Line detection

- The masks shown below can be used to detect lines at various orientations

-1	-1	-1			
2	2	2			
-1	-1	-1			
н	orizont	al			

 \equiv

=

horizontal line

0	0	0	0	
1	1	1	1	
0	0	0	0	-

mask -1 -1 -1 2 2 2 -1 -1 -1

vertical li

0	0	1	0	
0	0	1	0	
0	0	1	0	

convolved image

_	-	-	_
-	6	6	_
_	_	-	-

convolved image

_	_	_	-
-	0	0	_
-	_	_	-

- In practice, we run every mask over the image and we combine the responses:

 $R(x, y) = max(|R_1(x, y)|, |R_2(x, y)|, |R_3(x, y)|, |R_4(x, y)|)$

Using Hough Transform to detect lines

(Trucco, Chapt. 5)

- Consider the slope-intercept equation of line

$$y = ax + b$$
,

(*a*, *b* are constants, *x* is a variable, *y* is a function of *x*)

- Rewrite the equation as follows:

$$b = -xa + y$$

(now, x, y are constants, a is a variable, b is a function of a)

- The following properties are true:

Each point (x_i, y_i) defines a line in the a - b space (parameter space)

Points lying on the same line in the x - y space, define lines in the parameter space which all intersect at the same point

The coordinates of the point of intersection define the parameters of the line in the x - y space

Algorithm

(If $P[a_j][b_k]$ =M, then *M* points lie on the line $y = a_j x + b_k$)

• Effects of quantization

- The parameters of a line can be estimated more accurately using a finer quantization of the parameter space

- Finer quantization increases space and time requirements
- For noise tolerance, however, a coarser quantization is better

(it is very likely that every point will cast a vote in the (a', b') cell)

• Problem with slope-intercept equation

- The slope can become very large or even infinity !!
- It will be impossible to quantize such a large space

• Polar representation of lines

 $x\cos\theta + y\sin\theta = \rho$ (if the line is vertical, $\theta = 0, x = \rho$)

- The following properties are true:

Each point (x_i, y_i) defines a sinusoidal curve in the $\rho - \theta$ space (parameter space)

Points lying on the same line in the x - y space, define curves in the parameter space which all intersect at the same point

The coordinates of the point of intersection define the parameters of the line in the x - y space

Algorithm

								2		-85									
3	80						1	2		-83									
1	-						4	4		-81									
9	and and		2				6	5		-79			3	1					
7				2			8	4	2	-77			1	3					
5							6	6	2	-75									
3							4	3	3	-73									
1		2		1		1	4	2	3	-71		2							
9	1		1	4		12	4	3	5	-69		2							
7			3		2	14	2	3	4	-67				-					
5			1			11	1	2	4	-65		1.1	1	2					
3					5	2		2	4	-63		1			-				
1						1		3	9	-61 0	2								
,	4	1			п	9	1	8	12	-39			-				1		2
7	4	3		3	10	12	3	10	13	-51 0	2	10	6			ĩ	i		4
5	9	5		4	2	+	2	11	12	-33 0		11	12		18	4	i		6
3	6	6		4	10			10	0	-33 60	à	15	11		15	16			6
1	4	.9		4	20	-		13	0	-10 12	?	18		62	15	23	1	1	5
9	3	0		-	10	-	13	10	10	-47 110		16	ii	22	14	16	21	9	5
7	18	4		*		-	11	6	8	-45 7	,	17	11	II	16	18	(1)	21	6
2	1.	10	21	4		1	12	10	8	-43 8		12	14	10	13	17	12	17	6
5	10	10	21	15		25	18	7	8	-41 6	s	7	14	11	14	14	7	19	12
1	18	20	21	11		22	11	11	7	-39 7	1	10	9	8	12	8	11	20	23
7	112	17	22	17		9	10	9	10	-37 7	7	7	14	8	17	9	12	18	24
Ś	18	14	17	17	38	8	7	9	6	-35 8	1	9	17	8	10	7	10	23	23
1	37	16	22	21	(1)	- 10	5	9	9	-33 6	5	12	15	8	12	9	11	22	26
1	35	11	21	23	23	8	11	9	10	-31 5	5	9	19	9	8	11	16	18	15
>	13	18	18	23	20	14	13	9	9	-29 9)	10	12	9	8	9	18	18	15
7	17	16	12	30	20	20	7	9	6	-27 7	7	12	10	8	6	9	18	19	19
5	7	18	12	32	19	27	8	7	8 1	-25 5	s	10	8	8	7	7	22	9	14
3	8	12	11	20	17	(52)	11	6	7	-23 6	5	11	9	9	6	11	19	12	
1	7	17	12	23	8	n	15	11	10	-21 7	7	15	9	7	10	10	10	10	10
9	9	14	12	16	7	7	14	6	7	-19		13	8	10	9		10	14	13
7	9	12	12	16	6	9	16	12	7	-17		17	10	15		13	10	14	9
5	8	13	13	11	7.	10	16	14	10	-15 0	0	15	10	11	0	17	11	13	12
3	10	9	15	11	-	10	16	13	0	-13 11	0	13	10	2	8	17	9	11	15
1	12	11	13	14	(40)	10	16	13	13	-11	3	13	8	2	8	23	8	12	15
9	10	10	16	14	S	9	14	21	22			14	12	7	8	21	7	13	12
7	10	8	22	12	(41)	0	7	12	21		à	13	15	9	7	14	10	12	15
5	11	12	15	11	23	0		14	14		5	14	14	6	8	12	9	11	18
3	13	15	15	8	18		11	10	12		0	13	18	9	8	8	11	12	15
1 0	10	14	17	11	/	0	,	10	14	-	-					-			

Extending Hough Transform

- Hough transform can also be used for detecting circles, ellipses, etc.

- For example, the equation of circle is:

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

- In this case, there are three parameters: (x_0, y_0) , r

- In general, we can use hough transform to detect any curve which can be described analytically by an equation of the form:

g(v, C) (v: vector of coordinates, C: parameters)

- Detecting arbitrary shapes, with no analytical description, is also possible (Generalized Hough Transform)