The Geometry of Perspective Projection

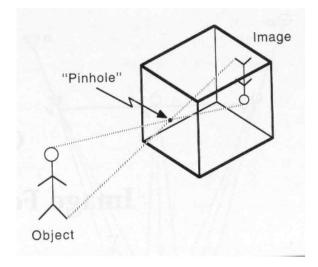
• Pinhole camera and perspective projection

- This is the simplest imaging device which, however, captures accurately the geometry of perspective projection.

- Rays of light enters the camera through an infinitesimally small aperture.

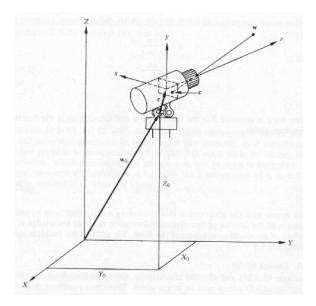
- The intersection of the light rays with the image plane form the image of the object.

- Such a mapping from three dimensions onto two dimensions is called *perspective projection*.



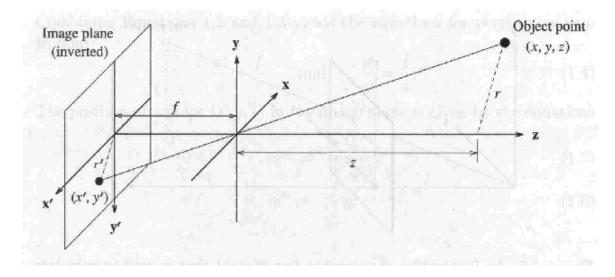
• A simplified geometric arrangement

- In general, the world and camera coordinate systems are not aligned.

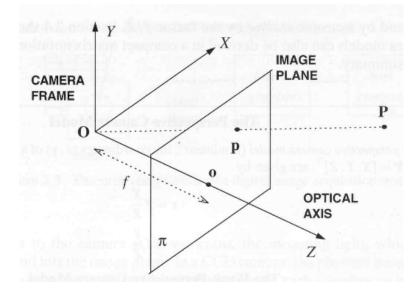


- To simplify the derivation of the perspective projection equations, we will make the following assumptions:

- (1) the center of projection coincides with the origin of the world.
- (2) the camera axis (optical axis) is aligned with the world's z-axis.



(3) avoid image inversion by assuming that the image plane is in front of the center of projection.



• Some terminology

- The model consists of a plane (image plane) and a 3D point O (center of projection).

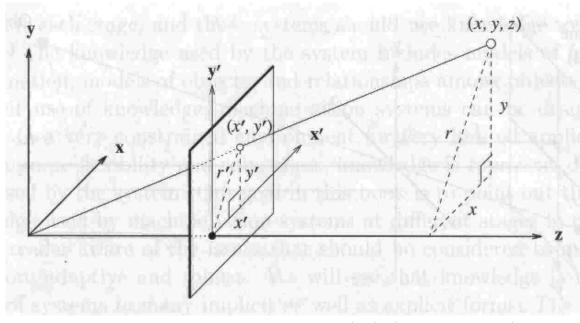
- The distance f between the image plane and the center of projection O is the *focal length* (e.g., the distance between the lens and the CCD array).

- The line through O and perpendicular to the image plane is the optical axis.

- The intersection of the optical axis with the image place is called *principal point* or *image center*.

(note: the principal point is not always the "actual" center of the image)

-4-



(notation: $(x, y, z) \rightarrow (X, Y, Z), r \rightarrow R, (x', y', z') \rightarrow (x, y, z), r' \rightarrow r)$

- Using the following similar triangles:

(1) from *OA'B'* and *OAB*:
$$\frac{f}{Z} = \frac{r}{R}$$

(2) from *A'B'C'* and *ABC*: $\frac{x}{X} = \frac{y}{Y} = \frac{r}{R}$

perspective proj. eqs:
$$x = \frac{Xf}{Z}$$
 $y = \frac{Yf}{Z}$ $z = f$

- Using matrix notation:

$$\begin{bmatrix} x_h \\ y_h \\ z_h \\ w \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & f & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

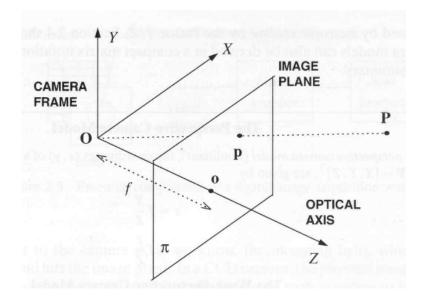
- Verify the correctness of the above matrix (homogenize using w = Z):

$$x = \frac{x_h}{w} = \frac{fX}{Z}$$
 $y = \frac{y_h}{w} = \frac{fY}{Z}$ $z = \frac{z_h}{w} = f$

• Properties of perspective projection

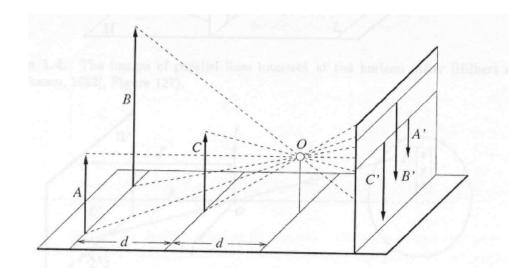
Many-to-one mapping

- The projection of a point is *not* unique (any point on the line *OP* has the same projection).



