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A B S T R A C T

Traditionally, edge detection has been extensively employed as the basic step for the horizon line detection
problem. However, generally such methods do not discriminate between edges belonging to horizon boundary
and others due to clouds or other natural phenomenon. Additionally, most edge based methods suffer more in
the presence of edge gaps. To address these issues, we propose an edge-less horizon line detection approach
based on pixel classification, hence not relying on edge information. The key idea is formulating a multi-
stage graph using classification maps, instead of edge maps, where each node cost reflects the likelihood
of pixel belonging to the horizon boundary. The shortest path is found in the formulated multi-stage graph
using dynamic programming which conforms to the detected horizon line. We demonstrate the performance of
the proposed approach on two challenging data sets and provide comparisons with two edge-based methods:
one relying on edge detection while the other based on edge classification. Overall, the proposed approach
achieves comparable performance against carefully crafted edge based formulations. A by-product of the edge-
less approach is its capability of associating a confidence level with the found solution, which can be used to
confirm the presence or absence of a horizon line in a given image. The method is also capable of dealing
with partial horizon line in an image. To further improve the detection performance, we propose a fusion
strategy which combines both edge-based and edge-less information. Extensive evaluations, including a publicly
available data set, illustrate the superiority of the proposed fusion approach.

1. Introduction

Segmenting a gray scale or color image into sky and non-sky regions
is coined as horizon line detection or skyline extraction problem. It
is a challenging problem due to non-linear boundaries, background
clutter due to clouds, fog, mist etc. and extreme variations in non-sky
regions. Depending upon the non-sky regions (which could be water,
city buildings, mountains or plain fields etc.) imaged in the picture,
skyline or horizon line detection finds many applications. Horizon or
skyline detection has been adopted for smooth navigation of unmanned
aerial vehicles (UAVs) (Boroujeni et al., 2012; McGee et al., 2005; Thur-
rowgood et al., 2009; Grelsson et al., 2015; Hou and Li, 2015; Di et al.,
2012) and micro air vehicles (MAVs) (d. Croon et al., 2011; Ettinger
et al., 2002; Todorovic et al., 2003), augmented reality (Porzi et al.,
2014), rover localization (Boukas et al., 2014; Cozman and Krotkov,
1997; Cozman et al., 2000), visual geo-localization and annotation of
mountain/desert imagery (Chen et al., 2015; Saurer et al., 2016; Baatz
et al., 2012; Liu and Su, 2014; Tzeng et al., 2013; Baboud et al., 2011),
port security and ship detection (Fefilatyev et al., 2006; Gershikov
et al., 2013; Kruger and Orlov, 2010; Kong et al., 2016), outdoor vehicle
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localization (Gupta and Brennan, 2008; Ho and Chakravarty, 2014;
Dumble and Gibbens, 2012, 2015) and autonomous vehicle naviga-
tion (Neto et al., 2011). Previous methods to horizon line detection can
be categorized into two major groups; (i) methods modeling sky and
non-sky regions using classification (Boroujeni et al., 2012; d. Croon
et al., 2011; Ettinger et al., 2002; Fefilatyev et al., 2006; McGee et al.,
2005; Todorovic et al., 2003; Verbickas and Whitehead, 2014), and (ii)
methods relying on edge detection (Kim et al., 2011; Lie et al., 2005;
Shen et al., 2013). Recently, some attempts have been made to combine
these two ideas by eliminating non-horizon edges using classification
e.g. Hung et al. (2013), Ahmad et al. (2013) and Porzi et al. (2014).

1.1. Horizon line detection review

Most of the earlier horizon detection methods are based on the
assumption that the horizon forms a linear boundary; Hough transform
was used to find the line parameters subject to some cost function.
In Ettinger et al. (2002), authors proposed using the horizon line for
flight stability and control of MAVs. Their horizon detection approach is
based on the assumptions that the horizon is linear and it segments the
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image into two regions of significantly different appearance (sky and
non-sky). Using RGB color information, the sky and ground regions are
modeled using Gaussian distributions. Since it was assumed that the sky
and ground regions follow a Gaussian distribution, which is not always
valid; Todorovic et al. (2003) proposed a general statistical image
modeling framework to build prior models for sky and ground. Unlike
the work in Ettinger et al. (2002), they found both color and texture
to be critical for building priors. They used color (Hue, Intensity) and
texture (Complex Wavelet Transform (CWT), magnitude only) to train a
Hidden Markov Tree (HMT) model using the expectation maximization
(EM) algorithm. The posterior likelihoods for two classes at different
scales are fused together and Bayesian segmentation is performed to
separate the sky and non-sky regions. McGee et al. (2005) used sky
segmentation as an obstacle detection tool for small scale UAVs. They
trained a Support Vector Machine (SVM) classifier based on YCbCr
color information to classify pixels into sky and non-sky regions. Mor-
phological erosion and dilation were applied on the resultant binary
image to rectify misclassifications. Next, they used Hough Transform on
the border pixels to cast votes for candidate linear horizon boundaries.
The approach of Fefilatyev et al. (2006) is also based on the horizon
boundary being linear; it uses color and texture features such as mean
intensity, entropy, smoothness, uniformity etc. to train an SVM, a J48
and a naive Bayes classifier. Their experiments are limited to two sets of
ten images each and their method fails to detect good linear horizons
for two out of ten images due to reflection of water and presence of
fog respectively. In Liu and Su (2014), authors have proposed a sensor
fusion approach to estimate the horizon line using a textured Digital
Elevation Map (DEM), an airport model, GPS, AHRS and vision sensors.
Their objective was to estimate an accurate linear horizon boundary
from an aircraft in low visibility conditions; their approach does not
generalize to non-linear horizons.

d. Croon et al. (2011) extended the features used in Fefilatyev et al.
(2006), Ettinger et al. (2002), Todorovic et al. (2003) and McGee
et al. (2005) by including corner-ness, grayness and Fisher Discriminant
features to train shallow decision trees. Their approach was tested in
the context of MAVs for obstacle avoidance and is able to detect non-
linear horizon boundaries. The fusion-based approach of Yazdanpanah
et al. (2013, 2015) combines the output of a Neural Network (NN) with
K-means clustering and is based on the same texture features such as
in d. Croon et al. (2011) and Fefilatyev et al. (2006). Their system
is based on various heuristics and parameter settings that might not
generalize well to different data sets. In Boroujeni et al. (2012), they
also rely on clustering for horizon line detection. Their method is based
on the assumption that a dominant light field exists between sky and
non-sky regions right above the horizon. They have investigated K-
means and intensity based clustering to find this light field in various
images. In principle, the assumption about the presence of a light field
should be validated under different seasonal conditions or geographical
locations and the data set being used in Boroujeni et al. (2012) is
not general enough to justify such a strong assumption. Thurrowgood
et al. (2009) used horizon detection for UAV attitude estimation. In
their approach, a projection onto a single line in the RGB color space
is found by minimizing the overlap of the sky and non-sky classes.
This is somewhat similar to the Fisher Discriminant used by Ettinger
et al. (2002) yet computationally less expensive. In Neto et al. (2011),
authors proposed a robust horizon line detection algorithm using Otsu
segmentation and Hough transform for real-time autonomous naviga-
tion. Braun and Singhof (2015) proposed a seed growing algorithm
where the top row of the image is assumed to belong to the sky. This sky
region is then grown based on the assumption that the distance of the
current pixel’s brightness from a local brightness mean is smaller than a
fixed percentage of the global standard deviation. This method is heav-
ily dependent on the percentage factor. Moreover, the results reported
are based on a very small image set (18 images) from the Switzerland
data set (Baatz et al., 2012) and no quantitative comparison with the
ground truth is provided.

