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Abstract—While feature point recognition is a key component of modern approaches to object detection, existing approaches require

computationally expensive patch preprocessing to handle perspective distortion. In this paper, we show that formulating the problem in

a naive Bayesian classification framework makes such preprocessing unnecessary and produces an algorithm that is simple, efficient,

and robust. Furthermore, it scales well as the number of classes grows. To recognize the patches surrounding keypoints, our classifier

uses hundreds of simple binary features and models class posterior probabilities. We make the problem computationally tractable by

assuming independence between arbitrary sets of features. Even though this is not strictly true, we demonstrate that our classifier

nevertheless performs remarkably well on image data sets containing very significant perspective changes.

Index Terms—Image processing and computer vision, object recognition, tracking, image registration, feature matching, naive

Bayesian.
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1 INTRODUCTION

IDENTIFYING textured patches surrounding keypoints across
images acquired under widely varying poses and light-

ning conditions is at the heart of many computer vision
algorithms. The resulting correspondences can be used to
register different views of the same scene, extract 3D shape
information, or track objects across video frames. Corre-
spondences also play a major role in object category
recognition and image retrieval applications.

In all of these cases, since patch recognition is one of the
first and most critical stages in the algorithmic pipeline,
reliability and speed are key to the overall success and
practicality of the corresponding applications. Achieving
both is difficult because surface appearance around a
keypoint can vary drastically depending on how the images
were captured. The standard approach to addressing this
problem is to build affine-invariant descriptors of local image
patches and to compare them across images. This usually
involves fine-scale selection, rotation correction, and inten-
sity normalization [23], [22]. It results in a high computational
overhead and often requires handcrafting the descriptors to
achieve insensitivity to specific kinds of distortion.

In earlier work [20], we have shown that casting the
matching problem as a more generic classification problem
leads to solutions that are much less computationally
demanding. This approach relies on an offline training
phase during which multiple views of the patches to be
matched are used to train randomized trees [2] to recognize
them based on a few pairwise intensity comparisons. This

yields both fast runtime performance and robustness to
viewpoint and lighting changes.

Here, we show that the trees can be profitably replaced
by nonhierarchical structures that we refer to as ferns to
classify the patches. Each one consists of a small set of
binary tests and returns the probability that a patch belongs
to any one of the classes that have been learned during
training. These responses are then combined in a naive
Bayesian way. As before, we train our classifier by
synthesizing many views of the keypoints extracted from
a training image as they would appear under different
perspectives or scales. The ferns are just as reliable as the
randomized trees but much faster and simpler to imple-
ment. The code that implements patch evaluation can be
written in 10 lines of C++ code, which highlights the
simplicity of the resulting implementation and the complete
software package is available [29].1

The binary tests we use as classifier features are picked
completely at random, which puts our approach firmly in
the camp of techniques that rely on randomization to
achieve good performance [1]. We will show that this is
particularly effective for applications such as real-time 3D
object detection and Simultaneous Localization and Mapping
(SLAM) that require scale and perspective invariance,
involve a very large number of classes, but can tolerate
significant error rates since we use robust statistical methods
to exploit the information provided by the correspondences.
Furthermore, our approach is particularly easy to imple-
ment, does not overfit, does not require ad hoc patch
normalization, and allows fast and incremental training.

2 RELATED WORK

Due to its robustness to partial occlusions and computa-
tional efficiency, recognition of image patches extracted
around detected keypoints is crucial for many vision
problems. As a result, two main classes of approaches have
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been developed to achieve robustness to perspective and
lighting changes.

The first family relies on local descriptors designed to be
invariant, or at least robust, to specific classes of deforma-
tions [30], [22]. These approaches usually rely on the fine
scale and rotation estimates provided by the keypoint
detector. Among these, the SIFT vector [22], computed from
local histograms of gradients, has been shown to work
remarkably well and we will use it as a benchmark for our
own approach. It has also been shown that keypoints can be
used as visual words [31] for image retrieval in very large
image databases [27]. Keypoints are labeled by hierarchical
k-means [5] clustering based on their SIFT descriptors. This
makes it possible to use very many visual words. However,
performance is measured in terms of the number of
correctly retrieved documents rather than the number of
correctly classified keypoints, which is the important
criterion for applications such as pose estimation or SLAM.

A second class relies on statistical learning techniques to
compute a probabilistic model of the patch. The one-shot
approach of [13] uses PCA and Gaussian Mixture Models
but does not account for perspective distortion. Since the set
of possible patches around an image feature under
changing perspective and lightning conditions can be seen
as a class, we showed that this problem can be overcome by
training a set of Randomized Trees [2] to recognize feature
points independently of pose [20]. This is done using a
database of patches obtained by warping those found in a
training image by randomly chosen homographies.

This approach is fast and effective to achieve the kind of
object detection depicted in Figs. 1 and 2. Note that, unlike
in traditional classification problems, a close-to-perfect
method is not required, because the output of the classifier
can be filtered by a robust estimator. However, the classifier
should be able to handle many classes—typically more than
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Fig. 1. Matching a mouse pad in a 1,074-frame sequence against a reference image. The reference image appears in (a) and the input image from
the video sequence in (b). (a) Matches obtained using ferns in a few frames. (b) Matches obtained using SIFT in the same frames.

