Edge detection

(Trucco, Chapt 4 AND Jain et al., Chapt 5)
* Definition of edges
- Edges are significant local changes of intensity in an image.

- Edges typically occur on the boundary betweea tifferent rgions in an image.

» Goal of edge detection
- Produce a line dmaing of a scene from an image of that scene.

- Important features can bateacted from the edges of an image (e.g., corners,
lines, cures).

- These features are used by higlegel computer vision algorithms (e.g., recogni-
tion).




-2-
* What causes intensity changes?

- Various plysical events cause intensity changes.

- Geometric gents
* object boundary (discontinuity in depth and/or aad color and teure)

* surface boundary (discontinuity in sade orientation and/or sade color
and texture)

- Non-geometric wents
* specularity (direct reflection of light, such as a mirror)
* shadavs (from other objects or from the same object)
* I nterreflections

» Edge descriptors

Edge normal: unit vector in the direction of maximum intensity change.
Edge direction: unit vector to perpendicular to the edge normal.

Edge position or center: the image position at which the edge is located.
Edge strength: related to the local image contrast along the normal.
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* Modeling intensity changes
- Edges can be modeled according to their intensity profiles.

Step edge: the image intensity abruptly changes from oaki@ to one side of the
discontinuity to a dferent \alue on the opposite side.

il noisy

o |W

—‘ll M/v""‘,

AP At

i et

Ramp edge: a 4dep edge where the intensity change is not instantanebwsdur
ove a finite distance.

Ridge edge: the image intensity abruptly changeslue lut then returns to the
starting \alue within some short distance (generated usually by lines).
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Roof edge: a ridge edge where the intensity change is not instantanebwsdur
ove a finite distance (generated usually by the intersection cdisesj.

(c)

» The four steps of edge detection

(1) Smoothing: suppress as much noise as possible, without gasjrohe true
edges.

(2) Enhancement: apply a filter to enhance the quality of the edges in the image
(sharpening).

(3) Detection: determine which edge ms should be discarded as noise and
which should be retained (usuallyresholding preides the criterion used for
detection).

(4) Localization: determine theact location of an edgesifb-pixelresolution

might be required for some applications, that is, estimate the location of an edge to
better than the spacing betweenetsy. Edge thinning and linking are usually
required in this step.
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» Edge detection using dewatives

- Calculus describes changes of continuous functions dengatives

- An image is a 2D function, so operators describing edgesxpressed using
partial derivatives

- Points which lie on an edge can be detected by:
(1) detecting local maxima or minima of the first datrve

(2) detecting the zero-crossing of the second/dire
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* Differ encing 1D Signa|$see also fucco, Appendix A.2)

- To compute the devetive d a 9gnal, we approximate the dedtive by finite dif-
ferences:

Computing the 1st derivative:

f(x) = im fx+ hr)]— f(x)

~ f(x+1)- f(x) (h=1)

mask: [-1 1]

- Examples using the edge models and the rhask 0 1] (centered aboutx):

mask M = [-1,0,1]

(5] F TPl W] d]
(S elM] O UL O 9 9112] 0 0] 07 0

(a) S) is an upward step edge

[S:] [ T24[24[24[24[ 24 12121212 ]12]
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(b) Sa is a downward step edge
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(c) Sz is an upward ramp
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Computing the 2nd derivative:

f/(x +h) - ()
h

f''(x) = lim = f'(x+1)- f'(x) =
h->0
f(x+2)-2f(x+1)+ f(x) (h=1)
- This approximation isentered aboutx + 1; by replacingk + 1 by x we obtain:

frx) = f(x+1)-2f(x)+ f(x—1)

mask: [1 -2 1]

20,20, 20,20 f(x)

T

0 Ol 0/10/0|0 0 f’(X) =f(X+1)'f(X) (approximates f'() at x+1/2)
0O 0 010-10 0 O f(x) = f(x-1)-2f(x)+f(x+1) (approximates f'() atx)

~

zero-crossing

- Examples using the edge models:

mask M = [-1,2,-1]

S 121121212 12J24J24J24 24 [ 24]
Sile[M ool o] of-12]J12] o 0 0] 0]

(a) S is an upward step edge

(S B N e e R R REE
|S2 [@ [MT OJ 0T 0J OJI2]-12T O[ O] O] 0]