Dusha et al. (2007) used horizon line information with optical flow
for attitude estimation of fixed-wing air-crafts. In their approach, edge
detection is performed separately in each smoothed color channel.
The detected edges from each channel were combined in a single
map and the horizon line was found using Hough voting. Shen et al.
(2013) proposed an edge-based hierarchical approach for horizon line
detection where coarse-level detection was performed first, followed
by fine-level adjustments. They successively performed Canny edge
detection and Hough voting on a low pass image to find the strongest
lines. Using the five highest peaks in the Hough space, the best line
was chosen based on average edge strength. The straight line chosen
is refined, essentially becoming non-linear, using edge position and
strength information. The results reported are based on synthetic im-
ages generated from Google maps which do not reflect if the idea
generalizes to real images. Gershikov (2014) provides a comparison
between gray scale and color based horizon detection methods which
rely on edge detection and Hough transform. The most prominent
method belonging to the second category is that of Lie et al. (2005)
where horizon line detection is formulated as a graph search problem.
Their approach relies on edge detection and assumes a consistent edge
boundary between sky and non-sky regions. The detected edge map is
represented as a multi-stage graph where each column of the image
becomes a stage in the graph and each edge pixel becomes a vertex.
The shortest path, extending from the left-most column to the right-
most column, is then found using DP. It should be mentioned that the
assumption that the horizon boundary is a consistent edge boundary
is rarely true in practice due to environmental conditions (e.g., clouds,
fog, mist) and edge gaps. To address the issue of gaps, Lie et al. (2005)
have proposed a gap-filling step which highly depends on the choice of
certain parameters. Moreover, they assume that the edges in the upper
half of the image belong to the horizon boundary and hence introduce
a bias to find the horizon solution in that region. However, the edges
in this region may very well be due to the presence of clouds. Shen
and Wang (2013) proposed a simple gradient magnitude based sky
segmentation approach. By redefining the energy function proposed
by Ettinger et al. (2002), their approach is applicable to general curves
instead of a linear boundary.

Ahmad et al. (2013) and Hung et al. (2013) have independently
extended the approach of Lie et al. (2005) by introducing a classifica-
tion step to remove non-horizon edges. This is performed by training
a classifier using features from horizon and non-horizon key-points.
The multi-stage graph is then built using only horizon classified edge
pixels. Ahmad et al. (2013) used SIFT descriptors (Lowe, 2004) around
the key-points and an SVM classifier whereas Hung et al. (2013) used
an SVM classifier with color information as well as the variance above
and below key-points. In addition to using classification; Ahmad et al.
(2013) apply a preprocessing step to remove unstable edges by keeping
only those edges which survive a large number of Canny thresholds. In
a related approach, Porzi et al. (2014) reduce the number of edges by
thresholding the output of the Sobel detector; a Random Ferns classifier
was also used to classify the remaining edge pixels into contour and
non-contour edges. Ahmad et al. (2013) extended their work in Ahmad
et al. (2014, 2015c) by investigating various textural features and nodal
costs. Verbickas and Whitehead (2014) compared Convolution Neural
Networks (CNN) with SVMs and Decision Trees using a similar set of
features to those in Fefilatyev et al. (2006); using an extended data
set, CNNs demonstrated superior performance. More recently, some
attempts have also been made to adapt deep neural nets for skyline
segmentation e.g. Porzi et al. (2016).

With the massive availability of geo-tagged imagery and increased
computational power, geo-localization or geolocation has captured a lot
of attention from researchers in computer vision and image retrieval
communities. Significant progress has been made in urban environ-
ments with stable man-made structures and geo-referenced street im-
agery of frequently visited tourist attractions (Hays and Efros, 2008;
Zheng et al., 2009; Zamir and Shah, 2010). Recently some attempts
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have been made towards geo-localization of natural/mountain scenes
which is more challenging due to changed vegetation, lighting and sea-
sonal changes and lack of geo-tagged imagery. Typical approaches for
mountain/natural geo-localization rely on mountain peaks and valley
information, visible skylines, ridges or combinations of all three (Stein
and Medioni, 1995; Chippendale et al., 2008; Baboud et al., 2011; Baatz
et al., 2012; Tzeng et al., 2013; Porzi et al., 2014; Fedorov et al., 2014;
Chen et al., 2015; Ozcanli et al., 2016; Saurer et al., 2016). Skyline has
been established to be a robust natural feature for mountainous images
which can be matched with the synthetic skylines generated from
publicly available terrain maps e.g. Digital Elevation Models (DEMs).
Hence, the very first step in the geolocation pipeline for mountainous
regions is to find the skyline in the given query image. Most of the
solutions for mountainous geo-localization rely on user-in-the-loop
methods for skyline extraction where a user is required to mark/correct
portion of the skyline (Baatz et al., 2012; Tzeng et al., 2013; Chen et al.,
2015; Saurer et al., 2016). Making a truly autonomous horizon/skyline
detector would definitely advance this research dimension.

1.2. Paper outline

Some components of this work have previously been presented
in Ahmad et al. (2015b,a). This work provides a more detailed analysis
and evaluation of different skyline detection methods and their compar-
ison. However, this is not a review paper as we propose a new skyline
detection method based on a fusion strategy and further propose to use
our framework for couple of sub-problems. The major components of
the paper are summarized below:

1. In this work, an edge-less horizon line detection approach based
on Dynamic Programming (DP) is proposed; the key idea is
building the multi-stage graph from a dense classification map
instead of an edge map. Typically edge maps contain gaps and
do not distinguish between horizon and other edges. To address
these issues, we propose classifying each image pixel (or pixels
within a region of interest) as belonging to the horizon or not.
This is performed by training a classifier using both horizon
and non-horizon pixels using a small set of training images.
The resulting classification map contains no gaps and provides
information about the likelihood of each pixel belonging to the
horizon line; we refer to the classification map as Dense Classi-
fier Score Image (DCSI). The horizon line can then be extracted
by finding a path that maximizes the sum of classification scores
using DP. We have experimented with SVMs (Cortes and Vapnik,
1995) and CNNs (LeCun et al., 1998) for classification, using
normalized pixel intensities as features.

2. We provide a detailed comparison of our proposed edge-less
approach with an existing edge-based approach to better un-
derstand the strengths and weaknesses of each method. Using
two challenging data sets, we evaluate the performance of each
approach and identify specific cases where one outperforms the
other. Finally, we propose a fusion strategy which boosts the
performance of the edge-less approach using edge information.
The fusion approach, which has been tested on an additional
challenging data set (Baatz et al., 2012), outperforms each of
the methods alone.

3. Next, we demonstrate the capability of our formulation to detect
absence of horizon boundary and detection of partial horizon
lines. In many applications where the horizon line is used for
rover/robot localization and navigation, it is important not only
to detect the horizon line but also to report a confidence measure
of the detection. This is useful in many cases, for example, when
the horizon line in not visible in the image. A by-product of the
proposed edge-less/fusion approach is a confidence measure cor-
responding to the normalized sum of classification scores along
the path found by dynamic programming. Using a Bayesian
approach, we can determine whether the path found corresponds

to the horizon line or some other irrelevant path. This could also
be used as a validation step where the method misses the actual
horizon line and finds another solution instead. The statistical
measure along the found path can be used to reject such faulty
detections. Moreover, we demonstrate how the proposed ap-
proach can be adapted to handle partially visible horizon lines.
This is quite useful since localization is still feasible, at least from
a theoretical point of view, using partially visible horizon lines.
To the best of our knowledge, this is the first study to address
these issues of non-visible, partially visible horizon lines and
verification of a detected horizon.

4. To measure the performance of different horizon line detectors,
we adopt a more accurate measure compared to the ones re-
ported in the literature. All performance comparisons reported in
this study are based on the absolute average error between the
solution found and ground truth. Previously, detection results
were reported in the form of a percentage (e.g., what percentage
of the horizon line was detected) which does not provide a
true quantitative evaluation of horizon line detection methods.
The percentage metric does not take into account how far the
detected skyline pixels are from the ground truth skyline pixels.
This is why we opted to use absolute average error for presenting
our detection results. It should be noted that Hung et al. (2013)
also reported the absolute average error. Our results indicate
sub-pixel detection error for two of our data sets using the
proposed fusion approach. Although not compared explicitly on
the same data set, Hung et al. (2013) have reported an average
error of more than 3 pixels using a large training set (333
images). In contrast, our training set contained only 9 images
which were captured under the same imaging conditions and
geographical location. It should be noted that the images used in
their experiments were 240 pixel wide whereas the images used
in our experiments were 1388 pixels wide, resulting in horizon
profiles with much more variation.

