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Abstract

We present a hierarchical feature fusion model for
image classification that is constructed by an evolution-
ary learning algorithm. The model has the ability to
combine local patches whose location, width and height
are automatically determined during learning. The rep-
resentational framework takes the form of a two-level
hierarchy which combines feature fusion and decision
fusion into a unified model. The structure of the hierar-
chy itself is constructed automatically during learning
to produce optimal local feature combinations. A com-
parative evaluation of different classifiers is provided on
a challenging gender classification image database. It
demonstrates the effectiveness of these Feature Fusion
Hierarchies (FFH).

1. Introduction

The generalization of new image acquisition devices
and the development of new feature appearance extrac-
tors have recently increased the interest of combining
complementary modalities to perform complex image
classification tasks. The fusion of different feature sets
is promising for a large extent of applications in med-
ical imaging, biomedical, remote sensing, robotics and
computer vision. Hierarchical approaches [5, 3, 2] to
image classification are particularly interesting to solve
complex problems because they are capable to decom-
pose them into tasks that are often easier to tackle.
However, those approaches often tend to manually de-
fine the structure of their hierarchy depending on the
features involved [7], and can only exploit a limited
number of features.

The current paper addresses these problems by pre-
senting a framework, named Feature Fusion Hierarchies
(FFH) (Section 2), that performs image classification
based on a large set of features extracted from Gabor
and Laplace filters. The learning of optimal Feature Fu-

sion Hierarchies (FFH) is a particularly challenging task
because both the structure and the parameters of the hi-
erarchy have to be estimated. To this end, we propose
to exploit a genetic learning algorithm (Section 3) to ex-
plore the space of possible hierarchies.

The effectiveness of the framework is evaluated in
Section 4 on a gender classification task from facial im-
ages, which is a two-class image classification problem.
Results are compared to the state-of-the-art by report-
ing the accuracy of different classifiers used within the
framework: Nearest Neighbors Classifiers (NN), Lin-
ear Discriminant Analysis (LDA), Support Vector Ma-
chines (SVM) and Kernel Spectral Regression (KSR).

2. Feature Fusion Hierarchies

Feature Fusion Hierarchies (FFH) address the prob-
lem of fusing high-dimensional registered feature sets
for image classification. The representational frame-
work takes the form of a two-level hierarchy which
combines local feature fusion and decision fusion into a
unified model (Figure 1).

Given a feature set I(x, y, f), where (x, y) denotes
a position in the image, and f is a feature, the feature
fusion level is defined as a set of compound features C.
Each compound feature Ci combines a subset of fea-
tures fCi

over a local window θCi
. This fusion is per-

formed using a dimensionality reduction technique, and
denoted Ri(IfCi

,θCi
). It is learned a supervised way

(e.g. LDA). A key property of this functionRi is to op-
erate locally in the sense that it exploits local adaptive
windows [4] whose parameters θCi

= {x, y, Sx, Sy}
are automatically adjusted during learning (position in
the image (x, y), width Sx and height Sy). The out-
put of the function Si = Ri(IfCi

,θCi
) corresponds to a

vector of lower dimensionality. An additional classifier
is learned on the top of the first level to form the sec-
ond level D corresponding to the decision fusion. Its
input data correspond to the compound feature output
{S1, S2, . . . , Sn} merged into a single vector S.
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Figure 1. Overview of a Feature Fusion Hierarchy
(FFH). For a given image, Gabor and Laplace features
are extracted and used as input to local feature fusion
operators Ci. The second level classifier exploits the
responses Si to produce a single decision value.

3. Learning of Fusion Hierarchies

Learning Feature Fusion Hierarchies is particularly
challenging because both the structure and the parame-
ters of the model have to be estimated. Unlike many ex-
isting methods, we neither manually assign which fea-
tures to combine nor the local regions of interest on
which the system should focus. Instead, we rather let
the system learn what is the optimal hierarchy in terms
of discriminative power.

