data is stored on a

low efficiency memory device, such as a hard drive. It is

also a good measure for the search complexity when the

data is stored in main memory.

In the following, we review the current methods that,

from our point of view, best address these objectives, and

discuss their limitations. In particular, we evaluate index

compression [15, 16], an approach that has never been con-

sidered in large-scale image search.

3.1. Binary BOF

A straightforward way of compacting a BOF vector is to

use a binary BOF representation, i.e., to discard the infor-

mation about the exact number of occurrences of a given

visual word in the image. In that case the BOF vector com-

ponents only indicates the presence or absence of a particu-

lar visual word in the image. This choice was first proposed

in [12], and shown to be slightly inferior compared to the

BOF vector for a vocabulary size of about k = 10000 vi-

sual words. However, to our knowledge this approach has

not been evaluated for smaller (< 2000) or larger (> 20000)

vocabularies. Fig. 1 shows a comparison performed on the

INRIA Holidays dataset for a varying vocabulary size. One

can see that the binary BOF representation is weak for small

vocabularies, but obtains slightly better results than the full

BOF for large ones (> 10000).

The number of bits used to represented a binary vec-

tor strongly depends on the encoding method. The naive

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

10
3

10
4

10
5

m
A

P

vocabulary size k

binary BOF
BOF

Figure 1. Search quality: BOF vs binary BOF

method, denoted by raw binary BOF, consists in a sequen-

tial coding using 1 bit per component. The memory usage

is, then, ⌈k/8⌉ bytes per image. As the binary BOF repre-

sentation is good for large vocabularies only, the memory

usage per image would be typically 10 kB per image, see

Fig. 2.

A better strategy is to take into account the sparsity of

large binary BOF vectors: most of their components are

zeros. Sparse vectors are usually represented by tuples of

the form (non-zero position index, value), which in the bi-

nary case consists in coding only the positions of non-zeros

components. Storing vectors with an inverted file [16] is a

better strategy, as it allows the efficient computation of the

distances between a given query vector and a set of sparse

vectors representing the images in the dataset.

3.2. Compressed inverted file

Another possibility is to use index compression, an es-

tablished method in text retrieval [16]. To our knowledge,

it has never been considered in the image search literature.

The motivation behind index compression is to exploit the

distribution of the visual words components. Here we only

consider the binary case, i.e., we exploit the probability

mass function of binary BOF vectors.

It is well know in information theory that data can the-

oretically be compressed close to the vector entropy. This

is, however, difficult to measure, as it requires to estimate

the probability mass function of a space of cardinality 2k.

An upper bound, which is reached when the components

are independent, is obtained by summing the individual

marginal entropies of the binary components. This com-

pression performance can almost be reached by coupling,

within the inverted file, run-length encoding with arithmetic

coding [14]. Several index compression methods offering

different trade-offs have been considered in the text retrieval

10MB

100MB

1GB

10GB

10
3

10
4

10
5

m
e
m

o
ry

 u
s
a
g
e
 o

f
th

e
 i
n
d
e
x
 f
o
r

o
n
e
 m

ill
io

n
 i
m

a
g
e
s

vocabulary size k

raw binary BOF
inverted file

compressed inverted file

Figure 2. Binary BOF vectors: memory usage of different indexing

structures for one million images.

literature. Some of them compress the index close to the en-

tropy bound, see [15] for a recent survey.

Fig. 2 gives the storage requirements, computed from

the measured binary component entropies, associated with

a compressed inverted file index storing one million im-

ages. These measurements, extrapolated from the INRIA

Holidays dataset, clearly show the interest of this approach.

Compared with a standard inverted file, about 4 times more

images can be indexed using the same amount of memory.

Moreover, the amount of memory to be read is proportion-

ally reduced at query time. This may compensate the de-

coding cost of the decompression algorithm.

As a final remark, note that for a vocabulary size of k =
2000, the memory usage of the compressed inverted file is

equivalent to the one obtained by directly coding the raw

binary vectors. This corresponds to the maximum entropy

case: the probability that a given visual word is present or

not in the image is close to 0.5.

