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Face detection and recognition have been

active research areas for more than thirty years. Face
detection is an important preprocessing stage of an
overall face recognition system. Although, it may
appear rudimentary to a layman, face detection is a
challenging machine vision operation, particularly
in outdoor environments where illumination varies
greatly. This is one of the primary reasons that face
recognition is currently constrained to access control
applications in indoor settings.

There is a pressing need for expanding the
application of face recognition technologies to
surveillance and monitoring scenarios. Such systems
would be most advantageous in the context of
protecting high value assets (e.g. perimeter of

government buildings) from asymmetric (terrorist)
threats. A major technical challenge that needs to be
addressed in this direction is the low performance of
face detectors in unconstrained environments.
Visible-band face detectors, as those reported in the
literature, opt for pure algorithmic solutions into
inherent phenomenology problems. Human facial
signatures vary significantly across races in the
visible band. This variability coupled with dynamic
lighting conditions present a formidable problem.
Reducing light variability through the use of an
artificial illuminator is rather awkward in the visible
band because it may be distracting to the eyes of the
people in the scene and “advertises” the existence of
the surveillance system.

In the current paper we present a novel face
detection system based on near-IR phenomenology,
multi-band feature extraction, and the use of
generalized Hough transforms. Facial signatures are
less variable in near-IR aiding significantly the
detection work. Illumination in the scene can be
maintained at an optimal level through a feedback
control loop that includes a near-IR illuminator.
Since, near-IR light is invisible to the human eye the
system can remain unobtrusive and covert. The
above advantages in combination with the unique
reflectance characteristics of the human skin in the
near-IR spectrum allow for simple algorithmic-
based face detection methods to perform extremely
well.

The rest of the paper is organized as follows:
In Section 2 we give an overview of previous work
done in the area of face detection. In Section 3 we
give a top-level description of the hardware and
software architecture of our face detector. In Section
4 we provide a brief description of our skin
detection method. In Section 5 we elaborate on our
face detection method, which builds upon our skin
detection method. In Section 6 we present and
discuss the experimental results. Finally, in Section
7 we conclude the paper and mention our plans for
future work.



��3UHYLRXV�:RUN
In recent years a sizable body of research in

the area of face detection has been amassed. The
methodologies vary, but the research mainly centers
around three different approaches: artificial neural
networks, feature extraction, and wavelet analysis.
Each of these approaches has its respective strengths
and weaknesses when applied to face detection, but
none has yet been able to attain results rivaling
human perception.

The majority of face detection research has
been focused around various types of feature
extraction.  Feature extraction methods utilize
various properties of the face and skin to isolate and
extract desired data. Popular methods include skin
color segmentation [1][2], principal component
analysis [3], Eigenspace modeling [4], histogram
analysis [5], texture analysis [6], and frequency
domain features [7].

Face detection research based on artificial
neural networks has received a smaller share of the
attention.  One of the problems with this approach is
finding a representative data set.  This difficulty is
compounded by the fact that a strong counter
example set must also be compiled to train the
individual networks.  Despite these obstacles many
of the most promising results have been reported
form research involving artificial neural networks.
In his work Rowley HW� DO� [8] used an arbitration
method among several networks to improve
performance. His system produced some impressive
results for forward facing subjects.

Wavelet analysis is the newest of the face
detection approaches under discussion. The general
aim of the wavelet approach is maximum class
discrimination and signal dimensionality reduction
[9]. Due to the reduced dimensionality, wavelet-
based methods are computationally efficient.

All of the above approaches are associated
with visible spectrum imagery. Therefore, they are
susceptible to light changes [10] and the variability
of human facial appearance in the visible band. A
distinct line of research pursued by our group
proposed the fusion of two near-IR bands for the
detection of face and other exposed skin areas of the
body [11][12]. The method capitalizes upon some
unique properties of the human skin in the near-IR
spectrum. Our dual-band system maintains an
optimal illumination in the scene through the liberal
use of artificial non-distracting near-IR lights. As a
result, the system performs superb skin detection
both in indoor and outdoor settings. In the present
paper, we report further algorithmic work that

accurately locates the face within the detected skin
region.

)LJXUH����The�EM spectrum.

��6\VWHP�2YHUYLHZ

�������+DUGZDUH�$UFKLWHFWXUH
The system uses two cameras as the input

medium.  The cameras are sensitive to the so called
near-IR spectrum in the range 0.9-1.7 µm. This
range clearly falls within the reflected portion of the
infrared spectrum and has no association with
thermal emissions (see Figure 1). The two cameras
are set at perpendicular angles (see Figure 2) and a
beam splitter is used to allow both cameras to view
the scene from the same vantage point, yet in
different sub-bands. The splitter divides the light
reflected from the scene into the lower-band beam
(0.9-1.4 µm) and the upper-band beam (0.4-1.7 µm).
The two beams are funneled to the Focal Plane
Arrays (FPA) of the corresponding cameras. Each
camera is connected to a frame grabber, which
digitizes the incoming video.