The rest of paper is organized as follows. In Section 2, we review
the edge-based approach based on the methods of Lie et al. (2005)
and Ahmad et al. (2013, 2014, 2015c). Section 3 describes the edge-
less approach. Section 4 provides a detailed comparison of edge-less
and edge-based methods. In Section 5, we discuss the fusion of edge-
based and edge-less information and provide experimental results to
illustrate its performance. Sections 6 and 7 describe how the problems
of detecting the absence of horizon or a partial horizon line can be
addressed as a by-product of our framework. Finally, Section 8 presents
our conclusions and provides directions for future research.

2. Edge-based horizon detection

In this section, we review the edge-based approach and its ex-
tensions for horizon line detection; these methods form a basis of
comparison with the proposed edge-less approach.

2.1. Lie et al. (2005)

Lie et al. (2005) have formulated the problem of horizon detection
as a multi-stage graph search problem. Given an 𝑀 × 𝑁 image, edge
detection is performed first to compute a binary edge map 𝐸(𝑖, 𝑗) where
1 implies the presence of an edge pixel and 0 a non-edge pixel.

𝐸(𝑖, 𝑗) =

{

1, if (𝑖, 𝑗) is an edge pixel.
0, otherwise.

(1)

The edge map 𝐸(𝑖, 𝑗) is used to build an 𝑀 × 𝑁 multi-stage graph
𝐺(𝑉 ,𝐸, 𝛹,𝛷) where each pixel in the map corresponds to a graph
vertex 𝑣𝑖𝑗 in the graph; a low cost 𝑙 is associated with edge pixels
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Fig. 1. Illustration of the horizon detection steps based on the method of Lie et al.
(2005). Section 2.1 provides the details. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

(vertices) while a very high cost (i.e., ∞) is associated with non-edge
pixels (vertices) as shown below:

𝛹 (𝑖, 𝑗) =

{

𝑙, if 𝐸(𝑖, 𝑗) = 1.
∞, otherwise.

(2)

𝛹 (𝑖, 𝑗) is the cost associated with vertex 𝑖 in stage 𝑗 (i.e., 𝑣𝑖𝑗). It
should be noted that use of ∞ reflects a node with a high numeric cost.
The graph can be visualized as an 𝑁 stage graph where each stage
contains 𝑀 vertices. To deal with edge gaps, they have proposed a
gap filling process. Given a node 𝑖 in stage 𝑗, its neighborhood in the
next stage 𝑗 + 1 is defined by a 𝛿 parameter, that is, the number of
nodes to which 𝑖 could be connected in stage 𝑗 + 1. The edges from 𝑖
to its neighbors are associated with costs equal to the vertical absolute
distance from it as shown in the equation below:

𝛷(𝑖, 𝑘, 𝑗) =

⎧

⎪

⎨

⎪

⎩

|𝑖 − 𝑘|, if 𝐸(𝑖, 𝑗) = 𝐸(𝑘, 𝑗 + 1) = 1
and |𝑖 − 𝑘| ≤ 𝛿

∞, otherwise.
(3)

If a node 𝑖 in stage 𝑗 cannot be connected to any node in stage 𝑗 +1
within 𝛿 distance, a search window is defined using two parameters: 𝛿
and tolerance-of-gap (tog). If an edge node 𝑘 is found within the search
window, gap filling is performed by introducing dummy nodes between
node 𝑖 in stage 𝑗 and node 𝑘 within the search window 𝑗+tog. A high
cost is associated with dummy nodes introduced by the gap filling step.
It should be noted that ∞ in the above equation emphasizes that a node
can only b connected to nodes (in next stage) which have an absolute
vertical distance less than or equal to the set threshold 𝛿.

Once the gaps are filled with high cost dummy nodes, the cost of
the nodes in stages 1 and 𝑁 is increased based on their vertical position
according to the equation below:

𝛹 (𝑖, 𝑗) =

{

(𝑖 + 1)2, if 𝑗 = 1 or 𝑗 = 𝑁
𝛹 (𝑖, 𝑗), otherwise.

(4)

This enforces the assumption that the edges present in the upper
half of the image belong to horizon and hence biases the DP solution
towards shortest paths present in the upper half. Next, two nodes, a
source 𝑠 and a sink 𝑡 are added to the left of the left most stage (i.e. stage
1) and to the right of the right most stage (i.e. stage 𝑁) respectively. A
zero cost is associated with each one of them. The 𝑠 node is connected
with all the nodes in stage 1 while the 𝑡 node is connected with all the
nodes in stage 𝑁 . A shortest path is then found extending from node 𝑠
to 𝑡 using DP which conforms to the detected horizon boundary.

Fig. 1 illustrates the steps of Lie et al. (2005) for a sample image. An
edge map is shown in Fig. 1-(a) where black and white circles represent
edge and non-edge pixels respectively. A search window (highlighted
by blue circles) is shown in Fig. 1-(b) for the edge node in stage
𝑗 = 5 using 𝛿 = 1 and 𝑡𝑜𝑔 = 4. Within the search window 𝑗+tog,
two edge nodes are discovered which are then connected to node 𝑗
by introducing dummy nodes as shown in Fig. 1–(c, d) (highlighted
in green). So, there exist two equal cost paths 1–(e, f) in the resultant
image, highlighted in magenta. However, the nodes in stage 1 and 𝑁
are set to a higher cost associated with their vertical position; this is
reflected by an increasing intensity in Fig. 1–(g). Two nodes 𝑠 and 𝑡
(cyan) are then introduced, as described above, and DP is applied on
this graph. As shown in Fig. 1–(e,f) the two paths have the same cost,
however the bias introduced in 1–(g) would make the upper path of
lower cost and DP will select this path due to the assumption of the
horizon line being present in the upper half. However, it might be
possible that the true horizon line is actually the lower one and that the
upper edge segment was only due to some clouds. It should be noted
that any gap bigger than the search window defined by 𝑗+tog would
not be filled and hence there might still be gaps depending upon the
specific parameter values used.

Generally, the edge-based methods do not make any distinction
between edges that belong to the horizon or those belonging to some
other artifacts e.g. clouds. During gap-filling, such methods can connect
these two types of edges — which can result into solutions where
some part belongs to the horizon and other part belongs to a cloud.
Section 4.2 and Fig. 7 provides explicit examples of failures of post-
processing where clouds have been shown to be confused as part of
solution in Lie et al. (2005) method.

