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Biometrics is the science of identifying individu-
als by a particular physical characteristic such
as voice, eye color, fingerprints, height, facial
appearance, iris texture, or signature. Finger-

prints are arguably the most popular biometric currently
in use because of their long history in law enforcement
applications. The pattern of ridges on each person’s fin-
gers uniquely characterizes that individual and contains
sufficient information to distinguish that person from
any other.

Fingerprint matching addresses two general classes of
problems. The first involves situations for which it is nec-
essary to verify or authenticate an individual’s identity. Such
one-to-one matching problems are of interest here pri-
marily as a conceptual basis for one-to-many matching.

The second, more challenging class of problems oc-
curs when a particular database requires a single entry
for any given individual. Examples include a social ser-
vices database, wherein individuals must be prevented
from using multiple aliases, and identity card issuance.
This identification problem necessitates a large database
search of individuals to determine whether a person is
already in the database.

Previous work in automatic fingerprint identification
systems has concentrated on criminal justice applications.
In the criminal justice arena, the cost of missing a po-
tential match is high—if a wanted criminal is released,
for example—so trained fingerprint officers are em-

ployed to inspect a large number of candidate matches.
Criminal justice fingerprinting systems retain images

of all 10 fingers. Queries of such systems almost always
involve a large amount of filtering, effectively reducing
the size of the searched database. This filtering might in-
volve classification based on general ridge pattern, but
also includes demographic filtering based on such fac-
tors as age, race, and geographic location.

The work reported here addresses the requirements of
a noncriminal identification application. The challenges
for this application are to support the large throughput
required for enrollment of a large population over a lim-
ited period of time and to minimize the time that a clerk
must spend investigating ambiguous cases. In addition,
to simplify the enrollment process and minimize storage
requirements, the system must achieve acceptable per-
formance with as few fingerprint impressions from each
individual as possible. Commonly, imprints are taken only
of the two index fingers.

Large-scale social service or national identity registry
applications require searches of databases containing im-
prints from a large fraction of the total population of a
state or country. An understanding of the systematic
changes in the error rates of a fingerprint identification
system relative to database size helps build the frame-
work for extrapolating measurements from small bench-
marking or sample databases. Criminal justice finger-
print systems are not characterized in a manner that
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allows extrapolation of measured performance
data to large database sizes. In particular, they
focus on characterization in terms of the fre-
quency with which the correct result appears in
the top-ranked position or in the top 10 posi-
tions, metrics which are useful for comparing
results achieved on a particular database but
which are ill-suited for making estimates of the
identification error rates on larger databases.
The existing American National Standards In-
stitute (ANSI) and International Association for
Identification (IAI) standard1 for the bench-
marking of fingerprint identification systems fo-
cuses on criminal justice applications and on the
relative performance of competing systems.

Flash and geometric hashing
The straightforward approach to searching a

large database is to scan the entire database and
to compare the query against each reference
model. The increased efficiencies obtained from
generating index tables to speed access are well
known in the database community.2 An index
can be formed from a subset of the feature
points in a model instance or from the genera-
tion of multiple indices for a single model in-
stance from subsets that redundantly include
feature points. The indexing scheme allows re-
trieval of models that differ from the query by
one or more feature points. Redundant index-
ing schemes in computer vision applications, the
earliest example of which is geometric hashing,3

are robust in the presence of partial occlusion.
The Flash algorithm4 uses a higher dimen-

sional indexing scheme than geometric hashing
by adding invariant properties of the feature
subset to the index. Scalar properties such as
color might be appropriate in some vision ap-
plications, while in fingerprint recognition the
relationship of the chosen subset of features to
the local ridge pattern provides additional dis-
tinguishing power. The second stage of the
Flash algorithm uses transformation parameter
clustering to accumulate evidence.5

Object instances are represented by a collec-
tion of feature points, which might be points of
maximum curvature in a vision application,
minutiae in a fingerprint application, or an
ASCII character in a string-matching applica-
tion. When adding a model to the database, in-
variant information computed from each subset
of feature points forms a key or index. The key
labels an entry that is added to a multimap or
bag,2 a variant form of associative memory  per-

mitting more than one entry to be stored with
the same key value. This entry minimally con-
tains the identifier of the model that generated
the key and information concerning the feature
subset, as shown in Figure 1.