)LJXUH����Hardware diagram.

A component of the software running on
the computer with the frame grabbers analyzes the
luminance in the incoming frames.  The system then
appropriately adjusts the output voltage on the



programmable power supply unit connected to the
computer via the serial port.  The power supply
provides power for the near-IR lamp that illuminates
the scene. Through this feedback the system is able
to keep the scene at a constant luminance regardless
of external conditions.

One of the main benefits of using the near-
IR spectrum is that subjects in the scene are unaware
that they are being illuminated by the system. This
is especially beneficial for covert operation in
surveillance applications. One consideration,
however, that must be made for the near-IR lamp is
that like any intense light source it can be harmful to
human eyes if direct exposure occurs for a
prolonged period [13]. One possible method for
damage avoidance is to strobe the lamp when a
subject gazes at the system unknowingly for too
long.

�������6RIWZDUH�$UFKLWHFWXUH
The system’s software consists of four

units (see Figure 3):

)LJXUH����Software diagram.

�� ,QSXW� 3URFHVV� 8QLW� The initial step
for the system is to get the input
images for both bands from the frame
grabbers.  The images are then aligned

and sent to the luminance monitor and
the skin detector module.

�� /XPLQDQFH�0RQLWRU� The luminance
monitor evaluates the current
luminance level in the scene and
dynamically adjusts the power output
on the power supply.  A simple
mapping between the output voltage
and the corresponding luminance (see
Figure 4) allows the system to
accurately achieve the desired light
level.

�� 6NLQ� 'HWHFWRU� Upon receiving the
dual input images the skin detector
performs a series of operations to
isolate the skin in the image. The
output of the face detection module is
a binary image where all skin appears
black against a white background.
This image is then passed to the final
unit of the current software system, the
face detector.

�� )DFH�'HWHFWRU� The face detector uses
a series of generalized Hough
transforms on a feature image
extracted from the two near-IR input
images and the skin image. After the
transforms are complete a good
approximation of the location of the
eyes can be made. Based on the
distance between the eyes we can
determine heuristically the 2D
orientation and extent of the face.

)LJXUH��.�Voltage versus luminance diagram for the near-IR
lamp.

��6NLQ�'HWHFWLRQ�LQ�WKH�1HDU�,5

6SHFWUXP
The near-IR spectrum is particularly

beneficial for skin detection purposes [11][12].
Human skin exhibits an abrupt change in reflectance



around 1.4 µm. This phenomenology allows for a
highly accurate skin mapping by taking a weighted
difference of the lower band near-IR image and the
upper band near-IR image. A consequence of the
phenomenological basis of our skin detection
method is that artificial human heads cannot fool the
system (see Figure 5).

)LJXUH��.�Example of successful discrimination between a real
and artificial human head. The binary image to the right is the
output of the skin detection unit.

)LJXUH��� The skin detection process: (a) The lower near-IR band
image (b) The upper near-IR band image (c) The weighted
subtraction image (d) The thresholded image. (e) The opened
image. (f) The closed image. (g) The dilated image. (h) The
eroded image.

The pixel mapping for the fusion of the two
near-IR images is as follows:

       3�L�M�fused = 3�L�M�lower – I3�L�M�upper (4.1)

where, 3�L�M�[� is the pixel value at position �L�M�
in the respective image  and � I� is the weight
factor used. The constant I = 1.38 (determined
through experimentation) is used.  The weighted
subtraction operation increases substantially the
contrast between human skin and the background in
the image. This prepares the ground for the
successful application of a thresholding operation.
Then, the resulting binary image undergoes a series
of morphological operations (see Figure 6).

(a) 2SHQLQJ� DQG� &ORVLQJ� The opening
operation smoothes the contour of the skin
region, breaks narrow isthmuses, and
eliminates small islands and sharp peaks or
capes. The closing operation fuses narrow
breaks and long, thin gulfs; eliminates
small holes; and fills gaps on the contours.

(b) 'LODWLRQ� DQG�(URVLRQ� The application of
dilation and erosion results in the
elimination of small image detail.

��)DFH�'HWHFWLRQ�LQ�WKH�1HDU�,5

6SHFWUXP
 The main objective of the face detector is

to determine the location and extent of the face. It
achieves this objective by finding the location of the
eyes. The detector needs to determine precisely the
location of at least one eye in order to provide
information of some use to a face recognizer. A
major strength of our method is the exploitation of
the phenomenology exhibited by the skin, eyes, and
hair (explained below) in the near-IR band of the
EM spectrum. The face detector uses a three-step
approach to determine the location of the eyes. As
input the detector uses the high and low band near-
IR images (see Figure 6 (a) and (b)), and the output
image from the skin detector module (see Figure 6
(h)).
6WHS� �� The face detector extracts regions in the
upper and lower near-IR images that are likely to be
the eyebrows (see Figure 7(a)) and eyes (see Figure
7(b)) respectively. This is accomplished by
capitalizing upon the unique reflectance
characteristics of human hair and skin in the two
near-IR bands.