Fig. 2. Scatter plot showing the number of inliers for each frame for the
experiment in Fig. 1. The values on the axes give the number of inliers
for Ferns and SIFT. Most of the time, the Ferns match at least as many
points as SIFT and, often, even more, as can be seen from the fact that
most of the points lie below the diagonal.



200—simultaneously without compromising on perfor-
mance or speed. We will demonstrate that the approach
we propose is even faster than the trees [20], more scalable,
and just as reliable.

Local Binary Patterns [28] also rely on binary feature
statistics by describing the underlying texture in terms of
histograms of binary features over all pixels of a target
region. While such a description is appropriate for texture
classification, it is not directly suitable for keypoint
characterization since, if histograms are built in this way,
it will lose the spatial information between the features. By
contrast, we compute the statistics of the binary features
over example patches seen from different viewpoints and
use independence assumptions between groups of features,
hence using many more features centered on the keypoint
location so as to improve the recognition rate.

The Real-Time SLAM method of [35] also extends the
Randomized Trees (RTs) into lists of features (similar to our
Ferns), but the full posterior distribution over binary
features are replaced by a single bit. This design choice is
aimed at significantly reducing the memory requirements
while correctly matching the sparse set of visible landmarks
at a time. For maximum performance, we model the full
joint probability. Memory requirements can be tackled by
using fixed-point representations that require fewer bits
than the standard floating-point representation.

Trees and Ferns have recently been used for image
classification as a replacement for a multiway Support
Vector Machine [6]. The binary features are computed on
shape and texture descriptors, hence gaining invariance to
local deformations. The distributions are computed over
different instances of the same class, but unlike our
approach, the posteriors from different trees and ferns are
combined by averaging. The results match our own
observations that using either fern or tree structures leads
to similar classification performance.

3 A SEMINAIVE BAYESIAN APPROACH TO PATCH

RECOGNITION

As discussed in Section 2, image patches can be recognized
on the basis of very simple and randomly chosen binary
tests that are grouped into decision trees and recursively
partition the space of all possible patches [20]. In essence, we
treat the set of possible appearances of a keypoint as classes
and the RTs embody a probability distribution over these
classes. In practice, no single tree is discriminative enough
when there are many classes. However, using a number of
trees and averaging their votes yields good results because
each one partitions the feature space in a different way.

In this section, we will argue that, when the tests are
chosen randomly, the power of the approach derives not
from the tree structure itself but from the fact that
combining groups of binary tests allows improved classifi-
cation rates. Therefore, replacing the trees by our nonhier-
archical ferns and pooling their answers in a naive Bayesian
manner yields better results and scalability in terms of
number of classes. As a result, we can combine many more
features, which is the key to improved recognition rates.

We first show that our nonhierarchical ferns fit nicely
into a naive Bayesian framework and then explain the
training protocol which is similar to the one used for RTs.

3.1 Formulation of Feature Combination

As discussed in Section 2, we treat the set of all possible
appearances of the image patch surrounding a keypoint as a
class. Therefore, given the patch surrounding a keypoint
detected in an image, our task is to assign it to the most
likely class. Let ci, i ¼ 1; . . . ; H, be the set of classes and let
fj, j ¼ 1; . . . ; N , be the set of binary features that will be
calculated over the patch that we are trying to classify.
Formally, we are looking for

ĉi ¼ argmax
ci

P ðC ¼ ci j f1; f2; . . . ; fNÞ;

where C is a random variable that represents the class.
Bayes’ formula yields

P ðC ¼ ci j f1; f2; . . . ; fNÞ

¼ P ðf1; f2; . . . ; fN j C ¼ ciÞP ðC ¼ ciÞ
P ðf1; f2; . . . ; fNÞ

:

Assuming a uniform prior P ðCÞ, since the denominator is
simply a scaling factor that is independent from the class,
our problem reduces to finding

ĉi ¼ argmax
ci

P ðf1; f2; . . . ; fN j C ¼ ciÞ: ð1Þ

In our implementation, the value of each binary feature fj
only depends on the intensities of two pixel locations dj;1
and dj;2 of the image patch. We therefore write

fj ¼
1; if Iðdj;1Þ < Iðdj;2Þ;
0; otherwise;

�

where I represents the image patch. Since these features
are very simple, we require many ðN � 300Þ for accurate
classification. Therefore, a complete representation of the
joint probability in (1) is not feasible since it would require
estimating and storing 2N entries for each class. One way
to compress the representation is to assume independence
between features. An extreme version is to assume
complete independence, that is,

P ðf1; f2; . . . ; fN j C ¼ ciÞ ¼
YN
j¼1

P ðfj j C ¼ ciÞ:

However, this completely ignores the correlation be-
tween features. To make the problem tractable while
accounting for these dependencies, a good compromise is
to partition our features into M groups of size S ¼ N

M . These
groups are what we define as ferns and we compute the
joint probability for features in each fern. The conditional
probability becomes