2.2. Ahmad et al. (2013, 2014, 2015c)

In Ahmad et al. (2013), authors used Maximally Stable Extremal
Edges (MSEEs) and classification to reduce the number of non-horizon
edges before applying DP. In their analysis (Ahmad et al., 2014),
they have investigated various texture features (e.g., SIFT Lowe, 2004,
LBP Ojala et al., 2002, HOG Dalal and Triggs, 2005 and their combi-
nations) for training an SVM classifier. The combination of SIFT and
HOG features resulted in the best false negative error rate. Here, we
are mostly interested in the nodal cost formulations proposed in Ahmad
et al. (2014, 2015c) rather on the various texture features. The inter-
ested reader should consult (Ahmad et al., 2013, 2014, 2015c; Porzi
et al., 2014). In their first formulation, the nodal costs were defined
using gradient information. This is a simple extension of the binary
edge map approach of Lie et al. (2005) and does not require training
a classifier. In this case, DP was used to maximize the sum of gradient
magnitudes along a path. To ensure good continuity, they enforce the
constraint that the difference between gradient magnitudes of adjacent
pixels is minimized. The gradient magnitude at each pixel of the input
image 𝐼(𝑖, 𝑗) is computed as follows:

∇(𝑖, 𝑗) = 𝛤 [𝐼(𝑖, 𝑗)] (5)

where, 𝛤 is a function which takes a gray scale image 𝐼 as input and
returns the gradient magnitude image ∇. Next, the difference of the
gradient magnitude image 𝑑∇(𝑖, 𝑗) is computed. Since a node 𝑖 in stage
𝑗 can be connected to as many nodes in stage 𝑗 + 1, as defined by
the 𝛿 parameter, several gradient magnitude difference images need
to be generated. The equation below shows the gradient magnitude
difference image assuming that the nodes are connected at the same
level between stages:

𝑑∇(𝑖, 𝑗) = |∇(𝑖, 𝑗) − ∇(𝑖, 𝑗 + 1)| (6)

The normalized (i.e., between 0 and 1) gradient magnitude and
gradient difference images are combined through a weighted average
as shown in the equation below:

𝐺𝑟(𝑖, 𝑗) = 𝑤1 ∗ 𝑑∇(𝑖, 𝑗) + (1 −𝑤1) ∗ (1 − ∇(𝑖, 𝑗)) (7)
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Fig. 2. Visualization of various types of information used in the formulation of different nodal costs (Ahmad et al., 2015c): (a) original image, (b) gradient magnitude image, (c)
difference of gradient magnitude image, (d) weighted average 𝐺𝑟, (e) classification score image and (f) classification score image + weighted average 𝐺𝑟.

where 𝑤1 is the weight parameter; in our experiments, we have set
𝑤1 = 0.5. Note that since DP solves a minimization problem, we have
used the difference (1 − ∇(𝑖, 𝑗)) in the equation above. The weighted
average 𝐺𝑟 was used as the nodal cost:

𝛹 (𝑖, 𝑗) = 𝐺𝑟(𝑖, 𝑗) (8)

The link costs may be initialized using Eq. (3). Next, Ahmad et al.
(2013, 2015c) considered MSEEs and classification as a way to filter out
non-horizon edges. Given a query image, they first apply Canny edge
detection using various thresholds and keep only those edges which
remain stable over a range of thresholds. The idea was inspired by
MSER (Matas et al., 2002) and is coined as MSEE. This step reduces the
number of non-horizon edges since horizon edges tend to be stronger.
The MSEE map 𝐸𝑚(𝑖, 𝑗) is further refined by classifying each MSEE pixel
(i,j) as horizon or non-horizon:

𝐶(𝑖, 𝑗) =

{

1, if (𝑖, 𝑗) pixel is classified as horizon.
0, otherwise.

(9)

As mentioned earlier, Ahmad et al. (2013, 2014, 2015c) experi-
mented with various texture features and their combinations for clas-
sification; among them, the SIFT–HOG combination yielded the lowest
false negative rate. The edge map 𝐸+(𝑖, 𝑗), comprising of the horizon
classified MSEE edges, was used to define the nodal costs in the context
of DP. Specifically, the edge map comprising of positively classified
MSEE edge points can be expressed as follows:

𝐸+(𝑖, 𝑗) =

{

1, if 𝐸𝑚(𝑖, 𝑗) = 1 and 𝐶(𝑖, 𝑗) = 1.
0, otherwise.

(10)

One way to define the nodal costs is by using the binary costs based
on 𝐸+(𝑖, 𝑗); this changes Eqs. (2) and (3) as follows:

𝛹 (𝑖, 𝑗) =

{

𝑙, if 𝐸+(𝑖, 𝑗) = 1.
∞, otherwise.

(11)

𝛷(𝑖, 𝑘, 𝑗) =

⎧

⎪

⎨

⎪

⎩

|𝑖 − 𝑘|, if 𝐸+(𝑖, 𝑗) = 𝐸+(𝑘, 𝑗 + 1) = 1
and |𝑖 − 𝑘| ≤ 𝛿

∞, otherwise.
(12)

An alternative way to define the nodal costs is by using the actual
classification scores. This is motivated by the fact that classification
scores provide some confidence about an edge pixel belonging to
the horizon or not. First, the raw classification scores are normalized
between 0 and 1. Then, the nodal costs are initialized by the normalized
classification scores 𝑆(𝑖, 𝑗) instead of setting all positively classified
edges to a fixed cost. Eq. (11) is modified accordingly to reflect this
idea where 𝑆(𝑖, 𝑗) is the normalized classification score. It should be
noted that since DP solves a minimization problem, the classification
score values need to be reversed (i.e., the smaller the classification score
value is the more likely is that the pixel is a horizon pixel).

𝛹 (𝑖, 𝑗) =

{

𝑆(𝑖, 𝑗), if 𝐸+(𝑖, 𝑗) = 1.
∞, otherwise.

(13)

In their last formulation, they have combined classification scores
with gradient information. By combining Eqs. (7) and (13), the nodal
costs can be defined as follows:

𝛹 (𝑖, 𝑗) = 𝑤2 ∗ 𝑆(𝑖, 𝑗) + (1 −𝑤2) ∗ 𝐺𝑟(𝑖, 𝑗), (14)

where, 𝑤2 is a weight parameter; we have set 𝑤2 = 0.5 in our
experiments. Fig. 2 shows visualizations of the various images used to
initialize the nodal costs in DP (Ahmad et al., 2015c).

3. Edge-less horizon detection

Using classification to assess the horizon-ness of an edge pixel has
proven very useful by discarding the edges belonging to non-skyline
regions. However, discarding non-horizon edges does not necessarily
address the issue of edge gaps. To deal with this issue, we propose
classifying all pixels (or pixel within a region of interest) as horizon or
non-horizon pixels. We refer to the classification map obtained as Dense
Classifier Score Image (DCSI). The DCSI is used to form an 𝑀×𝑁 multi-
stage graph where DP is applied to find the horizon line. Specifically,
once we have introduced the source/destination nodes 𝑠/𝑡 and decided
on the value of 𝛿, any shortest path finding algorithm can be used
to find the path that maximizes the sum of classification scores. We
will later show that the number of nodes per stage can be significantly
reduced by only considering the pixels with the 𝑚 highest classification
scores where 𝑚 is a parameter; we refer to this reduced map as mDCSI
map. Using fewer nodes per stage does not affect accuracy while it
speeds up computations considerably. Fig. 3 illustrates the main steps
of the proposed approach. The proposed approach does not rely on
edge detection, therefore, it does not require performing gap filling
or introducing dummy nodes. Moreover, we do not force the nodes in
stages 1 and 𝑁 to be associated with their vertical position since the
assumption of the horizon line being present in the upper half of the
image could be violated as demonstrated in Fig. 1. Our only assumption
is that the horizon line extends from left to right.

3.1. Pixel classification

For classification, we have experimented with two classifiers: SVM
(Cortes and Vapnik, 1995) and a CNN (LeCun et al., 1998). Each
classifier is trained using horizon and non-horizon image patches from
a set of training images where the horizon line has been extracted
manually (ground truth). Specifically, for each training image, we select
N points uniformly from the ground truth; an equal number of points is
randomly selected from non-horizon locations. We take a 16 × 16 image
patch around each sampled point and normalize the pixel intensities
between −1 and 1; the resulted 256-D vector is used for training the
classifiers. For the CNN classifier, we use an architecture comprising
of 2 Convolution(C)–Sub-sample(S) layers followed by fully connected
layers; in principle similar to LeNet (LeCun et al., 1998). The first C–S
layer is comprised of 4 levels with a convolution(C) mask of 5 × 5 and
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Fig. 3. Main steps of the edge-less horizon line detection approach. Sample test images from the Switzerland data set (Baatz et al., 2012) (row1), respective DCSIs (row2), mDCSIs
(row3), and detected horizon lines (row4, highlighted in red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

a sub-sampling(S) mask of 2 × 2. The second C–S layer is comprised of
8 levels with a C mask of 3 × 3 and an S mask of 2 × 2. We have only
used 9 images for training the classifiers with 343 positive (horizon)
and 343 negative (non-horizon) examples extracted from each image
(about 6000 image patches). It should be mentioned that the number
of training examples and key points were the same with those used
to train the SVM classifier for the edge-based approach described in
Section 2.2. However, unlike (Ahmad et al., 2013, 2014, 2015c), we
use normalized pixel intensities instead of local texture features; since
CNN is being compared.