In the upper near-IR band eyebrow hair
stands out comparatively to the extremely low
reflectivity human skin. The threshold values found
to be most suitable for the eyebrow extraction are as
follows:
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Where ( )% • is the eyebrow threshold function, and
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In the lower near-IR band the eyes stand

out comparatively to the extremely high reflectivity
human skin. The threshold values found to be most
suitable for the eye extraction are as follows:
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Where ( )( • � is the eye threshold function, and

( ),
O
3 [ \ is the pixel value of the lower near-IR

image at position ( ),[ \ .

As with the skin detector, a dynamic
adjustment algorithm will replace the constants used
for the eye and eyebrow detection in the future.  The
eyebrow and eye feature images are then fused into
a composite feature image (see Figure 5(c)). This is
a tri-level image: the black areas denoting likely
eyebrow regions, the gray areas likely eye regions,
and the white areas all the rest.

)LJXUH� ��� (a) Eyebrow feature image extracted from the upper
near-IR band. (b) Eye feature image extracted from the lower
near-IR band��(c) Composite eyebrow-eye feature image. (d) The
result of the Hough Transform superimposed on the skin image.

6WHS����In the second step the face detector utilizes
the Hough transform to find the eye regions on the
composite eyebrow-eye feature image. We use a
generalized Hough transform template [14] (see
Figure 8) that is modeled after the expected
appearance of an eye region in the composite feature
image. This consists of a black region (modeling the

eyebrow) over a gray region (modeling the eye).
The template is rotated and sized at each point of
implementation to account for the rotation and
variation of individual faces.  The result of this
transformation is a tri-level image where the
background shows as white, the skin region as gray
and within the skin region the area(s) that exhibited
the strongest response to our eye template as black
(see Figure 7(d)).

)LJXUH����The Hough Transform template.  The template models
the appearance of an eye region in the composite feature image,
given the constraints of human anatomy.

6WHS����In the final step the face detector estimates
the center of the subject’s eyes through blob
analysis. Because of the variation in human faces
many different patterns of ‘eye’ blobs can arise in
the resulting Hough Transform image (see Figure
9).  Specifically:

&DVH� ���There is a single blob that spans
the width of the face region.  The blob is
bisected in the middle and processed as two
smaller blobs.
&DVH� �� There are two blobs that are
roughly equal size, which are higher than
any other blobs.
&DVH� �� There is a single small blob set
apart and higher than any other blobs.

)LJXUH����Eye region blob cases (1) A single blob covers both
eyes (2) Each eye region appears as a distinct blob (3) Single eye
region in a side view.



Ultimately, the face detector locates the
center of the eyes as the centroids of the selected
blobs. Once the eyes are located then the 2D
orientation (the face in the sagittal plane) of the head
can also be determined heuristically based on the
observed distance between the eyes.  After the
orientation and location of the head are known then
it is possible to ascertain if a good image of the face
can be extracted for recognition purposes.  It is also
a viable option to extrapolate, given a partially
obstructed view of the face, where necessary to
create a frontal image of the face from any given
rotation, provided that at least half of the face is
visible.

��([SHULPHQWDO�5HVXOWV
We tested the performance of the system

on a stream of single facial images taken live
through our dual-band system (see Figure 2). The
images were taken inside our laboratory using the
near-IR illuminator as the sole lighting source. Our
experimental data set was composed of 474 images
taken from 18 different subjects.  We used a wide
variety of people including both genders, subjects
with glasses, and subjects with facial hair. Each
subject performed a series of head movements to
test the system’s detecting power in different facial
orientations and positions (see Figure 10).

)LJXUH�����Subject head motion range.

For the purpose of quantifying results we
defined a correct face detection by the system as the
system correctly locating at least one eye (provided
that at least one was visible) in a skin region. The
system performed very well for subjects facing
forward as well as most degrees of rotation (see
Figure 11 and Figure 12).  In Table 1, where we
report the experimental performance of the system,

we cluster under the “Frontal Face” category all the
images featuring head orientations within the (–300

÷ +300) range in the y direction. Under “Rotated
Face” we cluster all the other images featuring
heads at extreme orientations. The system also
achieved lower frontal face detection performance
in subjects with glasses than subjects without
glasses (see Figure 13). Glasses interfered with the
skin phenomenology in the near-IR and hindered an
accurate feature mapping as described in Section 5.
One very interesting aspect of the system’s
performance was that in subjects with glasses the
detection rate was higher at extreme head
orientations. At extreme orientations (e.g. 900 with
respect to y axis) the camera could view more of the
naked skin around the eye while the specular
reflection from the glasses was less of an issue (see
the top right image in Figure 12).

