Line detection

- The masks shown below can be used to detect lines at various orientations

-1	-1	-1
2	2	2
-1	-1	-1

Horizontal

-1	-1	2
-1	2	-1
2	-1	-1

$+45^{\circ}$

-1	2	-1
-1	2	-1
-1	2	-1

Vertical

2	-1	-1	
-1	2	-1	
-1	-1	2	
-45°			

convolved image
$=$

-	-	-	-
-	6	6	-
-	-	-	-

convolved image

-	-	-	-
-	0	0	-
-	-	-	-

- In practice, we run every mask over the image and we combine the responses:

$$
R(x, y)=\max \left(\left|R_{1}(x, y)\right|,\left|R_{2}(x, y)\right|,\left|R_{3}(x, y)\right|,\left|R_{4}(x, y)\right|\right)
$$

If $R(x, y)>T$, then discontinuity

Using Hough Transform to detect lines

(Trucco, Chapt. 5)

- Consider the slope-intercept equation of line

$$
y=a x+b,
$$

$$
\text { (} a, b \text { are constants, } x \text { is a variable, } y \text { is a function of } x \text {) }
$$

- Rewrite the equation as follows:

$$
b=-x a+y
$$

(now, x, y are constants, a is a variable, b is a function of a)

- The following properties are true:

Each point $\left(x_{i}, y_{i}\right)$ defines a line in the $a-b$ space (parameter space)
Points lying on the same line in the $x-y$ space, define lines in the parameter space which all intersect at the same point

The coordinates of the point of intersection define the parameters of the line in the $x-y$ space

Algorithm

1. Quantize the parameter space $P\left[a_{\min }, \ldots, a_{\max }\right]\left[b_{\text {min }}, \ldots, b_{\max }\right]$ (accumulator array)

2. For each edge point (x, y)

$$
\begin{aligned}
& \operatorname{For}\left(a=a_{\min } ; a \leq a_{\max } ; a++\right)\{ \\
& b=-x a+y ; / * \text { round off if needed * } \\
& (P[a][b])++; / * \text { voting */ } \\
& \}
\end{aligned}
$$

3. Find local maxima in $P[a][b]$
(If $P\left[a_{j}\right]\left[b_{k}\right]=\mathrm{M}$, then M points lie on the line $y=a_{j} x+b_{k}$)

- Effects of quantization

- The parameters of a line can be estimated more accurately using a finer quantization of the parameter space
- Finer quantization increases space and time requirements
- For noise tolerance, however, a coarser quantization is better

(it is very likely that every point will cast a vote in the (a^{\prime}, b^{\prime}) cell)

- Problem with slope-intercept equation

- The slope can become very large or even infinity !!
- It will be impossible to quantize such a large space

- Polar representation of lines

$$
x \cos \theta+y \sin \theta=\rho \text { (if the line is vertical, } \theta=0, x=\rho \text {) }
$$

- The following properties are true:

Each point (x_{i}, y_{i}) defines a sinusoidal curve in the $\rho-\theta$ space (parameter space)

Points lying on the same line in the $x-y$ space, define curves in the parameter space which all intersect at the same point

The coordinates of the point of intersection define the parameters of the line in the $x-y$ space

Algorithm

1. Quantize the parameter space
$P\left[\rho_{\min }, \ldots, \rho_{\max }\right]\left[\theta_{\min }, \ldots, \theta_{\max }\right] \quad$ (accumulator array)

2. For each edge point (x, y)
$\operatorname{For}\left(\theta=\theta_{\min } ; \theta \leq \theta_{\text {max }} ; \theta++\right)\{$
$\rho=x \cos \theta+y \sin \theta ; / *$ round off if needed $*$
$(P[\rho][\theta])++; / *$ voting */
\}
3. Find local maxima in $P[\rho][\theta]$

Table I. Accumulator Array for Figure 3(c)

	0^{*}	20°	40°	60°	80^{*}	100°	120^{\prime}	140°	160°
-85									
-83									
-81									
-79			3	1					
-77			1	3					
-75									
-73									
-71		2							
-69		2							
-67									
-65			1	2					
-63		1			2				
-61	5								
-59	7		2	1		1			
-57	6					2	1		2
-55	0	10	6			1	1		4
-53	16	13	12		18	4	1		6
-51	(90)	15	11		15	16			6
-49	32	18	11	(97)	15	23	1	1	5
-47	10	16	11	22	14	16	21	9	5
-45	7	17	11	11	16	18	(41)	21	6
-43	8	12	14	10	13	17	12	17	6
-41	6	7	14	11	14	14	7	19	12
-39	7	10	9	8	12	8	11	20	23
-37	7	7	14	8	17	9	12	18	24
-35	8	9	17	8	10	7	10	23	23
-33	6	12	15	8	12	9	11	22	26
-31	5	9	19	9	8	11	16	18	15
-29	9	10	12	9	8	9	18	18	15
-27	7	12	10	8	6	9	18	19	19
-25	5	10	8	8	7	7	22	9	14
-23	6	11	9	9	6	11	19	12	9
-21	7	15	9	7	10	10	16	10	11
-19	6	13	8	16	9	11	17	9	10
-17	7	17	9	15	7	11	16	14	13
-15	6	15	10	17	8	13	10	14	9
-13	10	15	9	15	9	17	11	13	12
-11	10	13	10	7	8	17	9	11	15
-9	7	14	8	7	8	23	8	12	15
-7	9	15	12	7	8	21	7	13	12
-5	(77)	13	15	9	7	14	10	12	15
-3	26	14	14	6	8	12	9	11	18
-1	10	13	18	9	8	8	11	12	15

Extending Hough Transform

- Hough transform can also be used for detecting circles, ellipses, etc.
- For example, the equation of circle is:

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}
$$

- In this case, there are three parameters: $\left(x_{0}, y_{0}\right), r$
- In general, we can use hough transform to detect any curve which can be described analytically by an equation of the form:

$$
g(v, C) \quad(v: \text { vector of coordinates, } C: \text { parameters })
$$

- Detecting arbitrary shapes, with no analytical description, is also possible (Generalized Hough Transform)