The proposed method uses an evolutionary approach
(summarized in Algorithm 1) to explore the space of
possible hierarchies. The optimal solution is the one
that offers the best classification accuracy on the val-
idation data while minimizing the number of features
used and the total area covered by the patches. In the
following, we discuss the encoding of genomes (Sec-
tion 3.1), the fitness function (Section 3.2) as well as
the crossover and mutation strategies (Section 3.3) of
the proposed GA, respectively.

Algorithm 1 Genetic Learning Algorithm
1: // Generate the initial population
2: {P} ← generate()
3: // Evaluate the fitness of each genome g ∈ P
4: F ← eval(P)
5: for each i < nIteration do
6: // Rank-based selection
7: P ′ ← select(P,F)
8: // Crossover
9: P ′ ← combine(P ′)

10: // Mutate
11: P ′ ← mutate(P ′)
12: // Evaluate
13: Fc ← eval(P ′)
14: // Create the new population using elitism
15: P ← generate(F ,Fc,P ′, C)
16: end for

3.1. Genome Representation

Each evolving individual (i.e. genome) in the pop-
ulation is represented as a binary vector encoding the
structure and the parameters of a specific hierarchy.

A genome defines the hierarchy as a set ofNc combi-
nations Ci. Each combination in the genome is defined
by two parts:

• The structure corresponds, for each combination
in the hierarchy, to the subset of features that are
combined fCi = {f1, . . . , fn}.

• The parameters θCi
= {x, y, Sx, Sy} of a com-

bination define the spatial position x, y and size
Sx, Sy of the local window in the image on which
the fusion is performed.

As illustrated in Figure 2, a genome encodes these
two types of information, structure and parameters, into
a single binary vector. Given n features at the first level,
the structural part is represented as a n-length vector en-
coding the presence of the features in the combination.
Each bin is associated with one bit whose value is 1
is the corresponding feature is a part of the combina-
tion. For the parameter part, variables {x, y, Sx, Sy}
are each represented as b bits vector. Parameter b is
chosen such that x, y cover the entire image. During
learning, an additional constraint insures that x, y are in
the image coordinate and Sx, Sy are strictly positive.

3.2. Fitness

The goal of the optimization framework is to find the
structure and the parameters of the hierarchy that per-
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forms best in terms of classification accuracy. There-
fore, the fitness function fit(g) is set proportional to the
classification rate r of the genome encoded hierarchy g,

fit(g) = r(g) + α1n+ α2s
−1 (1)

where n is the number of zeros in the structure part of
the genome g and s is the total area covered by the
patches. Parameters α1 and α2 are used respectively
to support combinations that both have a fewer number
of features and are defined over a smaller window.
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Figure 2. A Feature Fusion Hierar-
chy made of four compound features
(c1, c2, c3, c4) is encoded into a genome.
The structural part and the parameters
are embedded into a single binary vector.

3.3. Mutation and Crossover

The crossover operator uses individuals in the pop-
ulation that have been selected to generate offsprings.
A bi-parental crossover is used in our algorithm to pro-
duce new individuals.

Given N individuals selected in a linear Rank-based
strategy, the algorithm produces a new population of the
same size. To this purpose, two parents are picked at
random from the pool of individuals and used in the
crossover operation. This is done using the result of
a random crossover operator. Each bit of the vector is
randomly chosen (with probability 1/2) from one of the
two parent vectors. The second offspring consists of the
components not chosen for the first resulting vector.

The mutation operation is performed using a single
point mutation operator which picks a mutating gene
randomly with the mutation probability using a biased
coin toss. After the mutating gene is selected, its value
is inverted.

3.4. Elitism

An elitist strategy is used to prevent from losing the
best solutions found at each iteration. The best 10 chro-

mosomes are copied to the population in the next gen-
eration.

4. Experimental Evaluation

The effectiveness of the proposed framework is now
evaluated on a gender classification task. Given a set
of facial images captured under various conditions, the
task is to correctly identify the gender (Male or Female)
of the subject present in the image.

Gender classification is particularly interesting be-
cause it is one of the most important visual tasks for
human beings. Social interactions critically depend on
the correct gender perception of the parties involved.
The automatic learning of the visual features that are
relevant for this task is therefore particularly interesting
and challenging.