(b) S5 is a downward step edge

Fal o 12]12[12]12]1I6 [ 1821 [24 [ 24 [ 24
| Bmje MI 0] 01 013 DO O] 31 07 ¢

(¢) Ss 1s an upward ramp

[Sa] 1212127 1224 12[12] 1212 [12]
(Sa]o[MJ O] 0T 0J-12T24[-12] 0] 0] 0] 0]
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Edge detection using the gradient

* Definition of the gradient

- The gradient is aector which has certain magnitude and direction:
09f o
nf =09% O

0of o
Ogy O

o —.of —— e —
magr(0f) = (507 + (G, 7 = VWGZ 7,

dir (Of) = tarr " (My/My)

- To save computations, the magnitude of gradient is usually approxi-
mated by:

magr(If) = [My| + [My|
 Properties of the gradient
- The magnitude of gradient pides information about the strength of the edge.

- The direction of gradient is\aéys perpendicular to the direction of the edge (the
edge direction is rotated with respect to the gradient direction by e98as).
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 Estimating the gradient with finite differences

of . f(x+hy)-1f(xy)
— = |im

0X h—>0 h

of _ . fOuy+h)-f(xy)
dy h—>0 h

- The gradient can be approximatedfinyte diferences

of _ f(x+hyy)=-f(xy)_ _ -
v h, =f(x+1,y) - f(x,y), (hx=1)

af f(x,y+hy)-f(x,y)
oy = rTy =f(x,y+1) - f(x,y), (hy=1)

- Using pixel-coordinate notatiomrémember: j corresponds to the direction and
| to the ngative y direction):

x-h X x+h

y+h
y l—’
y-h

ﬂ
0X

=f0, ]+ - 10, ))

af_._._..ﬁ_.._. :
— =f(i-1,j)) f(|,J)oray =f@,))-f(i+1,))

ay
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Example

Suppose we ant to approximate the gradient magnitudesat

Z1| Z2 | Z3
Z4 | Z5 | Z6
Z7 | Z8 | 29
ol — ol —

magr(dl) = V(zs — z5)? + (25 — 25)?

(note M, is the approximation (qti,(i'/-lz- 1/)%) and M, is the approximation at
I +1/2,]
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* The Roberts edge detector

%: f@,))-f@i+1,j+1)

of
ay =f@i+1,))-f(@,)+1)
- This approximation can be implemented by the g masks:

X

(note M, andM, are is approximations at+< 1/2, j + 1/2))

» The Prewitt edge detector

- Consider the arrangement of pig about the p&d (, j):

Q@ a &
ay [i,j] a3
Qs dg A

- The partial dexiatives can be computed by:

M, = (ay +cag + ay) — (ag + cay + ag)
My = (ag + Cag +a4) — (ap + cay + ay)

- The constant implies the emphasis\@n to pixels closer to the center of the
mask.

- Settingc = 1, we get the Pratt operator:

1 0 10 -1 -1 -10
My D1 0 1D My |]O 0 OD
ml1 0 1 nl 1 1

(note M, andM, are approximations at, (j))
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* The Sobel edge detector

- Settingc = 2, we get the Sobel operator:

1 0 10O +1 -2 -10
—[L U] — [ []
M DZ 0 2|:| |\/|y |:|O 0 OD
1 0 1 nl 2 1

(note M, andM, are approximations at, (j))

» Main steps in edge detection using masks

(1) Smooth the input imagd (x, y) = f(x, ) * G(X, Y))
(2) f = T4 ¥) * My(x,Y)
(3) fy = F(x,y) * My(x,)
(4) magr(x, y) = [f,| +|f|

(5) dir(x, y) = tar*(f,/f,)

(6) If magr(x,y) > T, then possible edge point

| £ =((38-12)/2 + (66-15)/2

higher intensities . +(65-42)/2)/3
c =(13+25+11)/3=16
f vf
\ y /:‘ f, = ((65-38)/2 + (64-14)2
Y i
BV +(42-12)2)/3
o 38 | 6P /ﬁ‘/ e =(13+25+15)/3=18
lower o 1
; it . {1 - - >
y . intensities \¥ % ¢ :
v-1 12 | 155 42 o 0 = tan (16/18)=0.727 rad
; = 42 degrees

|19t ] = (1€ + 18)% 24

x-1 x  x+1

(an xample using the Pwnett edge detector - dondivide by 2)
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Figure 5.4: A comparison of various edge detectors, (a) Original image. (b)
Filternd image. (¢) Simple gradicut using 1 x 2 and 2 x 1 masks, T = 32.
(d) Gradient using 2 x 2 masks, T = 64. (2) Roberts cross operator, 1 = 64.
(f)} Sobel operator, T = 225. (g) Prewilt operator, T = 225.