When servicing a query, each key generated
by the query object instance is used to retrieve
any items in the multimap that are stored under
the same key. Each item retrieved represents a
hypothesized match between subsets of features
in the query object instance and the reference
model instance that created the item stored in
the multimap. This hypothesized match is la-
beled by the reference model identifier and, pos-
sibly, by parameters characterizing the geomet-
ric transformation bringing the two subsets of
features into closest correspondence.

Votes for these hypothesized matches accu-
mulate in another associative memory structure,
keyed by the model fingerprint identifier and
the transformation parameters as shown in Fig-
ure 2. This structure—a map or keyed set—
serves as a container that permits a single item to
be stored under a given key. With the construc-
tion of each hypothesis, the program checks to
see if a hypothesis with the same label already
exists in the hypothesis table (map container). If
the hypothesis already exists, the score of the ex-
isting entry updates appropriately. If the hy-
pothesis does not exist, a new entry is added to

.
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Figure 1. The extracted features from each finger-
print are used to generate keys or indices. For each
key generated, an entry is added to the multimap
data structure. For example, fingerprint Φ gener-
ates keys k and l, fingerprint Γ generates key l, and
fingerprint ζ generates keys k and m.
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the hypothesis table with its score set to an ini-
tial value. Finally, a sorted list of hypotheses
whose scores exceed some threshold can be used
to determine whether either a match to the
query object instance exists in the database or as
input to another stage of matching machinery.

If a globally parameterizable transformation
can be computed from each set of local feature
correspondences, then when a good match exists,
many of the local feature subset correspondences
located during the index lookup phase will gen-
erate the same parameters for the geometric
transformation and accumulate a large number
of votes for that hypothesized match. Examples
of globally parameterizable transformations in-
clude affine, similarity, or rigid transformations
in one, two, or three dimensions. The computa-
tion of transformation parameters and the accu-
mulation of evidence in bins or cells that span a
range of values for these parameters are instances
of the pose-clustering technique.6 It is only nec-
essary to compute transformations or relative
poses for pairs of corresponding feature subsets
that are mapped to the same invariant index, per-
mitting parallel accumulation of evidence at a fine
granularity.7 Verification of consistency in the
correspondence of different local feature sets is
implicit in the evidence accumulation process;
large numbers of consistent relative poses are
only generated when the relative positions of
many local feature sets are consistent in both the
query and model object instances.

Application to fingerprint matching
In the fingerprint application, the class of trans-

formations that connects different object in-
stances is assumed to be that of two-dimensional
distance preserving (rigid) transformations. A
least-squares estimation methodology is used to
solve the overconstrained pose estimation prob-
lem for each hypothesized local correspondence
generated by the index lookup process.

Data abstraction and index generation
Both automatic and manual fingerprint

recognition schemes use the feature points de-
termined by singularities in the finger ridge pat-
tern. Unlike the general shape recognition
problem,5 in fingerprint matching the singular-
ities in the ridge pattern known as minutiae pro-
vide a natural choice for feature points. These
features, which consist of points where a ridge
either ends or splits into two ridges, form the
basis of most fingerprint matching applications.

.
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Figure 3. An example of a minutia point in a fin-
gerprint. The X, Y coordinates provide the
location of the minutia in the reference frame of
the print, while θ is the angle that the ridge
makes with respect to the X-axis of the reference
frame. With the appropriate convention for
choosing this direction, θ has an unambiguous
value in the range of [0,2π) radians.
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A triplet of numbers (X, Y, θ) represent each fea-
ture point, as shown in Figure 3. A typical “dab”
impression has approximately 40 minutiae that
are recognized by the feature extraction soft-
ware, but the number of minutiae varies from
zero to over 100 depending on the finger mor-
phology and imaging conditions. Not all of
these minutiae are reproducible from imprint to
imprint, so redundancy in the combinatorial in-
dex formation process is essential.