P ðf1; f2; . . . ; fN j C ¼ ciÞ ¼
YM
k¼1

P ðFk j C ¼ ciÞ; ð2Þ

where Fk ¼ ff�ðk;1Þ; f�ðk;2Þ; . . . ; f�ðk;SÞg, k ¼ 1; . . . ;M, repre-
sents the kth fern and �ðk; jÞ is a random permutation
function with range 1; . . . ; N . Hence, we follow a Seminaive
Bayesian [36] approach by modeling only some of the
dependencies between features. The viability of such an
approach has been shown by [18] in the context of image
retrieval applications.
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This formulation yields a tractable problem that involves
M � 2S parameters, with M between 30 and 50. In practice,
as will be shown in Section 4, S ¼ 11 yields good results.
Therefore, M � 2S is of the order of 80,000, which is much
smaller than 2N with N � 450 that the full joint probability
representation would require. Our formulation is also
flexible since performance/memory trade-offs can be made
by changing the number of ferns and their sizes.

Note that we use randomization not only in feature
selection but also in grouping. An alternative approach
would involve selecting feature groups to be as indepen-
dent from each other as possible. This is routinely done by
semi-naive Bayesian classifiers based on a criteria such as
the mutual information between features [8]. However, in
practice, we have not found this to be necessary to achieve
good performance. We have, therefore, chosen not to use
such a strategy to preserve the simplicity and efficiency of
our training scheme and to allow for incremental training.

3.2 Training

We assume that at least one image of the object to be
detected is available for training. We call any such image as
a model image. Training starts by selecting a subset of the
keypoints detected on these model images. This is done by
deforming the images many times, applying the keypoint
detector, and keeping track of the number of times the same
keypoint is detected. The keypoints that are found most
often are assumed to be the most stable and retained. These
stable keypoints are assigned a unique class number.

The training set for each class is formed by generating
10,000 sample images with randomly picked affine defor-
mations by sampling the deformation parameters from a
uniform distribution, adding Gaussian noise to each sample
image, and smoothing with a Gaussian filter of size 7� 7.
This increases the robustness of the resulting classifier to
runtime noise, especially when there are features that
compare two pixels on a uniform area.

The training phase estimates the class-conditional prob-
abilities P ðFm j C ¼ ciÞ for each fern Fm and class ci, as
described in (2). For each fern Fm, we write these terms as:

pk;ci ¼ P ðFm ¼ k j C ¼ ciÞ; ð3Þ

where we simplify our notations by considering Fm to be
equal to k if the base 2 number formed by the binary
features of Fm taken in sequence is equal to k. With this
convention, ferns can take K ¼ 2S values, and for each one,
we need to estimate the pk;ci , k ¼ 1; 2; . . . ; K, under the
constraint

XK
k¼1

pk;ci ¼ 1:

The simplest approach would be to assign the maximum
likelihood estimate to these parameters from the training
samples. For parameter pk;ci , it is

pk;ci ¼
Nk;ci

Nci

;

where Nk;ci is the number of training samples of class ci that
evaluates to fern value k and Nci is the total number of

samples for class ci. These parameters can therefore be
estimated for each Fern independently.

In practice, however, this simple scheme yields poor
results because if no training sample for class ci evaluates to
k, which can easily happen when the number of samples is
not infinitely large, both Nk;ci and pk;ci will be zero. Since we
multiply the pk;cj for all ferns, it implies that, if the fern
evaluates to k, the corresponding patch can never be
associated to class ci, no matter the response of the other
ferns. This makes the ferns far too selective because of the
fact that pk;ci ¼ 0 may simply be an artifact of the necessarily
limited size of the training set. To overcome this problem,
we take pk;ci to be

pk;ci ¼
Nk;ci þNr

Nci þK �Nr
;

where Nr represents a regularization term, which behaves
as a uniform Dirichlet prior [4] over feature values. If a
sample with a specific fern value is not encountered during
training, this scheme will still assign a nonzero value to the
corresponding probability. As illustrated by Fig. 3, we have
found our estimator to be insensitive to the exact value of
Nr and we use Nr ¼ 1 in all our experiments. However, it is
strictly essential to have Nr greater than zero. This tallies
with the observation that combining classifiers in a naive
Bayesian fashion can be unreliable if improperly done [19].

In effect, our training scheme marginalizes over the pose
space since the class-conditional probabilities P ðFm j C ¼
ciÞ depend on the camera poses relative to the object. By
densely sampling the pose space and summing over all
samples, we marginalize over these pose parameters.
Hence, at runtime, the statistics can be used in a pose-
independent manner, which is the key to real-time
performance. Furthermore, the training algorithm itself is
very efficient since it only requires storing the Nk;ci counts
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Fig. 3. Recognition rate as a function of logðNrÞ using the three test
images of Section 4. The recognition rate remains relatively constant for
0:001 < Nr < 2. For Nr < 0:001, it begins a slow decline, which ends in a
sudden drop to about 50 percent when Nr ¼ 0. The rate also drops
when Nr is too large because too strong a prior decreases the effect of
the actual training data, which are around 10,000 samples for this
experiment.



for each fern while discarding the training samples
immediately after use, which means that we can use
arbitrarily many if need be.