We should note that the CNN network considered in our work is
rather small. This is due to the fact that we are focused here to provide
a general framework for skyline detection problem and addressing
the underlying issues and not much concerned with comparative per-
formance of CNN against SVM which has previously been explored
in Verbickas and Whitehead (2014). By including both classifiers, we
want to highlight that we have proposed a general framework and
the classification model being used is an open choice depending on
applications. Since, our network is small, we have used a fixed learning
rate and Xavier weights for initialization.

3.2. Dense Classifier Score Image (DCSI)

Once the classifiers have been trained, the DCSI can be generated
for a given test image. For each pixel location (𝑖, 𝑗) in the test image,
a 16 × 16 patch of pixel intensities around that pixel is extracted. The
normalized intensities are then used to form a 256-D vector, which is
fed to the classifier. The classification score is then associated with
that pixel location (𝑖, 𝑗). Classification scores are normalized in the
interval [0, 1]; the resultant scores form the DCSI which is denoted as
𝑆(𝑖, 𝑗). In essence, 𝑆(𝑖, 𝑗) can be interpreted as a probability map which
reflects the likelihood of a pixel belonging to the horizon line; similar
to semantic segmentation. This dense classifier score image can directly
be used to initialize the nodal costs under the DP framework as shown
in Eq. (15). Fig. 3 shows the DCSIs for various sample images.

𝛹 (𝑖, 𝑗) = 𝑆(𝑖, 𝑗) (15)

The difference between Eqs. (13) and (15) should be noted. In
Eq. (13), the classification score is used to initialize only those nodes
which are MSEE edges and have been positively classified as horizon
edges whereas in Eq. (15), all the nodes have been initialized with the
normalized classification scores and no edge information has been used.
Also in the former case SIFT–HOG features are extracted around (𝑖, 𝑗)
location while in the lateral case normalized pixel intensities are used.

3.3. Reduced Dense Classifier Score Image (mDCSI)

Although the full DCSI can be used to initialize the nodal costs
as in Eq. (15), we have found that keeping only the 𝑚 highest clas-
sification scores in each column does not compromise accuracy while
reducing computations. This is because the highest classification scores
are typically concentrated within a small band around the horizon
line. We refer to the reduced DCSI as 𝑚𝐷𝐶𝑆𝐼 . The multi-stage graph
corresponding to the mDCSI contains fewer vertices; as a result, fewer
paths need to be considered when searching for the shortest path which
results in considerable speedups. In our experiments, we have found
that by keeping the highest 50 classification scores yields accurate
horizon line detections.

𝑆+(𝑖, 𝑗) =

{

𝑆(𝑖, 𝑗), if among m highest scores in col. j
𝑐, otherwise

(16)

where, 𝑆+ and 𝑆 correspond to mDCSI and DCSI respectively. If the 𝑖th
pixel (node) in column (stage) 𝑗 is among the 𝑚 highest classification
scores for column 𝑗, the classification score from 𝑆(𝑖, 𝑗) is used; other-
wise, the score is set to a very low score 𝑐. Fig. 3 shows examples of
the respective mDCSIs.

3.4. Nodal and link costs

In the approaches described earlier (Hung et al., 2013; Ahmad et al.,
2013, 2014, 2015c; Lie et al., 2005), the edge map is used to form the
multi-stage graph and gap filling is an essential step in extracting the
horizon line. The proposed edge-less approach does not require any gap
filling since it does not rely on edge maps. The mDCSI is used to create
an 𝑀 ×𝑁 graph 𝐺(𝑉 ,𝐸, 𝛹,𝛷) with node costs initialized using 𝑆+(𝑖, 𝑗):

𝛹 (𝑖, 𝑗) = 𝑆+(𝑖, 𝑗) (17)

Since the resulted graph is a dense graph, each node 𝑖 in stage
(column) 𝑗 is connected to three nodes 𝑖, 𝑖−1 and 𝑖+1 in stage(column)
𝑗+1 (i.e., 𝛿 = 1). The link costs are initialized accordingly, by adjusting
Eq. (3),

𝛷(𝑖, 𝑘, 𝑗) =

{

|𝑖 − 𝑘|, if |𝑖 − 𝑘| ≤ 𝛿
∞, otherwise.

(18)

Since, the horizon line might not always appear in the upper half of
the image, we do not initialize the nodes in stages 1 and 𝑁 proportional
to their vertical position. Two dummy nodes, s and t, are introduced to
the left of stage 1 and to the right of stage 𝑁 respectively as described in
Section 2.1. The edge weights from s to every node in stage 1 and from
every node in stage 𝑁 to node t are set to zero. Fig. 4 shows sample
images from two data sets and the detected horizon lines found by the
proposed approach overlaid in red.
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Fig. 4. Sample results illustrating our horizon line detection approach: Basalt Hills data set (row1) and Web data set (row 2 through 4). Detected horizon lines are highlighted
in red/green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4. Comparison of edge-less and edge-based approaches

4.1. Data sets and evaluation metric

To evaluate the performance of the edge-less approach, we have ex-
perimented with two different data sets: the Basalt Hills data set (Nefian
et al., 2014) and the Web data set (Ahmad et al., 2015c). The Basalt
Hills data set is a subset of a larger data set which was generated by
placing cameras on an autonomous robot navigating through Basalt
Hills (Nefian et al., 2014). We have chosen 45 images from this data
set with considerable viewpoint and scene changes. The Web data set
consists of 80 mountainous images that have been randomly collected
from the web. This data set is quite challenging as it includes viewpoint,
geographical and seasonal variations. For training, we used only 9
images from the Basalt Hills data set. In particular, we used 343
positive and 343 negative key points from horizon and non-horizon
locations. The same key points and experimental settings were also
used in Ahmad et al. (2015c). A 16 × 16 block was used around the
key points and the normalized intensities [−1,1] were used as features
since the CNN classifier operates on image intensities directly; this is in
contrast to Ahmad et al. (2015c) where SIFT–HOG features were used
to train an SVM classifier assuming 16 × 16 patches. The resolution
of all images in our data sets is 519 × 1388. Sampling in this manner
results into about 6k image patches.

To quantitatively evaluate the performance of the proposed ap-
proach, we have manually extracted the horizon line (ground truth) in
all the images of our data sets (Basalt & Web). The detected and true
horizon lines are then compared by calculating a pixel-wise absolute
distance 𝑆 between them. First, we compute the absolute distance
between the detected and ground truth pixels in each column; the total
distance is then computed by summing up the errors over the columns.
The resultant distance is normalized by the number of columns, yield-
ing the average error between the detected and true horizon lines. In
our experiments, we allow each node 𝑖 in stage 𝑗 to be connected to
nodes 𝑖 − 1, 𝑖 and 𝑖 + 1 in stage 𝑗 + 1. Since nodes in a particular
stage are not allowed to be connected to other nodes in the same
stage, the true and detected horizon lines are bound to have the same
number of columns/stages in the image/graph. Hence, there is a one-
to-one correspondence between pixel locations in the true and detected
horizon lines:

𝑆 = 1
𝑁

𝑁
∑

𝑗=1
|𝑃𝑑(𝑗) − 𝑃𝑔(𝑗)| (19)

where 𝑃𝑑(𝑗) and 𝑃𝑔(𝑗) are the positions (rows) of the detected and true
horizon pixels in column 𝑗 and 𝑁 is the number of columns in the
test image. Fig. 4 shows some representative results of our horizon
detection approach using images from the Basalt Hills and Web data
sets. Table 1 shows the average (𝜇) and standard deviation (𝜎) of the
absolute error for all the images in our data sets, both for the SVM and
CNN classifiers. For comparison purposes, we also provide results based
on the method of Lie et al. (2005) and Ahmad et al. (2015c) formulation
based on only gradient information.