The system seemed to encounter difficulties
when examining an image where the subject was
looking up or down (more then a –300 rotation in the
x axis, see Figure 14).  This obscured the eyes and
therefore made it difficult to create a good
composite feature image from which to find the eye
regions.

Our method is also quite efficient operating at
5 frames per second in a 500 MHz Pentium II PC, a
speed sufficient for most security applications.

6XEMHFWV�:LWKRXW

*ODVVHV

�6XEMHFWV�:LWK

*ODVVHV

'HWHFWLRQ�5DWH

)URQWDO�)DFH

96.35% 72.25%

'HWHFWLRQ�5DWH

5RWDWHG�)DFH

66.88% 67.40%

7DEOH����Face detection results from 474 images of 18 subjects.

)LJXUH� ��:� Examples of the system’s performance in frontal
faces. The images belong to the lower near-IR stream and are
superimposed by the skin box and the crosses indicating the
locations of the eyes.



)LJXUH� ���� Examples of the system’s performance in rotated
faces. The images belong to the lower near-IR stream and are
superimposed by the skin box and the crosses indicating the
locations of the eyes.

)LJXUH�����Examples of the system detecting the face and finding
correctly at least one eye.

)LJXUH�����Examples of the system detecting the overall facial
region, but not correctly finding both eyes.

����([SHULPHQWDO�&RPSDULVRQ
To fully understand the significance of the

results from a system it is important to establish a
basis for comparison using similar works.  The area
of face detection has received a lot of attention in
recent years providing for a comprehensive body of
literature. Table 2 lists the reported performance of
several referenced systems as well as our own work.

We realize that because of the varying
methods and data sets the results reported in Table 2
should be interpreted with caution. In general, our
data set comprises fewer subject faces but features
the greatest percentage of real-time imagery and
extreme facial rotation. Also, the data sets used by
others are almost void of glass wearing subjects. To
achieve a somewhat meaningful comparison we
report in Table 2 the performance of our system in
the subset featuring frontal faces (–300 ÷ +300

rotation in the y direction) and without glasses.

0HWKRG
'HWHFWLRQ�5DWH

-HRQ�>�@
Clustering
Algorithm

91%
�]�D[LV������

Z \� Neural Network
~96.0%
�IURQWDO�

= � Wavelet Analysis ~95%

2 U� \VW P
Feature Extraction
in Near-IR

96.35%
�IURQWDO�

D O �  Reported performance results from various face
detection systems�

Our system seemed to achieve superior
detection performance from most other systems
reported in the literature. Only the performance of
Rowley’s system [8] came close to ours for frontal
facing subjects.  Rowley HW� DO� used multiple data
sets to test their system. The most comparable of
those with our data set was the FERET database.
The FERET data set contained a broad range of
faces under good lighting with uncluttered
backgrounds. One major disadvantage of Rowley’s
approach relative to ours is that it requires extensive
training to perform satisfactorily.

Our approach, being the only one based on
near-IR phenomenology, has the major advantage of
performing robustly under different natural lighting
conditions including total darkness. This resilient



performance is attained through the liberal use of
artificial near-IR illumination and the distinct
reflectance characteristics of the human skin.

��&RQFOXVLRQ�DQG�)XWXUH�:RUN
We have expanded the skin detection work

reported earlier by our group [11][12] by developing
a face detection method based on multi-band feature
extraction in the near-IR spectrum. Within the
detected skin area, an eye feature image is extracted
from the lower near-IR band and an eyebrow feature
image is extracted from the upper near-IR band. The
two feature images are superimposed to create a
composite feature image. Then a generalized Hough
transform is rotated and sized at each point in the
image. The generalized template is modeled after
the expected appearance of an eye region in the
composite feature image. The strongest response to
the eye template produces an eye blob image and
finally the center locations of the subject’s eyes. The
determination of the eye locations within the skin
region allows the system to calculate heuristically
the 2D orientation of the face and extent of the face
based on the observed distance between the eyes.

In the experimental testing so far, our face
detector exhibited state-of-the-art performance in
real-time imagery. Our test set included a substantial
percentage of faces wearing glasses and faces at
extreme rotations.

Our ongoing work focuses on the
exploitation of the face detection information for
face recognition purposes. We are working towards
incorporating the face recognition engine FaceIt

[15] by Visionics into our overall system. Since
FaceIt relies primarily on facial geometry for face
recognition, it can be invariably applied to visible as
well as near-IR imagery. By replacing the nominal
face detector in the FaceIt system with our face
detector we will be able to readily extend the
application scenarios to outdoor surveillance.
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