3.3. Discussion

Index compression coupled with a binary BOF represen-

tation is a promising method, as for large vocabularies it

guarantees an excellent search quality, see Fig. 1. It also

provides a reasonable memory usage of 1-2 kB per image

(see Fig. 2), which is five times less than a standard inverted

file for binary vectors, and even more compared to an in-

verted file storing the full component values.

This memory requirement is of the same order as the

memory used by the min-Hash method in a near-duplicate

detection setup, where 768 bytes per image are used for 64

”sketches” [1]. This number of sketches is appropriate for

near-duplicate detection only. In the case of object recog-

nition a larger number of sketches is necessary. To obtain

reasonable results on the Kentucky benchmark, at least 500

sketches are necessary [2], which corresponds to about 6 kB

per image. For near-duplicate detection, min-Hash may be

a better choice, as the number of document “hits”, i.e., the

number of documents which receive a non-zero score, is

significantly lower than for a binary BOF representation.

Min-Hash typically returns 5% of the total number of docu-

ments [2], a large improvement over an inverted file, binary

or not, compressed or not.

The method proposed in the next section goes beyond in-

dex compression and min-Hash: (1) it offers accuracy com-

parable to the BOF with a few hundred bytes per image; (2)

it reads a limited amount of memory at query time; and (3)

it returns a reduced number of documents.

4. MiniBOFs

The central problem of efficiently indexing a BOF im-

age representation is that, to our knowledge, there exists

no efficient approximate nearest neighbor search algorithm

for sparse vectors. Hence, using a state-of-the-art indexing

algorithm such as locality-sensitive hashing [3] is less effi-

cient than using an inverted file structure, which computes

the exact distances by visiting only the non-zeros positions.

The approach proposed in this section is a way of re-

trieving approximate nearest BOF vectors. Fig. 3 gives an

overview of our approach. A query is performed by 1) pro-

ducing several descriptors for a single BOF vector, by 2)

indexing them in separate structures and by 3) fusing the

distances returned by these structures using a distance ex-

pectation criterion. These steps are explained in the follow-

ing subsections.

4.1. Projection of a BOF: vocabulary aggregators

The first step of our approach produces a set of image

descriptors given a BOF. Each descriptor represents a visual

vocabulary for a coarse partition of the feature space, hence

providing an independent representation of the image.

To obtain these descriptors, we introduce a set of sparse

projection matrices A = {A1, . . . , Am} of sizes d × k,

where d is the dimension of the output descriptor and k
the dimension of the initial BOF. A projection matrix Aj

is called an aggregator, as it aggregates the vocabulary by

grouping several components of the input BOF vector into

a single one. For instance, for k = 12 and d = 3, we can

define the first aggregator as

A1 =

1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1
︸ ︷︷ ︸

k

d

(1)

For each projection vector (a matrix row), the number of

non-zero components is nz = k/d, and is chosen such that

the output vector is of reasonable dimension. We typically

set nz = 8 for k = 1000, resulting in descriptors of dimen-

sion d = 125. Note that the choice of A1 in (1) is performed

without loss of generality because there is no particular or-

der between the bag-of-features components.

The other aggregators are defined by shuffling the input

BOF vector components using random permutations. For

k = 12 and d = 3, the random permutation (11, 2, 12, 8, 9,

4, 10, 1, 7, 5, 6, 3), results in the aggregation matrix

A2 =

[
0 1 0 0 0 0 0 1 0 0 1 1

1 0 0 1 0 0 0 0 1 1 0 0

0 0 1 0 1 1 1 0 0 0 0 0

]

(2)

Multiplying aggregator j by the BOF frequency vector

fi produces a vector

ωi,j = Aj × fi (3)

of dimension d, which can be seen as a BOF vector for the

quantizer resulting from the aggregation of the Voronoi cells

in the original k-means codebook. Such a vector is called

a miniBOF. An image i is, then, described by the m mini-

BOFs ωi,j , 1 ≤ j ≤ m, resulting from the projections of

the input BOF by the aggregators A1, . . . , Am.