The Flash matcher uses one additional piece
of information. Part of the output of the feature
extraction process is a skeletonized version of the
ridge pattern on the finger. If a line is drawn be-
tween each pair of minutiae, the number of ridges
crossed by this line can be counted, as shown in
Figure 4. This ridge-counting procedure repeats
for each pair of minutiae in the fingerprint, and
the results become part of the Flash index.

The Flash algorithm uses redundant combi-
nations of three feature points when forming in-
dices. This gives some immunity against noise
(insertions and deletions of feature points) and
provides more uniquely descriptive information
than is available from a single feature point. An
exhaustive listing of the possible combinations
of three feature points requires

entries, where n is the number of minutiae. To
keep the number of indices generated within
bounds, the algorithm restricts the “acceptable”
combinations of feature points used to form an
index; it only uses triplets for which the dis-
tances separating each pair of points fall into the
specified range.

Even the restriction on pairwise separations
does not prevent large variations in the number
of indices generated by different fingerprints.
To guarantee a relatively constant number of in-
dices generated, the algorithm uses a determin-
istic selection process to select a sampling of
those indices whose generating triangles satisfy
the imposed side length constraints.

The search engine requires the generation of
indices used for table lookup that are simulta-
neously descriptive of the objects stored in the
database and invariant under the transforma-
tions to which an object might be subjected.
Each component of the index is invariant under
rotations and translations.

While the model used here assumes that
mated fingerprint impressions might be mapped

onto each other by a rigid transformation, the
realities of the imaging and feature extraction
process are such that some uncertainty is associ-
ated with the minutia coordinates. The imple-
mentation of the Flash algorithm requires that
the index take on discrete values; hence, some
binning mechanism must be used. The bin size
allows appropriate tolerance for irreproducibil-
ity in minutiae positions.

A reproducible choice for the ordering of the
sides is made by traversing the triangle in a con-
sistent sense (clockwise in this implementation),
as shown in Figure 5. This procedure is invari-
ant under rotations and translations, but not un-
der reflection. The full index consists of nine
components: the length of each side, the ridge
count between each pair, and the angles mea-
sured with respect to the fiducial side. Si are the
lengths of the three sides. θi are the minutiae an-
gles encoded in a transformation-invariant fash-
ion. RCi are the number of ridges crossed by a
line connecting a pair of minutiae.

Accumulating evidence
The index generated by the Flash framework

serves as the key to identifying triangles that “re-
semble” one another. During the storage phase,
each index generated by a fingerprint causes the
storage of a data object containing the identity of
the fingerprint and information concerning the
triplet of feature points that generated the index.

During the query phase, each index generated
by the query fingerprint is used to retrieve all model
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Figure 4. Triplet of minutiae on skeletonized im-
age of a fingerprint, with the direction of ridges
at minutiae (minutiae angles) shown.
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objects stored in the table that
are labeled with the same index.
Each of these retrieved model
objects represents a hypothesized
correspondence between three
points in the query print and
three in the model print. Given
this correspondence, the coordi-
nate transformation that best
maps the query triplet onto the
model triplet is computed. The
algorithm that computes the co-
ordinate transformation does so
in a way that minimizes the sum
of the squared distances between
the transformed query points
and their corresponding model
points. The essentials of the re-
trieval procedure are outlined
in Figure 6.

The computed transforma-
tion parameters, X and Y
translation and rotation θ, are
binned and, along with the
reference fingerprint ID, form
a key that indexes the map
(keyed set) used for evidence
accumulation, as shown in
Figure 2.

If a large number of feature
points can be brought into cor-
respondence by a rigid trans-
formation of the coordinate
system, all of the indices gen-
erated by the combinations of
three feature points belonging
to this set generate the same
coordinate transformation pa-
rameters. Hence a large num-
ber of votes for a correct match
are tabulated. There might be
a number of random corre-
spondences between triplets of
points in the query print and
some arbitrary reference print,
but the likelihood of a number
of consistent transformation
parameters being generated by

such random correspondences is quite small.
After the system generates all of the indices

from the query fingerprint and computes all of
the relevant hypotheses, it sorts by score the en-
tries in the hypothesis table exceeding some
threshold. This ranked list of scores can be pro-
vided in response to the original query or used

in other decision-making machinery that might
combine the results from queries using imprints
taken from additional fingers.