4 COMPARISON WITH RANDOMIZED TREES

As shown in Figs. 4 and 5, Ferns can be considered as
simplified trees. Whether or not this simplification de-
grades their classification performance hinges on whether
our randomly chosen binary features are still appropriate in
this context. In this section, we will show that they are
indeed. In fact, because our naive Bayesian scheme
outperforms the averaging of posteriors used to combine
the output of the decision trees [20], the ferns are both
simpler and more powerful.

To compare RTs and ferns, we experimented with the
three images of Fig. 6. We warp each image by repeatedly
applying random affine deformations and detect Harris
corners in the deformed images. We then select the most
stable 250 keypoints per image based on how many times
they are detected in the deformed versions to use in the
following experiments and assign a unique class id to each
of them. The classification is done using patches that are
32� 32 pixels in size.

Ferns differ from trees in two important respects: The
probabilities are multiplied in a naive Bayesian way instead
of being averaged and the hierarchical structure is replaced
by a flat one. To disentangle the influence of these changes,
we consider four different scenarios:

. using randomized trees and averaging of class
posterior distributions, as in [20];

. using randomized trees and combining class-condi-
tional distributions in a naive Bayesian way;

. using ferns and averaging of class posteriors;

. using ferns and combining class-conditional distri-
butions in a naive Bayesian way, as we advocate in
this paper.

The trees are of depth 11 and each fern has 11 features,

yielding the same number of parameters for the estimated

distributions. Also, the number of features evaluated per

patch is equal in all cases.
The training set is obtained by randomly deforming

images of Fig. 6. To perform these experiments, we

represent affine image deformations as 2� 2 matrices of

the form

R�R��diagð�1; �2ÞR�;

where diagð�1; �2Þ is a diagonal 2� 2 matrix and R�

represents a rotation of angle �. Both to train and to test

our ferns, we warped the original images using such

deformations computed by randomly choosing � and � in

the ½0:2�� range and �1 and �2 in the ½0:6:1:5� range. Fig. 7

depicts patches surrounding individual interest points first

in the original images and then in the warped ones. We
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Fig. 4. Ferns versus trees. A tree can be transformed into a fern by
performing the following steps. First, we constrain the tree to system-
atically perform the same test across any given hierarchy level, which
results in the same feature being evaluated independently of the path
taken to get to a particular node. Second, we do away with the
hiearchical structure and simply store the feature values at each level.
This means applying a sequence of tests to the patch, which is what
ferns do.

Fig. 5. The feature spaces of trees and ferns. Although the space of tree
features seems much higher dimensional, it is not because only a subset
of features can be evaluated. (a) For the simple tree on the left, only the
four combinations of feature values denoted by green circles are
possible. (b) The even simpler fern on the left also yields four possible
combinations of feature values but a much simpler structure. As shown
below, this simplicity does not entail any performance loss.

Fig. 6. The recognition rate experiments are performed on three
images that show different texture and structures. Image size is
640� 480 pixels.

Fig. 7. Warped patches from the images of Fig. 6 show the range of
affine deformations that we considered. In each line, the leftmost patch
is the original one and the others are deformed versions of it. (a) Sample
patches from the City image. (b) Sample patches from the Flowers
image. (c) Sample patches from the Museum image.



used 30 random affine deformations per degree of rotation

to produce 10,800 images. As explained in Section 3.2, we

then added Gaussian noise with zero mean and a large

variance—25 for gray levels ranging from 0 to 255—to these

warped images to increase the robustness of the resulting

ferns. Gaussian smoothing with a mask of 7� 7 is applied

to both training and test images.

The test set is obtained by generating a separate set of

1,000 images in the same affine deformation range and

adding noise. Note that we simply transform the original

keypoint locations and therefore we ignore the keypoint

detector’s repeatability in the tests and measure only the

recognition performance. In Fig. 8, we plot the results as a

function of the number of trees or ferns being used.
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Fig. 8. (a) The average percentage of correctly classified image patches over many trials is shown as the number of trees or ferns is changed. Using

the naive Bayesian assumption gives much better rates at reduced number of structures, while the fern and tree structures are interchangeable.
(b) The scatter plots show the recognition rate over individual trials with 50 ferns. The recognition rates for the naive Bayesian combination and
posterior averaging are given in the x and y axes, respectively. The naive Bayesian combination of features usually performs better, as evidenced by

the fact that most points are below the diagonal, and only very rarely produce recognition rates below 80 percent. By contrast, the averaging
produces rates below 60 percent.



We first note that using either flat Fern or hierarchical
tree structures does not affect the recognition rate, which
was to be expected as the features are taken completely at
random. By contrast, the naive Bayesian combination
strategy outperforms the averaging of posteriors and
achieves a higher recognition rate even when using
relatively few structures. Furthermore, as the scatter plots
of Fig. 8 show, for the naive Bayesian combination, the
recognition rate on individual deformed images never falls
below an acceptable rate. Since the features are taken
randomly, the recognition rate changes and the variance of
the recognition rate is given as Table 1. As more ferns or
trees are used, the variance decreases and more rapidly for
the naive combination. If the number of ferns or trees is
below 10, the recognition rate starts to change more
erratically and entropy-based optimization of feature
selection becomes a necessity.