The dataset and the protocol used in our experiments
are described in Section 4.1. In Section 4.2, we present
the Gabor and Laplace convolutions that are used to ex-
tract different features on each image and thus produce
the input data of the Feature Fusion Fierarchies. Quan-
titative results for different classification techniques are
compared to the state-of-the-art and discussed in Sec-
tion 4.3.

4.1. Dataset

The dataset used in our experiments is the same
that has been used by SUN et al. in their comparative
study [6]. It contains 400 distinct frontal images and is
particularly challenging due to the presence of different
races, facial expressions, and lighting conditions. The
400 images were equally divided between males and fe-
males. Some of these images are illustrated in Figure 3.
As experimental protocol, the average error rate was
recorded using a three-fold cross-validation procedure
with the restriction that the number of male and female
faces must be equal in each separate training, validation
and test set.

As it was mentioned in [6], it must be noticed that
this database is more challenging than those used in
other studies, where the same person appears multiple
times in the dataset or where the intraclass variation is
low.

4.2. Feature Extraction

Each image is convolved by a set of Gabor and
Laplace filters to produce features that constitute the in-
put data of our framework. A particularity of Gabor Fil-
ters is to share some characteristics with certain cells of
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Figure 3. Illustration of the Gender Classi-
fication Database [6] used during our ex-
periments. The images are particularly
challenging due to the large intra-class
variation.

the visual cortex. In addition these filters have demon-
strated improved accuracy in many computerized visual
tasks [7]. A Gabor Filter is a linear filter whose impulse
response is defined by a harmonic function multiplied
by a Gaussian function,

g(x, y) = exp(−x
′2 + γ2y′2

2σ2
) cos(2π

x′

λ
+ ψ) (2)

x′ = x cos θ+ y sin θ y′ = −x sin θ+ y cos θ (3)

where λ is the wavelength of the cosine factor, θ repre-
sents the orientation of the normal to the parallel stripes
of a Gabor function in degrees, ψ is the phase offset in
degrees, and γ is the spatial aspect ratio that specifies
the ellipticity of the support of the Gabor function.

A number of 35 Gabor Filters and 5 Laplacian Filters
were used to convolve each image and creating the first
level feature set.

4.3. Results

For the purpose of these experiments, we compare
the effectiveness of four different classifier, namely
nearest neighbors NN, support vector machine (SVM),
linear discriminant analysis (LDA) and kernel spectral
regression KSR [1].

Both KSR and SVM techniques exploit kernel pro-
jection, also known as the “kernel trick”, to use the lin-
ear classifier to solve a nonlinear problem by mapping
the observations into a higher-dimensional space, where
the linear classifier is subsequently used. In our experi-
ments, a Radial Basis Function (RBF) kernel is used as
a projection matrix,

K(xi, xj) = exp(−γ||xi−xj ||2), γ > 0 (4)

The classification results after a three-fold cross-
validation are reported in Table 1 for different classi-
fiers. It can be observed that the use of our Feature Fu-
sion Hierarchies (FFH) reduces significantly the clas-

sification error of a PCA-based framework and outper-
forms the results obtained by PCA-GA approach [6].
This can be explained by the fact that the Feature Fu-
sion Hierarchies exploit local features whereas PCA-
GA computes the projection on the full image. The best
results are obtained using a recently developed spectral
regression technique [1], SVM classifiers comes sec-
ond. The number of compound features used during
these experiments was automatically selected by repeat-
ing the classification for a different number of parts until
no significant improvement was observed. This occurs
typically around 15 compound features.

NN LDA SVM KSR
PCA[6] 17.7% 14.2% 8.9% -%

GA-PCA[6] 11.3% 9% 4.7% -%
FFH 10.9% 7.2% 4.3% 3.8%

Table 1. Results for three different clas-
sifiers are reported for PCA, GA-PCA [6]
and the Feature Fusion Hierarchies (FFH).

5. Conclusion

We presented Feature Fusion Hierarchies (FFH) that
combines a two-level fusion framework with powerful
local adaptive patches. Both the structure and the pa-
rameters of the models are learned using an evolution-
ary learning algorithm. Our experimental results exceed
the best published results, and highlight the contribution
of our generic framework.
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