4.2. Indexing structure

We build upon the Hamming Embedding (HE) approach

introduced in [4] to index local descriptors. The first step

is a quantization into visual words. Within each quantiza-

tion cell the Hamming Embedding refines the search. The

two steps, i.e., quantization and binary signature generation,

produce a compact representation of the miniBOFs. Note

that we create a separate indexing structure for each mini-

BOF type, i.e., for each aggregator Aj , see Fig. 3.

Quantization. The miniBOF ωi,j is quantized using the

quantizer qj associated with the jth aggregator, producing a

quantization index ci,j = qj(ωi,j) ∈ {1, .., k′}, where k′ is

the number of codebook entries of the indexing structure.

The set of k-means codebooks qj(.), 1 ≤ j ≤ m, is

learned off-line using a large number of miniBOF vectors,

here extracted from the Flickr1M∗ dataset. The dictionary

size k′ associated with the minBOFs is not related to the

one associated with the initial SIFT descriptors, hence we

may choose k 6= k′. We typically set k′ = 20000.

Binary signature generation. The objective of this step

is to compute a binary signature bi,j of length d that refines

the localization of the miniBOF within the cell. The binary

signature generation is performed using the method of [4]:

1. The miniBOF is projected using a random rotation ma-

trix R, producing d components.

[o
 o

 o
 o

]

BOF
descriptor

projection
with

vocabulary
aggregators

extraction
of local

descriptors
+

quantization

fusion
image
scores

[o o o o]
[o o o o]

[o o o o]

miniBOF
descriptors

q1(.) + h1(.)

q2(.) + h2(.)

qm(.) + hm(.)

quantization
+HE

query
indexes

Figure 3. Overview of our image search approach.

2. Each bit of the vector bi,j is obtained by comparing

the value projected by R to the median value of the el-

ements having the same quantized index. The median

values for all quantizing cells and all projection direc-

tions are learned off-line on our independent dataset.

At this point, the jth miniBOF associated with image i
is represented by the tuple (ci,j , bi,j). This tuple is stored

in an inverted file [16, 17]. This stucture is an array of k′

inverted lists, one per output value of quantizer qi. The tuple

is stored in list no. ci,j of the array, as an entry of the form

(i, bi,j). The memory used to index a miniBOF is then

• 4 bytes to store the image identifier i ;

• ⌈d/8⌉ bytes to store the binary vector bi,j ,

where the ceiling ensures that the entries are byte-aligned

in memory. As we use m inverted files in parallel, one

per aggregator, the total memory usage per image is Ci =
m (4 + ⌈d/8⌉) bytes.

Querying the jth indexing structure with the tuple

(cq,j , bq,j) associated with the jth miniBOF vector of the

query image amounts to returning all the elements assigned

to the inverted list associated with quantization index cq,j .

By contrast with [4], the role of the binary signature is not

to filter elements that are above a given distance threshold,

but to provide a distance between the query miniBOF and

those in the inverted list. This measure will be used by the

fusion algorithm detailed in the next subsection.

Multi-probe strategy. On the query side only, returning

a single inverted list associated with the quantized index

ci,j , as proposed in [4], is not sufficient for miniBOF vec-

tors. This is because the noise on miniBOFs is higher than

on SIFT vectors: the vector is severely modified by strong

cropping or clutter. To overcome this problem, we adopt

a strategy similar to the one proposed for locality-sensitive

hashing in [7], namely multi-probe querying. In our case,

this strategy consists in retrieving not only the inverted list

associated with the quantized index ci,j , but the set of in-

verted lists associated with the closest t centroids of the

quantizer codebook.

This strategy does not modify the amount of memory

needed for the database. However, it increases the number

of image hits because t times more inverted lists are visited.

4.3. Fusion: expected distance criterion

The output of the indexing structure is, for each aggre-

gator j, a set of potential relevant images and the Hamming

distances2 of their binary signatures with that of the query

miniBOF. Hereafter, we explain how the set of observed

distances is used to rank to images.