To test the behavior of the methods as the number of
classes is increased, we have trained classifiers for matching
up to 1,500 classes. Fig. 9 shows that the performance of the
naive Bayesian combination does not degrade rapidly and
scales much better than averaging posteriors. For both
methods, the required amounts of memory and computa-
tion times increase linearly with the number of classes since
we assign a separate class for each keypoint.

So far, we have used 11 features for each fern, and we
now discuss the influence of this number on recognition
performance and memory requirements.

Increasing the fern size by one doubles the number of
parameters, and hence, the memory required to store the
distributions. It also implies that more training samples
should be used to estimate the increased number of

parameters. It has, however, negligible effect on the runtime
speed and larger ferns can, therefore, handle more variation
at the cost of training time and memory but without much
of a slowdown.

By contrast, adding more ferns to the classifier requires
not only a linear increase in memory but also in computa-
tion time. Since the training samples for other ferns can be
reused, it only has a negligible effect on training time. As
shown in Fig. 10, for a given amount of memory, the best
recognition rate is obtained by using many relatively small
ferns. However, this comes at the expense of runtime speed,
and when sufficient memory is available, a fern size of 11
represents a good compromise, which is why we have used
this value in the experiments.

Finally, we evaluate the behavior of the classifier as a
function of the number of training samples. Initially, we use
180 training images that we generate by warping the images
of Fig. 6 by random scaling parameters and deformation
angle �, while the rotation angle � is uniformly sampled at
every two degrees. We then increase the number of training
samples by 180 at each step. The graphs depicted in Fig. 11
show that the naive Bayesian combination performs
consistently better than the averaging, even when only a
small number of training samples are used.

5 EXPERIMENTS

We evaluate the performance of fern-based classification for
both planar and fully 3D object detection and SLAM-based
camera tracking. We also compare our approach against
SIFT [22], which is among the most reliable descriptors for
patch matching.
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Fig. 9. Recognition rate as a function of the number of classes. While the naive combination produces a very slow decrease in performance,

posterior averaging exhibits a much sharper drop. The tests are performed on the high-resolution versions of the City and Flowers data, respectively.

TABLE 1
Variance of the Recognition Rate



5.1 Ferns versus SIFT to Detect Planar Objects

We used the 1,074-frame video depicted in Fig. 1 to
compare ferns against SIFT for planar object detection. It
shows a mouse pad undergoing motions involving a large
range of rotations, scalings, and perspective deformations
against a cluttered background. We used as a reference an
image in which the mouse pad is seen frontally. We
match the keypoints extracted from each input image
against those found in the reference image using either
ferns or SIFT and then eliminate outliers by computing a
homography using RANSAC.

The SIFT keypoints and the corresponding descriptors
are computed using the publicly available code kindly
provided by Lowe [21]. The keypoint detection is based on
the difference of Gaussians over several scales, and for each
keypoint, dominant orientations are precomputed. By
contrast, the ferns rely on a simpler keypoint detector that
computes the maxima of Laplacian on three scales, which
provides neither dominant orientation information nor a
finely estimated scale. We retain the 400 strongest keypoints
in the reference, and 1,000 keypoints in the input images for
the two methods.

We train 20 ferns of size 14 to establish matches with the
keypoints on the video frame by selecting the most probable
class. In parallel, we match the SIFT descriptors for the
keypoints on the reference image against the keypoints on
the input image by selecting the one which has the nearest
SIFT descriptor. Given the matches between the reference
and input image, we use a robust estimation followed by
nonlinear refinement to estimate a homography. We then
take all matches with reprojection error less than 10 pixels
to be inliers. Fig. 1 shows that the ferns can match as many
points as SIFT, and sometimes, even more.

It is difficult to perform a completely fair speed
comparison between our ferns and SIFT for several reasons.
SIFT reuses intermediate data from the keypoint extraction
to compute canonic scale and orientations and the descrip-
tors, while ferns can rely on a low-cost keypoint extraction.
On the other hand, the distributed SIFT C code is not
optimized, and the Best-Bin-First KD-tree of [3] is not used
to speed up the nearest-neighbor search.

However, it is relatively easy to see that our approach
requires much less computation. Performing the individual
tests of Section 3 requires very little time and most of the time
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Fig. 11. Recognition rate as a function of the number of training samples for each one of the three images of Fig. 6. As more training samples are
used, the recognition rate increases and it does so faster for the naive Bayesian combination of ferns.

Fig. 10. (a) Recognition rate and (b) computation time as a function of the amount of memory available and the size of the ferns being used. The
number of ferns used is indicated on the top of each bar and the y-axis shows the fern size. The color of the bar represents the required memory
amount, which is computed for distributions stored with single-precision floating numbers. Note that while using many small ferns achieves higher
recognition rates, it also entails a higher computational cost.



is spent computing the sums of the posterior probabilities.
The classification of a keypoint requires H �M additions,
with H the number of classes and M the number of ferns. In
contrast, SIFT uses 128 H additions and as many multi-
plications when the Best-Bin-First KD-tree is not used. This
represents an obvious advantage of our method at runtime
since M can be much less than 128, and is taken to be 20 in
practice, while selecting a large number of features for each
fern and using tens of thousands of training samples.