Table 1
Average absolute errors using edge-based (traditional, without classification) and
edge-less approaches.

Approach Basalt Hills Web

𝜇 𝜎 𝑚𝑖𝑛 𝑚𝑎𝑥 𝜇 𝜎 𝑚𝑖𝑛 𝑚𝑎𝑥

Lie et al. (2005) 5.55 9.46 0.53 49.31 9.15 17.92 0.38 93.02
𝐺𝑟 (Ahmad et al.,
2014, 2015c)

3.99 6.35 0.18 31.33 11.86 26.81 0.15 121.48

SVM-mDCSI 1.01 0.29 0.62 1.76 1.28 1.20 0.37 6.21
CNN-mDCSI 0.75 0.23 0.42 1.28 1.41 1.49 0.27 10.79

It should be noted that while Intersection over Union (IoU) is
conventionally opted for segmentation methods, we have chosen a dif-
ferent metric to measure the performance of different skyline detection
methods. This is because metrics like IoU could be misleading for our
problem. Since, we do not want to measure the number of misclassified
sky and non-sky pixels but rather want to measure how close is a
detected skyline to the ground truth skyline. That is why, we have
chosen average absolute vertical pixel distance which has also been
previously used by Ahmad et al. (2014, 2015c) and Hung et al. (2013).
Our chosen metric provides a fine granularity to measure the pixel-wise
distance compared to IoU. For example, in Fig. 6 our chosen metric is
more descriptive (i.e., solution is off by an average of five pixels in the
top image) whereas IoU would focus on measuring misclassified pixels
and could result in change of digit at or after third decimal place.

4.2. Discussion

Our experimental results (Table 1) illustrate that the proposed ap-
proach outperforms the traditional approach of Lie et al. (2005) based
on edge maps and Ahmad et al. (2015c) based on gradient information
i.e. without any classification. Specifically, both the average error and
standard deviation of the traditional approach are much higher than
the proposed approach based on SVM or CNN classifiers. To better
understand the performance of the traditional approach, we have iden-
tified specific examples where it fails to detect the true horizon line or
it misses parts of it (e.g., horizon edges might not be strong enough
or stronger edges might exist close to the horizon line due to various
environmental effects such as clouds, mist, fog etc.). Although (Lie
et al., 2005) have proposed a gap filling approach by introducing
dummy nodes with high costs, this does not always work well, for
example, when gaps are long and edges from clouds are close to the
horizon line. In these cases, it is likely that the DP approach might find
a low cost path by taking an alternative path. Fig. 5 (row 1) shows
two examples where the method of Lie et al. has failed to find a good
solution due to edge gaps and the presence of edges due to clouds;
the proposed method was able to find the true horizon line with high
accuracy in both cases (row 2). Fig. 6 shows detailed sub-images of the
left column images of Fig. 5 for better visualization.

Another reason affecting the performance of Lie et al. is the un-
derlying assumption about the edges in upper half of the image being
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Fig. 5. Examples illustrating: [row 1] missing the horizon line or parts of it due to
edge gaps (Lie et al.), and [row 2] detecting the true horizon line using our approach
(SVM).

Fig. 6. Detailed sub-images of the left column images of Fig. 5.

Fig. 7. Examples illustrating: [row 1] missing parts of the horizon line due to the
assumption that the horizon line is close to the top of the image (Lie et al.), and [row
2] detecting the true horizon line using the proposed approach (SVM-mDCSI).

due to horizon boundary. When clouds are present in an image, this
assumption might cause a portion of the true horizon to be missed if
the true horizon line is below the clouds. Fig. 7 shows some examples
where the approach of Lie et al. has found solutions consisting of both
horizon line segments as well as cloud edge segments. Our approach,
on the other hand, was able to find the correct solution for these cases
as it does not make such assumptions.

Comparing the two classifiers used in our experiments, the CNN
classifier outperforms the SVM classifier on the Basalt Hills data set
while the SVM classifier outperforms the CNN classifier on the Web
data set. This indicates that the features found by the CNN classifier
might not generalize well to different data sets. Fig. 8 shows some
representative DCSI results using the SVM and CNN classifiers. It is
worth noting that the CNN classifier provides a crispier DCSI, having a
narrower band around the true horizon line as compared to the DCSI
produced by SVM while both trained on the same sized image patches.
We would like to highlight that a deeper and well-optimized CNN
network probably will outperform SVM by a bigger margin. However,
our focus here is to demonstrate that the proposed skyline detection
framework is general and different classifier can be used suitable for
different applications.

In an effort to better understand why the edge-less approach some-
times finds poor solutions, we have identified two main reasons. The
first reason is due to not allowing nodes in some stage to connect with
nodes in the same stage but only with nodes in the next stage. In the

Fig. 8. Test images (column1), corresponding SVM-DCSIs (column2) and CNN-DCSIs
(column3).

Fig. 9. [row 1] effect of not allowing node connections within the same stage; [row
2] solution obtained by allowing node connections within the same stage.

multi-stage graph formulation of Lie et al. a node in stage j is only
allowed to be connected with nodes in stage j+1; this, however, is
problematic when the horizon line has high slope (i.e., steep peaks);
Fig. 9 (row 1) shows an example (zoomed image segment). This issue
can be easily rectified by allowing nodes in some stage to be connected
both with nodes in the same and next stages. Fig. 9 (row 2) shows the
solution obtained by allowing connections between nodes in the same
stage. Allowing connections within the same stage, however, increases
time requirements.

The second most important reason affecting the performance of
the proposed approach is due to using a very small set of training
images (i.e., only 9 images from the same data set). Fig. 10 shows some
examples where the proposed method has failed to find good solutions.
This issue can be addressed by increasing the size of the training set and
making it more versatile. Careful analysis of our results on the Web data
set shows that the proposed approach failed to find a good solution
in 9 out of the 80 images due to using a small training set; where a
good solution is defined as to have the average absolute error below 1.5
pixels. Removing these images from the data set improves the average
error of our approach using the SVM classifier from 1.2854 to 0.9227
while the variance is reduced from 1.1988 to 0.3637 i.e. a sub-pixel
accuracy is achieved for 90% of the images.

5. Fusion of edge-based and edge-less approaches

5.1. Edge-less versus edge-based approaches

For comparison purposes, Table 2 compares the proposed edge-less
approach with the edge-based approaches using edge classification. As
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Fig. 10. Examples illustrating the inability of the proposed method to find a good
solution due to using a small training data set.

Table 2
Average absolute errors using edge-based (traditional, with classification) and edge-less
approaches.

Approach Basalt Hills Web

𝜇 𝜎 𝑚𝑖𝑛 𝑚𝑎𝑥 𝜇 𝜎 𝑚𝑖𝑛 𝑚𝑎𝑥

SIFT+HOG Edges (Ahmad
et al., 2014, 2015c)

0.57 1.02 0 3.58 0.87 1.03 0.43 7.05

SIFT+HOG Scores (Ahmad
et al., 2014, 2015c)

0.41 0.81 0 3.08 0.97 1.57 0.38 12.19

SIFT+HOG Scores + 𝐺𝑟
(Ahmad et al., 2014, 2015c)

0.43 0.81 0 3.08 1.30 3.98 0.38 34.95

SVM-mDCSI 1.01 0.29 0.62 1.76 1.28 1.20 0.37 6.21
CNN-mDCSI 0.75 0.23 0.42 1.28 1.41 1.49 0.27 10.79

it is evident from Tables 1 and 2, using machine learning for horizon
line detection is very promising. Both machine learning approaches
outperform the classical edge-based approach (Lie et al., 2005) by
a high margin. A quick look of Table 2, however, reveals that non-
classical edge-based approaches (Ahmad et al., 2015c) outperform the
edge-less approach by a small margin. In an effort to better understand
and explain these results, we have identified several reasons which are
discussed below. Moreover, to leverage the strengths and weaknesses
of each approach, we propose a fusion strategy.