Expectation based criterion. For the jth aggregator, let

us denote by bq,j the signature associated with the query

image q, and by bi,j the signature of the database image i,
respectively. The concatenation bq = [bq,1, . . . , bq,m] of the

binary signatures over all aggregators is a representation of

the query image. Similarly, bi = [bi,1, . . . , bi,m] represents

the database image i. The distance between these two vec-

tors can be computed as

h(bq, bi) =
∑

1≤j≤m

h(bq,j , bi,j), (4)

where h(x, y) represents the Hamming distance between bi-

nary vectors x and y. However, for most of the database

images and aggregators, the distances h(bq,j , bi,j) are un-

known because only a small proportion of the indexed mini-

BOF vectors are stored in the t inverted lists visited for

this aggregator. Nevertheless, due to the median partition-

ing used in the binary signature learning stage (subsec-

tion 4.2), we known that the expectation of this distance is

ĥ(bq,j , bi,j) = d/2. Hence, we can compute the expectation

of the image distance (4) as

ĥ(bq, bi) =
∑

1≤j≤m

ĥ(bq,j , bi,j) (5)

where

ĥ(bq,j , bi,j) =

{
h(bq,j , bi,j) if bi,j observed

d/2 otherwise
(6)

2The Hamming distance between two vectors is the number of compo-

nents that are different.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 20 40 60 80 100 120

e
m

p
ir
ic

a
l
p
ro

b
a
b
ili

ty
 o

f
th

is
 d

is
ta

n
c
e

Hamming distance

related images
unrelated images

Figure 4. Empirical probability mass functions of the Hamming

distance between the binary signatures associated with the same

inverted list for 1) matching images and 2) unrelated images. The

measures have been performed on the Holidays dataset.

Note that in (4), the quantization index does not appear.

It is only used by the indexing structure to select the mini-

BOF vectors that are likely to be close to the miniBOF

query vector. Having filtered most of the miniBOF vectors,

we prefer to rely only on the binary signatures to compare

miniBOF vectors. Fig. 4 shows the probability mass func-

tion of the distances in a particular cell. The probability of

having a small distance between vectors of two unrelated

images is on average lower than for corresponding images.

Implementation details. For most of the images, we have

no Hamming distance measurements in (5), which means

that the distance defaults to m × d/2. The score associated

with an image is then obtained as a summation over the ob-

served distances, as

scoreq(i) =
∑

j/bi,j is observed

d/2 − h(bq,j , bi,j), (7)

which is equal to 0 for images having no observed binary

signatures, i.e., most of the database images, and equal to

d × m/2 if the database image i is the query image itself.

This score, which provides the same image ranking as the

one of (5), is computed while reading the indexing structure,

by accumulating the image scores in a hash table.

As observed in [4], the query speed is improved by a

threshold τ on the Hamming distance, as it decreases 1) the

number of score updates in the hash table storing the image

scores and 2) reduce the number of “documents hits”. In

the following, we use τ = d/2, which roughly divides by 2

the number of score updates. It amounts to penalizing the

images having a large distance in the same quantization cell

the same way as those that have not been retrieved at all.

method k mAP memory image

usage hits

BOF 1k 0.414 3,087 1,484

BOF 20k 0.446 10,364 1,471

BOF 200k 0.549 12,886 1,412

binary BOF 20k 0.458 8,291 1,471

binary BOF 200k 0.554 10,309 1,412

compressed binary BOF* 20k 0.458 1,174 1,471

compressed binary BOF* 200k 0.554 1,830 1,412

miniBOF, m=1 1k 0.255 20 19

miniBOF, m=4 1k 0.368 80 48

miniBOF, m=8 1k 0.403 160 68

miniBOF, m=16 1k 0.426 320 93

miniBOF, m=32 1k 0.452 640 120

Table 1. Comparison of the different BOF approaches on the Hol-

idays dataset: search quality (mAP), memory usage (bytes per

database image), and average number of image hits per query im-

age. The hits values should be compared to the total number of

images (1491). m is the number of miniBOFs; *estimation based

on the binary BOF vector entropy.

5. Experiments

We evaluate the miniBOF approach by measuring the

performance on the reference datasets Holidays and Ken-

tucky using the evaluation measures introduced in Subsec-

tion 2.2. The results on these datasets are presented in Ta-

bles 1 and 2. The experiments performed on Holidays + one

million images (Flickr1M dataset) are presented in Table 3

and Fig. 5. The approach presented in Section 4 is denoted

by miniBOF in all these figures and tables.