The major gain actually comes from the fact that ferns do
not require descriptors. This is significant because comput-
ing the SIFT descriptors, which is the most difficult part to
optimize, takes about 1 ms on a MacBook Pro laptop without
including the time required to convolve the image. In
contrast, ferns take 13:5� 10�3 milliseconds to classify one
keypoint into 200 classes on the same machine. Moreover,
ferns still run nicely with a primitive keypoint extractor, such
as the one we used in our experiments. When 300 keypoints
are extracted and matched against 200 classes, our imple-
mentation on the MacBook Pro laptop requires 20 ms per
frame for both keypoint extraction and recognition in 640�
480 images, and four-fifths of this time is devoted to keypoint
extraction. This corresponds to a theoretical 50 Hz frame rate
if one does ignore the time required for frame acquisition.
Training takes less than 5 minutes.

Of course, the ability to classify keypoints fast and work
with a simple keypoint detector comes at the cost of
requiring a training stage, which is usually offline. In
contrast, SIFT does not require training and, for some
applications, this is clearly an advantage. However, for
other applications, ferns offer greater flexibility by allowing
us to precisely state the kind of invariance we require
through the choice of the training samples. Ferns also let us
incrementally update the classifiers as more training
samples become available as demonstrated by the SLAM
application of Section 5.4. This flexibility is key to the ability
to carry out offline computations and significantly simplify
and speed up the runtime operation.

5.2 Ferns versus SIFT to Detect 3D Objects

So far, we have considered that the keypoints lie on a planar
object and evaluated the robustness of ferns with respect to

perspective effects. This simplifies training as a single view
is sufficient and the known 2D geometry can be used to
compute ground truth correspondences. However, most
objects have truly 3D appearance, which implies that self-
occlusions and complex illuminations effects have to be
taken into account to correctly evaluate the performance of
any keypoint matching algorithm.

Recently, an extensive comparison of different keypoint
detection and matching algorithms on a large database of
3D objects has been published [26]. It was performed on
images taken by a stereo camera pair of objects rotating on a
turntable. Fig. 12 shows such images spanning a 70 degree
camera rotation range. We used this image database to
evaluate the performance of ferns for a variety of 3D objects.
We compare our results against the SIFT detector/descrip-
tor pair which has been found to perform very well on this
database. The keypoints and the descriptors are computed
using the same software as before [21].

As in [26], we obtained the ground truth by using purely
geometric methods, which is possible because the cameras
and the turn table are calibrated. The initial correspondences
are obtained by using the trifocal geometry between the top/
bottom cameras in the center view and every other camera,
as illustrated by Fig. 13. We then reconstruct the 3D points
for each such correspondence in the bottom/center camera
coordinate frame and use these to form the initial tracks that
span the �35 degree=þ 35 degree rotation range around a
central view. Since the database images are separated by
5 degrees, the tracks span 15 images each for the top and
bottom cameras. We eliminate very short tracks and
remaining tracks are extended by projecting the 3D point
to each image and searching for a keypoint in the vicinity of
the projection. Finally, to increase robustness against
spurious tracks formed by outliers, we eliminate tracks
covering less than 30 percent of the views and the remaining
tracks form the ground truth for the evaluation, which is
almost free of outliers. Sample ground truth data are
depicted in Fig. 14, which shows the complex variations in
patch appearance induced by the 3D structure of the objects.

The training is done using views separated by 10 degrees,
skipping every other frame in the ground truth data. We
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Fig. 12. When detecting a 3D object, viewpoint change is more
challenging due to self-occlusions and nontrivial lighting effects. The
images are taken from a database presented in [26] and cover a total
range of 70 degrees of camera rotation. They are cropped around the
object, while we used the original images in the experiments. (a) Horse
data set. (b) Vase data set. (c) Desk data set. (d) Dog data set.

Fig. 13. Generating ground truth data for 3D object detection. Each test
object contains two sequences of images taken by the Top and Bottom
cameras while the object rotates on the turntable. The camera geometry
has been calibrated using a checkerboard calibration pattern. We use
15 consecutive camera views for evaluation purposes, because it is
easy to obtain high-quality calibration for this range of rotation.



then use the views that we skipped for testing purposes.
This geometry-based sampling is shown in Fig. 14. This
sampling creates uneven number of training and test
samples for different keypoints as there are gaps in the
tracks. The sampling could have been done differently to
balance the number of test and training samples for each
keypoint. However, our approach to sampling closely
mimics what happens in practice when training data come
from sparse views and the classifier must account for
unequal numbers of training samples.

We train the ferns in virtually the same way we do in
the planar case. Each track is assigned a class number and
the training images are deformed by applying random
affine deformations. We then use all of them to estimate
the probability distributions, as discussed in Section 3;
1,000 random affine deformations per training image are
used to train 50 ferns of size 11. Ferns classify the test
patches by selecting the track with the maximum prob-
ability. For SIFT, each test example is classified by selecting
the track number of the keypoint in the training set with
the nearest SIFT descriptor.