(with noise filtering)
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Figure 5.5: A comparison of various edge detectors without filtering. (a)
(riginal image. (b) Simple gradient using 1 x 2 and 2 x 1 masks, T = 64.
(c) Gradient using 2 x 2 masks, T = 64. (d} Boberts eross operator, T = 64.
(e) Sobel operator, T' = 225, () Prewitt operator, T = 225.

(without noise filtering)
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* Isotropic property of gradient magnitude

- The magnitude of gradient is asotropical operator (it detects edges inyan
direction !

o
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» Some practical issues
- The diferential masks act as high-pass filters which tend to amplify noise.

- To reduce the ékcts of noise, the image needs to be smoothed first witw-a lo
pass filter

(1) The noise suppression-localization traftemfar ger filter reduces noiseub
worsens localization (i.e., it adds uncertainty to the location of the edge) and vice
versa.

- (2) How should we choose the threshold?
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- (3) Edge thinning and linking are required to obtain good contours.

» Criteria f or optimal edge detection

(1) Good detection: the optimal detector must minimize the probability aisé
positives (detecting spurious edges caused by noise), as well as ttas®ihi-
atives (missing real edges).

(2) Good localization: the edges detected must be as close as possible to the true
edges.

Single response constraint: the detector must return one point only for each true
edge point; that is, minimize the number of local maxima around the true edge
(created by noise).
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The Canny edge detector

- This is probably the most widely used edge detector in computer vision.

- Canry has shwn that the first devetive d the Gaussian closely approximates
the operator that optimizes the producsiginal-to-noiseatio and localization.

- His analysis is based on "step-edges" corrupted by "aeld#Eussian noise".

55 Gausskan g{x) with mean 0 and slandard devialion 2 0 l;iml derivative of Gaussian with mean 0 and standard deviation 2
Y, Qi s davdtiscnk Srebu sl Y X : 3

02 ; 7N 005 // "\\
a: ‘/f : \\,\. .,__./’./ - _‘\\. i
w: Reean / \\,,_ —i 005 \‘~\< // /
Algorithm
1. Compute f, and f,
0 0
fo=—(f* =f* — =f*
X ox (126) ox G Cx
0 0
fp=—(f*Q)=f* —G=1*G
Y ay( ) dy Y

G(x, y) is the Gaussian function
Gy (X, y) is the devate of G(X, y) with respect tox: G, (X, Y) = ;—); G(x,Y)
Gy(X,y) is the dewvate of G(x, y) with respect toy: Gy(X,y) = ;—)2/ G(x,Y)
2. Compute the gradient magnitude
magri, j) = 1,7+ 1,2

3. Apply non-maxima suppression.

4. Apply hysteresis thresholding/edge linking.
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* Non-maxima suppression

- To find the edge points, we need to find the local maxima of the gradient magni-
tude.

- Broad ridges must be thinned so that only the magnitudes at the points of greatest
local change remain.

- All values along the direction of the gradient that are not palalew of a ridge

are suppressed.
/ magn(il,j1)

55 6(6)4 5 7
10121614101113

443(3)K 25
(' \‘ magn(i2,j2)

direction of
gradient

magn(i,j)

Algorithm
For each piel (x,y) do:

if magr(i, j) < magr(iy, j;) or magri, j) < magriz, j2)
thenly(i, j) =0

elsel (i, j) = magr(, j)
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» Hysteresis thresholding/Edge Linking

- The output of non-maxima suppression still contains the local maxima created by
noise.

- Can we get rid of them just by using a single threshold?
*1f we st a lav threshold, some noisy maxima will be accepted too.

* 1f we ®t a high threshold, true maxima might be missed (#hgevof true
maxima will fluctuate abae and belav the threshold, fragmenting the edge).