Unless specified otherwise, we have used the following

parameters in all the miniBOF experiments

k = 1000 for the SIFT codebook size

nz = 8 for the aggregator parameter

d = k/nz = 125 for the miniBOF dimension

k′
= 20000 for the miniBOF codebook size

t = 100 for the multi-probe strategy

Using a value of nz between 8 and 12 provides the best

accuracy for vocabulary sizes ranging from 1k to 20k. In

order to limit the memory usage, which strongly depends

on d = k/nz, we use a small vocabulary, i.e., k=1000. This

leads to binary signatures of length 125.

BOF vs binary and compressed binary BOF. Tables 1

to 3, show the excellent results obtained by the binary BOF,

which, for the vocabulary sizes considered, slightly outper-

forms the BOF, with a reduced memory usage. The number

of image hits remains the same, as it depends only on the

number of images having at least one shared non-zero posi-

tion with the query BOF vector. The number of bytes used

method k score memory image

usage hits

BOF 20k 2.92 6,662 9,928

binary BOF 20k 3.02 5,329 9,928

miniBOF, m=1 1k 2.07 20 94

miniBOF, m=8 1k 2.72 160 383

miniBOF, m=16 1k 2.83 320 567

miniBOF, m=64 1k 2.93 1,280 1,078

Table 2. Experiments on the University of Kentucky object recog-

nition benchmark: score (4× recall at 4), number of image hits

and corresponding memory usage per image.

per inverted list entry is 4 bytes (for the image identifier)

for binary BOF and 5 bytes for BOF, for which we optimize

the memory usage by storing the number of occurrences of

the visual word, and by performing the tf-idf and the L2

normalization on-the-fly.

The improvement due to a compressed binary BOF is

shown in Table 1. As the image representation is the same

as the binary BOF, the results are identical and obtained

with a reduced memory usage, as discussed in Section 3.

MiniBOF. The behavior of miniBOF on the two reference

datasets is shown in Tables 1 and 2. One can see that, for

a memory usage of at least one order of magnitude lower,

the results are quite similar to those obtained by BOF. On

Holidays, the mAP is 0.452 for m = 16 aggregators, which

is comparable to 0.446 obtained by BOF for a vocabulary

size of k = 20k visual words. Most importantly, this perfor-

mance is obtained using 320 bytes per image, i.e., 32 times

less than for the BOF approach. These results are confirmed

by the measurements on Kentucky, where for m = 16 we

obtain a score of 2.83, to be compared with the score of 2.85
obtained in [2] for 512 “sketches”, that require an order of

magnitude more memory.

Surprisingly, for m ≥ 16 the mAP obtained using our

approach is better than the BOF computed for the same

vocabulary size of 1000 visual words. This may be due

to the sub-optimality of the Euclidean distance as a BOF

comparison criterion. Indeed, for the Kentucky dataset, it

is well known [9] that the Euclidean distance between L2-

normalized BOF vectors is poor, and significantly outper-

formed by the histogram intersection distance. The other

interesting measure is the number of images hits, which

shows the excellent selectivity of the approach. The system

returns about 6% of the images for m = 8.

The accuracy of our method is inferior in terms of mAP

to the method of [4], which obtained mAP=0.751 in its best

setup. However, let us underline that their approach requires

35 kB of memory per image on Holidays, i.e., two orders of

magnitude more than MiniBOFs.

method k mAP memory memory query

usage scanned time

BOF 20k 0.227 7,322 860 22163

BOF 200k 0.315 8,885 148 2827

binary BOF 20k 0.307 5,858 688 14073

binary BOF 200k 0.381 7,108 117 2562

miniBOF, m=1 1k 0.066 20 0.19 71

miniBOF, m=8 1k 0.196 160 1.54 132

miniBOF, m=32 1k 0.244 640 6.14 352

Table 3. Experiments on Holidays + Flickr1M: query time per im-

age (in ms, for one processor core), memory usage (MB) of the

indexing structure, memory to be scanned (MB) and search qual-

ity of the miniBOF approach compared with BOF.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 10 100 1000 10000 100000 1e+06

re
c
a

ll@
N

N

1 minibof
8 minibofs

32 minibofs
BOF, k=1000

BOF, k=20000

Figure 5. Holidays+Flickr1M: repartition of the true positives (re-

call@N) for one million images for BOF and miniBOF.