In our tests, we learn the appearance and the geometry of
a 3D object from several views and then detect it in new ones
by matching keypoints. Hence, the learned geometry can be
used to eliminate outliers while estimating the camera pose
using the P3P algorithm [16] together with a robust
matching strategy such as RANSAC [14]. Unlike [26], we,
therefore, do not use the ratio test on descriptor distances or
a similar heuristics to reject matches, as this might reject
correct correspondences. The additional computational
burden can easily be overcome by using the classification
score for RANSAC sampling, as presented by [9].

We compare the recognition rates of both methods on
objects with different kinds of texture. Fig. 15 shows the
recognition rate on each test image together with the
average over all frames. The ferns perform as well as

nearest-neighbor matching with SIFT for a whole range of
objects with very different textures.

Note that, when using ferns, there is almost no runtime
speed penalty for using multiple frames, since as more
training frames are added we can increase the size of our
ferns. As discussed in Section 4, this requires more memory
but does not slow down the algorithm in any meaningful
way. In contrast, using more frames for nearest-neighbor
SIFT matching linearly slows down the matching, although
a clever and approximate implementation might mitigate
the problem.

In theory, it should be possible to improve the perfor-
mance of SIFT-based approach by replacing nearest-neigh-
bor matching with a more sophisticated technique such as
K-Nearest Neighbors with voting. However, this would
further slow down the algorithm. Our purpose is to show
that the fern-based classifier can naturally integrate data
from multiple images without the need for a more complex
training phase or any handicap in the runtime performance,
reaching the performance of standard SIFT matching.

5.3 Panorama and 3D Scene Annotation

With the recent proliferation of mobile devices with
significant processing power, there has been a surge of
interest in building real-world applications that can auto-
matically annotate the photographs and provide useful
information about places of interest. These applications test
keypoint matching algorithms to their limits because they
must operate under constantly changing lighting conditions
and potentially changing scene texture, both of which
reduce the number of reliable keypoints. We have tested
ferns on two such applications, annotation of panorama
scenes and parts of a historical building with 3D structure.
Both applications run smoothly at frame rate using a
standard laptop and an off the shelf Web camera. By
applying standard optimizations for embedded hardware,
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Fig. 14. Samples from the ground truth for the Horse data set. The image in (a) shows the center view. The six keypoint tracks in (b) show the content

variation for each patch as the camera center rotates around the turntable center. Each track contains two lines that correspond to the Top and

Bottom cameras, respectively. Black areas denote frames for which the keypoint detector did not respond. The views produced by a rotation that is a

multiple of 10 degrees are used for training and are denoted by red labels. The others are used for testing.



we have ported this implementation onto a mobile device
that runs at a few frames per second. More recently, ferns
have been successfully integrated into commercially avail-
able mobile phones to run at frame rates by taking into
account specific limitations of the hardware and integrating
detection with frame-to-frame tracking [34].

For the panorama application, we trained Ferns using an
annotated panorama image stitched from multiple images.
At runtime, given an input image and after having
established correspondences between the panorama and
the test image, we compute a 2D homography and use it to
eliminate outliers and to transfer the annotation from the
training image to the input image, as shown in Fig. 16. We
successfully run a number of tests under different weather
conditions and different times of day.

Annotating a 3D object requires training using multiple
images from different viewpoints, which is easy to do in our
framework, as discussed in the previous section. We also
built a 3D model for the object using standard structure
from motion algorithms to register the training images
followed by dense reconstruction [33], [32]. The resulting
fine mesh is too detailed to be used, so it is approximated by
a coarse one containing much less detail. Despite its rough
structure, this 3D model allows annotation of important
parts of the object and the correct reprojection of this

information onto images taken from arbitrary viewpoints,
as depicted in Fig. 16.

5.4 SLAM Using Ferns

In this section, we demonstrate that ferns can increase the

robustness of a Visual SLAM system. Their role is twofold.
We first use them to bootstrap the system by localizing the

camera with respect to a known planar pattern in the scene.
Second, we incrementally train a second set of Ferns to

recognize new landmarks reconstructed by the system.
They make the system robust against severe disturbances

such as complete occlusion or strong shaking of the camera,
as evidenced by the smoothness of the recovered camera

trajectory in Fig. 18a.
For simplicity, we use a FastSLAM [24], [25] approach

with a single particle to model the distribution over the

camera trajectory. This is therefore a simplified version of
FastSLAM, but the ferns are sufficiently powerful to make it

robust.
As discussed above, we use two different sets of ferns.

We will refer to the first set as “Offline Ferns” that we

trained offline to recognize keypoints on the planar pattern.
As shown in Fig. 17a, we make sure it is visible in the first

frame of the sequence to bootstrap the system and replace
the four fiducial markers used by many other systems. This
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Fig. 15. Recognition rates for 3D objects. Each pair of bars corresponds to a test frame. The red bar on the left represents the rate for ferns and the
light green bar on the right the rate for Nearest-Neighbor SIFT matching. The weighted averages over all frames also appear as a dashed line for
ferns and solid line for NN-SIFT. The weights we use are the number of keypoints per frame.



increases the flexibility of our system since we can use any
pattern we want provided that it is textured enough. The
second set of ferns, the “Online Ferns,” are incrementally
trained to recognize the 3D landmarks the SLAM system
discovers and reconstructs.