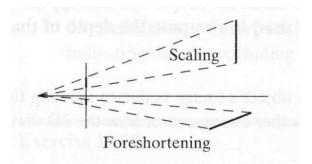
Scaling/Foreshortening

- The distance to an object is inversely proportional to its image size.



- When a line (or surface) is parallel to the image plane, the effect of perspective projection is *scaling*.

- When an line (or surface) is not parallel to the image plane, we use the term *foreshortening* to describe the projective distortion (i.e., the dimension parallel to the optical axis is compressed relative to the frontal dimension).



Effect of focal length

- As f gets smaller, more points project onto the image plane (*wide-angle cam-era*).

- As f gets larger, the field of view becomes smaller (more *telescopic*).

Lines, distances, angles

- Lines in 3D project to lines in 2D.

- Distances and angles are not preserved.

- Parallel lines *do not* in general project to parallel lines (unless they are parallel to the image plane).

Vanishing point

* parallel lines in space project perspectively onto lines that on extension intersect at a single point in the image plane called *vanishing point* or *point at infinity*.

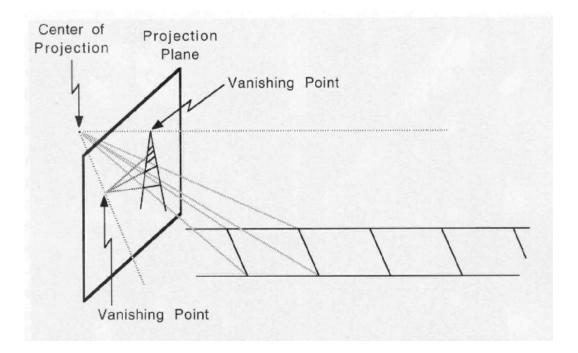
* (alternative definition) the vanishing point of a line depends on the orientation of the line and not on the position of the line.

* the vanishing point of any given line in space is located at the point in the image where a parallel line through the center of projection intersects the image plane.

Vanishing line

* the vanishing points of all the lines that lie on the same plane form the *vanishing line*.

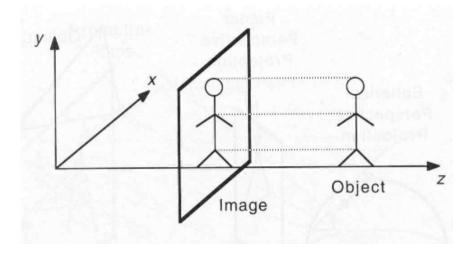
* also defined by the intersection of a parallel plane through the center of projection with the image plane.



Orthographic Projection

- It is the projection of a 3D object onto a plane by a set of parallel rays orthogonal to the image plane.

- It is the limit of perspective projection as $f - > \infty$ (i.e., f/Z - > 1)



orthographic proj. eqs: x = X, y = Y (drop Z)

- Using matrix notation:

$$\begin{bmatrix} x_h \\ y_h \\ z_h \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

- Verify the correctness of the above matrix (homogenize using w=1):

$$x = \frac{x_h}{w} = X \qquad y = \frac{y_h}{w} = Y$$

• Properties of orthographic projection

- Parallel lines project to parallel lines.
- Size does not change with distance from the camera.

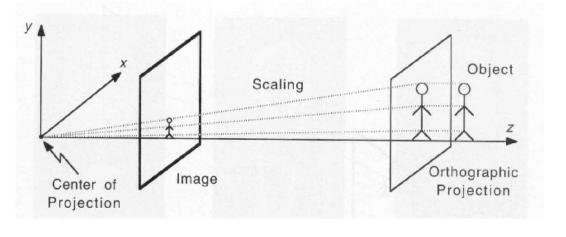
Weak Perspective Projection

- Perspective projection is a non-linear transformation.

- We can approximate perspective by scaled orthographic projection (i.e., linear transformation) if:

(1) the object lies close to the optical axis.

(2) the object's dimensions are small compared to its average distance \overline{Z} from the camera (i.e., $\delta z < \overline{Z}/20$)



weak perspective proj. eqs:

$$x = \frac{Xf}{Z} \approx \frac{Xf}{\overline{Z}}$$
 $y = \frac{Yf}{Z} \approx \frac{Yf}{\overline{Z}}$ (drop Z)

- The term $\frac{f}{\bar{Z}}$ is a scale factor now (e.g., every point is scaled by the same factor).

- Using matrix notation:

$\begin{bmatrix} x_h \end{bmatrix}$	=	$\int f$	0	0	ך 0	$\lceil X \rceil$	
y_h		0	f	0	0	Y	
z_h		0	0	0	0	Z	
_ w _		0	0	0	\bar{Z}	1	

- Verify the correctness of the above matrix (homogenize using $w = \overline{Z}$):

$$x = \frac{x_h}{w} = \frac{fX}{\bar{Z}}$$
 $y = \frac{y_h}{w} = \frac{fY}{\bar{Z}}$