5.1.1. Ground truth bias and multiple horizons
While generating the ground truth, we used the results of edge

detection to better localize the horizon line which favors the edge-based
methods when computing the error. Moreover, sometimes there are
more than one horizon lines in an image (e.g., lower mountains sitting
in front of higher and more distant mountains); while generating the
ground truth in those images, we chose the strongest edge segments.
When using edge-based methods for horizon line detection, these seg-
ments are typically part of solution; however, this might not be the case
for edge-less methods. To sum it up, the ground truth is more biased
towards edge-based approaches.

5.1.2. Smoother localization
Edge-based solutions tend to be smoother while edge-less method

are typically bumpy. This is because DP tries to find a path with a
low cost without imposing any smoothness constraints on the solution
which favors edge-based methods again.

5.1.3. Miss-classifications
Edge-less methods suffer more from miss-classifications compared

to edge-based methods. This is because every pixel is classified in the
case of edge-less methods while only a much smaller number of edge
pixels are classified in the case of edge-based methods.

Fig. 11 shows several examples where edge-based horizon detection
has outperformed edge-less horizon detection. Fig. 12 provides more
details.

Fig. 11. Edge-less (left column) vs edge-based (right column) horizon detection results:
(a) multiple horizons, (b) smoother localization, (c) miss-classifications. In each case,
the edge-based approach as outperformed the edge-less approach.

Fig. 12. Detailed segments from Fig. 11: (a) multiple horizons, (b) smoother
localization, (c) miss-classifications.

5.2. Fusion

We discussed in the previous section several reasons favoring edge-
based methods. On the other hand, the main advantage of the edge-less
approach is that the DCSI map contains no gaps. To improve horizon
line detection, we propose fusing information from edge-based and
edge-less methods.

The fusion of gradient information with pixel classification scores
is a natural extension of Eq. (14) assuming that both 𝐺𝑟 and 𝑆 are
dense maps. Fusing edge information with pixel classifications can be
performed in two steps. First, the DCSI map (i.e., 𝑆(𝑖, 𝑗)) is generated
for the query image which provides the horizon-ness for each pixel.
Second, edge detection is performed on the query image; then, the
horizon-ness of each pixel is boosted if that pixel happens to be an
edge pixel. We have considered both Canny and MSEE edges in our
experiments. Depending on whether Canny edges (i.e., 𝐸(𝑖, 𝑗)) or MSEE
edges (i.e., 𝐸𝑚(𝑖, 𝑗)) are used, Eq. (15) needs to be modified as follows:
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Fig. 13. Fusion based horizon detection: (a) query image, (b) DCSI, (c) MSEE Edges, (d)
fused DCSI, (e) detected horizon (red boundary). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

𝛹 (𝑖, 𝑗) =

{

𝑆(𝑖, 𝑗) + 𝑏, if 𝐸(𝑖, 𝑗) = 1
𝑆(𝑖, 𝑗), otherwise;

(20)

𝛹 (𝑖, 𝑗) =

{

𝑆(𝑖, 𝑗) + 𝑏, if 𝐸𝑚(𝑖, 𝑗) = 1
𝑆(𝑖, 𝑗), otherwise;

(21)

where, 𝑏 is a constant added to strengthen the horizon-ness of a pixel.
Once the nodal costs have been assigned, the rest of the steps (i.e., link
costs and DP) are the same as described earlier. Fig. 13 shows various

Fig. 14. Percentage distribution of average absolute error across images in Switzerland
data set (Baatz et al., 2012): 45% horizons detected with sub-pixel error while 67%
solution with an average absolute error of less than 5-pixels.

steps of the proposed fusion strategy. The DCSI 13–(b) is combined with
MSEE edges 13–(c) to obtain the fused DCSI 13–(d) which is then used
for finding the shortest path (horizon) by applying DP.

Table 3 provides a quantitative comparison of our fusion formula-
tions; for completeness, we have also included the best results of the
edge-based and edge-less approaches from Table 2. As Table 3 shows,
using gradient information tends to harm the overall accuracy which
is in agreement with our earlier results using gradient information
(Table 1). This is because there are edges, due to clouds, with strong
magnitudes near the horizon which become part of the DP solution.

Fig. 15. Examples of faulty detection with average error more than five pixels: sample images (column 1 & 3), solution found by fusion approach (column 2 & 4).
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Fig. 16. Absence of horizon affecting the mDCSIs, causing them to have high scores for found shortest paths: Column 1 and 4 showing images with and without horizons
respectively, respective SVM-DCSIs (columns 2 & 5) and mDCSIs (column3 & 6) show no continuity for non-horizon images.

Fig. 17. Examples of absence of horizon line detection: sample images (column 1), respective DCSIs (column 2) and mDCSI (column 3) and faulty solutions found by DP (column
4, highlighted in red) which would be identified by the Gaussian classifier as faulty detections. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Ignoring the strength of edges (i.e., gradient magnitude) by simply
boosting the horizon-ness of edge pixels is more effective in excluding
cloud edges from becoming part of the detected horizon line. It is
interesting to note that using Canny edges for fusion is slightly better

on the Web data set than using MSEE edges; this is because some
horizon edges might not survive during the extraction of MSEE edges.
Overall, the proposed fusion approach (SVM-DCSI+Canny Edges) has
outperformed all edge-based and edge-less formulations.
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Fig. 18. Steps towards determining the start/end point for partial horizons: (a) DCSI for an image with partial horizon, (b) mDCSI, (c) average classification scores for each
column, (d) smoothed averages, (e) peak corresponding interest point and (f) found end point marked by vertical red bar.

Table 3
Average absolute errors using fusion of edge-based (No Classification) and edge-less
information.

Approach Basalt Hills Web

𝜇 𝜎 𝑚𝑖𝑛 𝑚𝑎𝑥 𝜇 𝜎 𝑚𝑖𝑛 𝑚𝑎𝑥

SIFT+HOG Edges (Ahmad
et al., 2014, 2015c)

0.57 1.02 0 3.58 0.87 1.03 0.43 7.05

SVM-mDCSI 1.01 0.29 0.62 1.76 1.28 1.20 0.37 6.21
SVM-DCSI+𝐺𝑟 0.60 0.29 0.17 1.31 4.86 15.98 0.14 98.46
SVM-DCSI+MSEE Edges 0.73 0.32 0.48 2.07 0.85 0.89 0.35 5.05
SVM-DCSI+Canny Edges 0.77 0.35 0.48 2.07 0.78 0.76 0.35 4.84

5.3. Further evaluation

To further test the fusion approach, we have considered the Switzer-
land data set (Baatz et al., 2012). This data set is comprised of more
than 200 mountainous images with considerable viewpoint, terrain
and weather variations. The ground truth has been made available by
the authors of Baatz et al. (2012). Our fusion strategy has achieved
a sub-pixel average error in 90 out of the 203 images and less than
5 pixels error in 67% of the images. Fig. 14 shows the distribution
of absolute average error for the Switzerland data set. It should be
emphasized that these images are very challenging, never seen by the
trained classifier, and captured under different seasonal conditions and
geographical locations. It is worth mentioning that Baatz et al. (2012)
have reported that human interaction was necessary for almost half of
these images in order to extract the horizon line in their localization
experiments. Also, they did not report the average errors for the detec-
tion; so it is not clear how good the detection was for half of the images
where horizon was detected without any human involvement. Fig. 20
shows some examples from the Switzerland data set, along with the
ground truth and detected horizon lines using our fusion method (SVM-
mDCSI+Canny Edges) while Fig. 15 shows some examples of faulty
detections with average absolute error beyond five pixels.