The incremental training takes place over several frames,
typically between 20 and 50, where the corresponding

landmark was matched. For each, we add a small number
of random views of the observed patch to the ferns. In the
case where a landmark is observed for the first time, this
number is substantially higher, around 100. The compara-
tively small number of views in the beginning works
because motion between frames is relatively small, and by
the time the viewing angle has changed significantly, the
training will be complete. Of course, not all of the patches
need to be retrained, but only the new ones. This is achieved
by undoing the normalization step, adding the new
observations, and then renormalizing the posteriors. This
incremental training is computationally costly and future
research will aim at reducing the cost of training [7].

Our algorithm goes through the following steps:

1. Initialize the camera pose and some landmarks by
detecting a known pattern using the Offline Ferns.

2. Detect keypoints and match them using the Offline
and Online Ferns against the known landmarks.

3. Estimate the camera pose from these correspon-
dences using a P3P algorithm and RANSAC [14].
The estimated pose is refined via a nonlinear
optimization.

4. Refine the location estimates of the inlier landmarks
using an extended Kalman filter.

5. Create new landmarks. Choose a number of detected
keypoints that do not belong to any landmark in the
map and initialize the new landmarks with a large
uncertainty along the line of sight and a much
smaller uncertainty in the camera’s lateral directions.

6. Retrain ferns with good matches from step 2 and the
new landmarks.

7. Loop to step 2.

With this system, we demonstrate that both smooth
tracking and recovery from complete failure can be naturally
integrated by employing ferns for the matching task.

The reconstructed trajectory in Fig. 18 shows only tiny
jags in the order of a few millimeters and appears as smooth
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Fig. 16. Automated image annotation. (a) We match an input image against a panorama. Despite occlusions, changes in weather conditions, and
lighting, the ferns return enough matches for reliable annotation of major landmarks in the city. (b) We match an image to an annotated 3D model,
overlaid on the two leftmost images. This lets us display annotations at the right place.

Fig. 17. Ferns applied to SLAM. (a) Initialization: The pattern at the top is
detected in the image yielding initial landmarks and pose. (b) A later
image from the sequence, which shows both strong camera shaking and
motion blur. When the image is that bad, no correspondences can be
established and the tracking is lost. Nevertheless, the system
automatically recovers when the image quality improves due to the
ferns.



as a trajectory that was estimated in a filtered approach to
SLAM, such as MonoSLAM [11], [10]. This is especially
noteworthy as the camera’s state is reestimated from scratch
in every frame and there is no such thing as a motion model.2

At the same time, this is a strong indication for an overall
correct operation, since an incorrect map induces an
unstable state estimation and vice versa. In total, the system
mapped 724 landmarks and ran stable over all 2,026 frames
of the sequence.

Recently, Williams et al. [35] presented a system that is
also capable of recovering from complete failure. They
achieved robustness with a hybrid combination between
template matching and a modified version of randomized
trees. However, their map typically contains one order of
magnitude fewer landmarks and there has been no
indication that the modified trees will still be capable of
handling a larger number of interest points.

We also validated our system quantitatively. First, we
checked the relative accuracy for reconstructed pairs of 3D
points and found an error between 3.5 and 8.8 percent on
their euclidean distances. Second, the absolute accuracy was
assessed by choosing two world planes parallel to the
ground plane on top of two boxes in the scene on which
some points were reconstructed. Their z-coordinates de-
viated on average 7-10 mm. Given that the camera is at

roughly 0.6-1.4 m from the points under consideration, this
represents a very good accuracy.

6 CONCLUSION

We have presented a powerful method for image patch
recognition that performs well even in the presence of
severe perspective distortion. The “semi-naive” structure of
ferns yields a scalable, simple, and fast implementation to
what is one of the most critical step in many computer
vision tasks. Furthermore, the ferns naturally allow trade-
offs between computational complexity and discriminative
power. As computers become more powerful, we can add
more ferns to improve the performance. Conversely, we can
adapt them to low computational power such those on
hand-held systems by reducing the number of ferns. This
has actually been done in a recent work [34] to achieve real-
time performance on a mobile phone.

A key component of our approach is the naive Bayesian
combination of classifiers that clearly outperforms the
averaging of probabilities we used in an earlier work [20].
To the best of our knowledge, a clear theoretical argument
motivating the superiority of naive Bayesian (NB) techni-
ques does not exist.

There is, however, strong empirical evidence that they
are effective in our specific case. This can be attributed to
two different causes. First, unlike mixture models, the
product models can represent much sharper distributions
[17]. Indeed, when averaging is used to combine distribu-
tions, the resulting mixture has higher variance than the
individual components. In other words, if a single fern
strongly rejects a keypoint class, it can counter the
combined effect of all the other ferns that gives a weak
positive response. This increases the necessity of larger
amounts of training data and the help of a prior regulariza-
tion term, as discussed in Section 3. Second, the classifica-
tion task, which just picks a single class, will not be
adversely affected by the approximation errors in the joint
distribution as long as the maximum probability is assigned
to the correct class [15], [12]. We have shown that such a
naive combination strategy is a worthwhile alternative
when the specific problem is not overly sensitive to the
implied independence assumptions.
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