Accuracy issues
Consider the problem of determining

whether or not two fingerprints were made by
the same finger (verification). This problem
amounts to assigning the pair to either the
mated or nonmated pair populations while
making the smallest number of mistakes in a
large number of trials. This problem has a long
history8 in statistical decision making. Where
one of two mutually exclusive hypotheses, H0
and H1, must be selected, two classes of errors
can be made. Suppose that H0 is the hypothesis
that the prints belong to the nonmated popu-
lation and that H1 is the hypothesis that the
prints belong to the mated population. Four
scenarios are possible:

♦ H0 is true, and test says H0 is true
♦ H0 is false, but test says H0 is true
♦ H1 is true, and test says H1 is true
♦ H1 is false, but test says H1 is true

The test breaks down in two of the four sce-
narios. Two distinct types of errors can be made:
a false negative or miss, in which a mated pair is
incorrectly assigned to the nonmated popula-
tion; and false positive or false alarm, in which a
nonmated pair is incorrectly assigned to the
mated population.

The number of matching triangles that gen-
erate a consistent rigid transformation between
two prints serves as the basis for assigning pairs
of fingerprints to the mated or nonmated pair
population. Histograms of the scores achieved
by the matcher on the two test populations can
be used as estimates for the conditional proba-
bility densities of the score, fmated(x) and
fnonmated(x). It is natural to use a threshold xth to
assign a pair of imprints to one of the two possi-
ble populations. Any pair whose score exceeds
xth is assigned to the mated pair population, and
other pairs are assigned to the nonmated pair
population. There is a trade-off between the
false-positive error rate (FPR) and the false-neg-
ative error rate (FNR). The FNR can be reduced
to an arbitrarily small value by decreasing xth suf-
ficiently, but a large number of false alarms re-
sults in a corresponding increase in the FPR.

With this decision criterion, it is straightfor-
ward to determine the two error rates from the

.
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Figure 5. Geometry of an
ordered triangle without the
background of a fingerprint.
The sides (with lengths Si) are
ordered so that the largest side
appears first, and successive
sides proceed in a defined
orientation—for example, clock-
wise. The order of the ridge
counts (the number of ridges
crossed by a line connecting a
pair of minutiae), the minutiae,
and the minutia angles θi is the
same as that of the sides, with
the first being in a well-defined
orientation (for example, the
most counterclockwise point)
with respect to the first side.
Thus the ordering of the sides
enables unambiguous
expression of the other essential
quantities.
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conditional probability densities computed from
the test populations. The error rate for incor-
rectly assigning a mated pair to the nonmated
population (FPR) is given by this distribution
function:

.

Similarly, the error rate for incorrectly assigning
a nonmated pair to the mated pair population
(FNR) is given by the following function of the
conditional probability distribution function:

.

Insofar as the mated and nonmated pair test
populations form representative samples of real
populations, the estimates can be used to ex-
trapolate behavior in real populations. The mea-
sured accuracy of a matcher is a strong function
of the database from which estimates of the er-
ror rates are derived. Indeed, the variation of the
FNR with threshold depends on the care with
which fingerprint images were acquired. These
estimates of the error rates are independent of
the size of the test database used, although the
uncertainties in the estimates depend on the
sizes of the sample pair populations.

Consider a one-to-many identification query,
which might be viewed as a series of one-to-one
verifications executed against every print in the
database. The candidate list of hypothesized
matches is formed by taking all prints from the
reference database whose verification-matching
scores with the query print exceed some fixed
threshold. Assuming the presence of at most one
mate to the query, the FPR and the FNR for an
identification search against a database of N in-
dividuals are as follows:

The FPR increases drastically with database
size because each additional entry in the database
provides another opportunity to randomly
achieve a high score. A matcher operating with a
false positive verification rate of 1 percent might
be satisfactory in a verification application, but in
even a small-scale identification application the
error rate becomes unacceptable. For example,

when used on a 10-person database, this matcher
generates false matches at a rate of 1 − 0.9910 or
9.5 percent. On a 100-person database, this
matcher’s FPR becomes 1 − 0.99100 or 63 percent.
Figure 7 shows the extrapolated FPR versus pop-
ulation size for a variety of one-to-one error rates.
To keep the FPR within reasonable bounds for
large population sizes, a matcher must operate
with an FPR in the range of 10−9 – 10−6. Model-
independent estimates of false-positive error rates
in this range require a correspondingly large
sample population of mismatched pairs of prints.
Because of the trade-off between FPR and FNR,
the need to operate at very small values of the
false-positive rate in identification applications
might lead to unacceptable miss rates when us-
ing a single finger. The system miss rate can be
reduced dramatically by executing searches using
two different query fingers and considering a
match on either finger to be a hit while causing
a modest increase in the FPR.
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Extract feature points (minutiae)
from query fingerprint data

For each eligible index/key
generated by the query fingerprint

For each data item contained in the
multimap that is labeled by this index/key

Retrieve the data item
from the multimap

Construct a label or
key for this hypothesis

Use the retrieved data and the query
fingerprint data to construct a

hypothesized match between the query
and reference fingerprints

End of FOR loop over data items

End of FOR loop over indices/keys

Does a key corresponding to this
hypothesis already exist in hypothesis table?

Update score
of existing entry

Create new entry
and initialize score

Yes No

Figure 6. A broad outline of the main portion of
the query phase. Hypothesis key construction in-
volves estimating the rigid transformation para-
meters, rotation and translation, using the
hypothesized correspondence between triplets of
minutiae in the query and the model fingerprint. 
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Results
Two important aspects of the matching engine

are accuracy and speed (see Figures 8 and 9).
To characterize system accuracy, we con-

structed a reference database of model prints
from 97,492 inked dab images acquired in 1995.
These were processed by the feature extraction
code developed by the Exploratory Computer
Vision Group at the IBM Thomas J. Watson
Research Center.  We executed  657 queries
against this database. The query set of prints was
a subset of the 97,492 models. Conceptually, we
made 657 × 97,492 comparisons of pairs. These

pairs can be divided into three groups:

♦ identical fingerprints (657 pairs)
♦ different impressions of the same finger

(768 pairs)
♦ impressions of different fingers (64,050,819

pairs)

The pairs in the first group are excluded from
the analysis of results because they represent an
experimental artifact. There are 768 pairs in the
second group because some query prints had two
or even three mates in the reference database.

The distributed Flash algorithm as imple-
mented for fingerprint matching requires

a few thousand I/O operations to look up the in-
dices generated by each query. These I/O oper-
ations can be spread over a large number of disks
to keep down the elapsed time. With 32 disks
distributed over an 8-node IBM SP2 system, the
incremental addition to the average query time
caused by an additional print in the database is
approximately 7 microseconds, as shown in Fig-
ure 9. Thus, the system configuration used for
these trials could search a database of 10 million
prints in approximately 70 seconds. Additional
experiments indicate that the load balancing of

.
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Figure 7. Extrapolated false-positive error rates
plotted versus population size for a series of veri-
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Figure 8. False positive error rate (FPR) versus false
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decision thresholds. The error bars represent the
90-percent confidence intervals for the estimates of
the corresponding error rates obtained from this
set of experiments. This presentation is similar to
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Figure 9. Average query times for databases of
varous sizes: 13,726, 26,317, 50,047, and 97,492
entries. Each point represents an average of 657
queries, and the line is a least-squares fit to the
data. No front-end filtering was used in these tests;
each data point represents a similarity search of
the entire database. The hardware and software
configuration used for each test was the same. The
nonzero intercept is a consequence of the require-
ment for doing index lookups. In this series of runs,
32 disks were used to spread the I/O burden.
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the I/O is such that disk parallelism can be used
effectively to reduce the I/O contribution to the
query time. Identification searches of very large
databases of fingerprints without prefiltering are
thus possible through indexing subsets of fea-
tures on the fingerprints.

The work described here was completed in
mid-1996. Research and development into re-
finements of the technology, including tests on
larger databases, is continuing in collaboration
with IBM Hursley (UK) Laboratories. No in-
ferences concerning the current state of tech-
nology resulting from continued research and
development for commercial application should
be drawn from this article. ♦
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