It should be noted that in most of these cases DP found a solution
which corresponds to discontinuity caused by another mountain sitting
in front of a distant (less discontinuous) horizon or snowy mountains
having more confidence than the actual horizon. The fusion approach
did not get any benefit from edges because both faulty and actual
horizon has edge support where as the solution has more confidence
due to classifier compared to the actual horizon. It should be noted

Table 4
Percentage verification accuracies for different 1d/2d Gaussian classifiers for the
good-ness of Baatz et al. (2012) data set.

Gaussian classifier TP TN FP FN

1D : 𝜇 vector 92.42 50.75 49.25 7.57
1D : 𝜎 vector 93.18 82.09 17.91 6.81
2D : 𝜇 & 𝜎 vectors 89.39 82.09 17.91 10.60

that our training set of nine images does not contain a single snowy
image. We expect the accuracy to increase a lot if snowy examples are
added to the training set.

5.3.1. Verification
The distribution of the nodal costs along the DP solution (i.e. de-

tected horizon) provides a metric about the good-ness of the solution.
We exploit this information to verify if a found solution is actually
a good/acceptable solution (error ≤ 5 pixels) or a faulty one (error
> 5 pixels). This verification can be of great interest; for example in
visual geo-localization or planetary rover localization; knowing that the
found horizon solution is a faulty one would save the computations
in the subsequent steps of localization pipeline i.e. DEM rendering
and horizon matching etc. Specifically, we compute the mean and
standard deviation of the nodal costs for the pixels belonging to the
detected solution by DP. The mean and/or standard deviation measure
the divergence of the nodal costs for the nodes belonging to horizon
solution. The intuition being that: for a faulty solution the nodal costs
along the path would diverge and hence result in comparatively big
values for mean and standard deviation. A simple 1d/2d Gaussian
classifier can then be trained for the verification of found solutions.
The computation for mean (𝜇𝑑) and standard deviation (𝜎𝑑) are shown
in the equations below,

𝜇𝑑 = 1
𝑁

𝑁
∑

𝑗=1
𝛹 (𝑃𝑑(𝑗), 𝑗) (22)

𝜎𝑑 =

√

√

√

√

√

( 1
𝑁

𝑁
∑

𝑗=1

[

𝛹 (𝑃𝑑(𝑗), 𝑗) − 𝜇𝑑
]2
)

(23)

where 𝑃𝑑(𝑗) is the node (row) index for 𝑗th stage (column) in the
detected path, 𝑁 is the number of stages in the graph for DP and cost
𝛹 follows from Eq. (20).
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Fig. 19. Examples of partial horizon line detection: sample images (column 1), respective DCSIs (column 2) and mDCSI (column 3) with determined start/end points (marked by
vertical red bars) and partial horizons found by DP (column 4, highlighted in red).

For verification of horizon solutions found for Baatz et al. (2012)
data set, we first computed the 𝜇𝑑 and 𝜎𝑑 for all the images in the
Web data set and formulated 1d Gaussian classifiers based on means,
standard deviations vectors alone and a 2d Gaussian classifier based on
both mean and standard deviation vectors. These classifiers are then
used to verify if a found solution is good or faulty based on computed
mean and deviation for each solution from Switzerland data set (Baatz
et al., 2012). Table 4 shows the percentage false positive, false negative,
true positive and true negative rates for each of these 1d/2d classifiers
used to verify solutions from Baatz et al. (2012) data set. To the best of

our knowledge this is the first attempt towards measuring the good-ness
of a found horizon solution.

6. Non-horizon line detection

The solution verification introduced in previous section can further
be extended for verifying the presence/absence of horizon at all. In
various applications, including rover navigation, it is important to
detect the horizon line with high confidence. In the DP formulation,
however, a shortest path solution will always be found irrespective
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Fig. 20. Results of the proposed fusion on sample test images from Switzerland data set (Baatz et al., 2012): query images (columns 1 & 4), ground truth segmentations (columns
2 & 5) and found horizon lines (columns 3 & 6, highlighted in red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

of whether the horizon is actually present in the query image or not.
To the best of our knowledge, this problem has not been addressed
before in the literature either. To determine the presence/absence of
the horizon line, the mDCSI map could be used again under the same
framework identified in previous section. Specifically, a narrow band
of pixels with high horizon-ness (i.e., classification scores) is typically
found around the true horizon line; the absence of such a narrow band
would indicate that the horizon line is not visible as shown in Fig. 16.
In this case, the shortest path found would have much higher cost than
a typical solution where the cost is defined as the sum of classification
scores along the path found. A simple Gaussian classifier can then be
used to verify if the solution found reflects absence of horizon in the

query image same as used to verify the good-ness of detected solution
in previous section.

Using a collection of 40 mountainous images from web where
horizon line was not visible, we were able to confirm that Gaussian
classifier based on Web data set correctly classified these solutions to
be faulty. Some of these examples along with their DCSIs, mDCSIs and
found solutions are shown in Fig. 17. It should be noted that how DP is
trying to find a continuous path e.g. along the mountains, pathways and
roads. The DCSIs generated are based on the original proposed edge-less
approach and not that of fusion and hence the respective nodal costs
used for the Gaussian classifier.
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7. Partial horizon line detection

Previous studies have not addressed the issue of partial horizon line
detection i.e. when segment of the horizon is missing and horizon not
necessarily extends from left most column to right most. When flying
and ground robots move at various angles or steep terrains, however,
it is often the case that only a partial horizon line is visible. From a
theoretical point of view, the presence of a partial horizon line provides
sufficient information in a number of tasks, for example, in robot
localization or visual geo-localization. The problem of partial horizon
detection boils down to the problem of determining where to place the
start and sink nodes in the DP formulation. In the general case, it is
assumed that the horizon line extends from the left most column to
the right most column of the image which might not always be true as
shown in Fig. 19-row1. The mDCSI map can be exploited to determine
the end points of the horizon boundary. Given a query image, the
mDCSI map is computed as described earlier. Then, we compute an
average classification score for each column in the mDCSI map and
apply smoothing (based on averaging) using a 1x3 window. After
smoothing, the start/end points of the horizon line are determined by
local maxima detection. Fig. 18 shows a sample DCSI image containing
a partial horizon from the Basalt Hills data set (a), the respective
mDCSI (b), the average and smoothed classification scores (c, d), the
end point detected through local maxima detection (e), and the found
end point marked on the mDCSI (f). We have experimented with 40
partial horizon images collected from web and were able to successfully
find the partial horizon in 35 of them. Some representative results
of partial horizon line detection are shown in Fig. 19 along with the
end points found by our method. It should be mentioned that very
accurate detection of the start/end points is not necessary and that
extracting a portion of the horizon line would be sufficient for various
applications. We are again demonstrating these results based on edge-
less approach/nodal costs and not the fusion strategy, although that can
be equally applicable.

8. Conclusion

We have presented an edge-less horizon line detection approach
where classification scores are used within a DP framework. This for-
mulation differs from earlier DP based solutions where edges are used
to construct a multi-stage graphs which suffers from edge-gaps. We
have trained SVM and CNN classifiers using normalized pixel intensities
to generate DCSI/mDCSI images. A comparative analysis between the
proposed and other edge based methods has been provided using
two challenging data sets. Moreover, a fusion strategy was proposed
where edge information is used to further enhance the horizon-ness
confidence. The fusion strategy is shown to outperform all other for-
mulations and is further tested on an additional challenging test set.
The fusion strategy is further tested on an extensive more challenging
data set with reasonable performance given the limited training. We
demonstrate various by-products of our proposed approach, for exam-
ple statistical measures along the detected path are used to determine
the good-ness of the solution and hence determining the acceptability
of solution for lateral stages of geo-localization pipeline. We also show
how the proposed approach/fusion can be used to determine the ab-
sence of horizon in a given image and to find a partial horizon line. For
future work, we plan to investigate the suitability of using the horizon
line for ground and flying robot localization. We would like to point
that, due to its time complexity and hybrid nature, current proposed
framework is not suitable for real-time applications and this is an area
of our current research efforts.
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