Holidays+Flickr1M: large scale experiments. Fig. 5

gives the recall@N, which reflects how a system is able to

filter a large number of images to produce an image short-

list to be treated in a post-ranking stage [6, 10]. Our results

are comparable to those of BOF, which is excellent consid-

ering the respective memory usages and query times. Our

approach requires 160 MB for m = 8 and the query is per-

formed in 132ms, to be compared, respectively, with 8 GB

and 3 s for BOF. See Table 3 for additional measurements,

which confirm the excellent mAP values and query times.

As a final note, we want to underline that using m = 8,

we could index about 350 million images in memory on a

present-day server machine (64GB of RAM). We were lim-

ited in our experiments by the number of images we could

download from Flickr and the disk space (about 250GB is

required per million images).

Typical queries from Holidays are shown in Fig. 6. The

results returned by the system, although not always correct

according to the groundtruth, are visually satisfactory.

Figure 6. A few sample queries from Holidays +Flickr1M and the first search results with miniBOF. Note that we do not use color. The

true positives are framed in red.

6. Conclusion

In this paper we have introduced a way of packing BOFs:

miniBOFs. This representation is based on aggregations of

several visual vocabulary cells and is extremely compact.

By using a set of them we obtain a redundant representation

and increase the search speed. An efficient indexing struc-

ture based on Hamming Embedding allows for rapid ac-

cess and an expected distance criterion for the fusion of the

scores. Our approach reduces memory usage by more than

one order of magnitude. Furthermore, it reduces the quan-

tity of memory scanned (hits) as well as the query time. Ex-

perimental results demonstrate an excellent accuracy even

for very compact representations.

Acknowledgements

We would like to thank the ANR projects RAFFUT and

GAIA, as well as the QUAERO project for their financial

support.

References

[1] O. Chum, J. Philbin, M. Isard, and A. Zisserman. Scalable

near identical image and shot detection. In CIVR, 2007.

[2] O. Chum, J. Philbin, and A. Zisserman. Near duplicate image

detection: min-Hash and tf-idf weighting. In BMVC, 2008.

[3] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-

sensitive hashing scheme based on p-stable distributions. In

Proceedings of the Symposium on Computational Geometry,

pages 253–262, 2004.

[4] H. Jégou, M. Douze, and C. Schmid. Hamming embedding

and weak geometric consistency for large scale image search.

In ECCV, 2008.

[5] H. Jégou, M. Douze, and C. Schmid. On the burstiness of

visual elements. In CVPR, June 2009.

[6] D. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004.

[7] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li.

Multi-probe LSH: Efficient indexing for high-dimensional

similarity search. In VLDB, pages 950–961, 2007.

[8] K. Mikolajczyk and C. Schmid. Scale and affine invariant

interest point detectors. IJCV, 60(1):63–86, 2004.

[9] D. Nistér and H. Stewénius. Scalable recognition with a vo-

cabulary tree. In CVPR, pages 2161–2168, 2006.

[10] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-

man. Object retrieval with large vocabularies and fast spatial

matching. In CVPR, 2007.

[11] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman.

Lost in quantization: Improving particular object retrieval in

large scale image databases. In CVPR, 2008.

[12] J. Sivic and A. Zisserman. Video Google: A text retrieval ap-

proach to object matching in videos. In ICCV, pages 1470–

1477, 2003.

[13] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In

NIPS, 2009.

[14] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic cod-

ing for data compression. Communications of the ACM,

30(6):520–540, 1987.

[15] J. Zhang, X. Long, and T. Suel. Performance of compressed

inverted list caching in search engines. In WWW ’08: Pro-

ceeding of the 17th international conference on World Wide

Web, pages 387–396, 2008.

[16] J. Zobel and A. Moffat. Inverted files for text search engines.

ACM Computing Surveys, 38(2):6, 2006.

[17] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted files

versus signature files for text indexing. ACM Transactions

on Database Systems, 23(4):453–490, 1998.