- A more efective £heme is to use mwthresholds:
* a low thresholdt,
* a high thresholdy,

*usually, t,, = 2t

Algorithm
1. Produce tw thresholded imagés (i, j) and 1(i, j).

(note: sincd (i, j) was formed with a high threshold, it will containvir false
edges bt there might beaps in the contours)

2. Link the edges ihy(i, |) into contours
2.1 Look inl4(i, j) when a @p is found.

2.2 By examining the 8 neighbors in(i, j), gather edge points from(i, j)
until the gap has been bridged to an edgé(m, j).

- The algorithm performs edge linking as a by-product of double-thresholding !
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(Canry - 7x7 Gaussian, more details)
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(Canry - 31x31 Gaussian, less details)
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Edge detection using the second demative

- Edge points can be detected by finding the zero-crossings of the second

dervative.
! :
f(xy) J—
X
/'\ threshold
£ 1
a b P
f”(x,y)
— At B

- There are tw operators in 2D that correspond to the second/atere:

* L aplacian
* Second directional derstive

* The Laplacian
0*f  9°f
+ —
ox2  0y?
- Approximating? f ;

az_f:f(i | +1)-2f(@, )+ f(,]-1)
0x2 '] ) .

o°f _ fli+1,))-2f@, j)+ f(i-1,])
ay? . . !

O2f =—4f(@, )+ @, j+1)+ (i, -1+ fi+1,))+fi-1,])



Example:

Z1

Z2

Z3

Z4

Z5

Z6

Z7

Z8

Z9
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sz =_4Z5+(22+Z4+26+Z8)

- The Laplacian can be implemented using the maskrsihelov:

0

1

0

Example:

2lol b IS 1D
51555156138
515 |10]10]10] 10
51510 ( 10| 10 | 10
5155 |10]10] 10
515|515 10]10

0f-5]-5]-

5] 1015 |5
- | 10| 010
0 [-10]10] 0O
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 Properties of the Laplacian

- Itis an isotropic operator

- It is dheaper to implement (one mask only).

- It does not preide information about edge direction.

- It is more sensitie © noise (diferentiates twice).

» The Laplacian-of-Gaussian (LOG)
- To reduce the noisefett, the image is first smoothed with alpass filter

- In the case of the LOG, thewepass filter is chosen to be a Gaussian.

X2+y2

G(x,y)=e 2%
(o determines the dgee of smoothing, mask size increases wijth

- It can be shan that:

O?LF(x, ) * G(x, W] = 0?G(x, ) * f(x,Y)

2 r?-o? 12262 2 _ 2, 2
PG, Y) = ()T (2 =X+ yP)
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k

Laplacian of Ganssian ma
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% 17 Laplacian of Ganssian mask
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» Gradient vs LOG: a comparison

- Gradient vorks well when the image contains sharp intensity transitions and lo
noise

- Zero-crossings of LOG ftdr better localization, especially when the edges are
not very sharp

o ] P R T
212[2[2]2[8|8][8[8][8]
[2]2]2]2]2[8][8]8]8]3]
2222288 [8[8]3
2 P E |
2(2]2]2]2[8[8]8]8]8

A sample image containing a vertical step edge.

[0 0 0 6[-6 0 0 O
0 0 0 6(|-6 0 0 0
G 00 6|-6 0 0 0
00 0 6)-6 0200

B e e e e (e e e e s
T e e e e R R (N ER
SRR R
TE fe e | B s
e R e e e R e
R R

A sample image containing a vertical ramp edge.

B T
[0 00 3|0 =30
0, 0000 30 =30
00,000,00 3| 0} =30 0
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» The second diectional derivative
- This is the second degtive computed in the direction of the gradient.

P fifec+ 2 fy T+ 171y
on2 f212

» Multiscale processing (scale space)

- A serious practical problem with gredge detector is the matter of choosing the
scaleof smoothing (e.g.,thealue ofo using a Gaussian).

- For mary applications, it is desirable to be able to process an image at multiple
scales.

- We cdetermine which edges are most significant in terms of the range of scales
ove which they are obsered to occur
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(Canry edges at multiple scales of smoothieg;0.5, 1, 2, 4, 8, 16)



