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ABSTRACT

There has been a strong trend lately in face processing research away from geometric models towards appearance
models. Appearance-based methods employ dimensionality reduction to represent faces more compactly in a
low-dimensional subspace which is found by optimizing certain criteria. The most popular appearance-based
method is the method of eigenfaces that uses Principal Component Analysis (PCA) to represent faces in a low-
dimensional subspace spanned by the eigenvectors of the covariance matrix of the data corresponding to the
largest eigenvalues (i.e., directions of maximum variance). Recently, Random Projection (RP) has emerged as
a powerful method for dimensionality reduction. It represents a computationally simple and efficient method
that preserves the structure of the data without introducing significant distortion. Despite its simplicity, RP has
promising theoretical properties that make it an attractive tool for dimensionality reduction. Our focus in this
paper is on investigating the feasibility of RP for face recognition. In this context, we have performed a large
number of experiments using three popular face databases and comparisons using PCA. Our experimental results
illustrate that although RP represents faces in a random, low-dimensional subspace, its overall performance is
comparable to that of PCA while having lower computational requirements and being data independent.
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1. INTRODUCTION

Considerable progress has been made in face recognition research over the last decade, especially with the
development of powerful models of face appearance.1 These models represent faces as points in high-dimensional
image spaces and employ dimensionality reduction to find a more meaningful representation, therefore, addressing
the issue of the ”curse of dimensionality”.2 The key observation is that although face images can be regarded
as points in a high-dimensional space, they often lie on a manifold (i.e., subspace) of much lower dimensionality,
embedded in the high-dimensional image space.3 The main issue is how to properly define and determine a
low-dimensional subspace of face appearance in a high-dimensional image space.

Dimensionality reduction techniques using linear transformations have been very popular in determining the
intrinsic dimensionality of the manifold as well as extracting its principal directions (i.e., basis vectors). The
most prominent method in this category is PCA.2 PCA determines the basis vectors by finding the directions
of maximum variance in the data and it is optimal in the sense that it minimizes the error between the original
image and the one reconstructed from its low-dimensional representation. PCA has been very popular in face
recognition, especially with the development of the method of eigenfaces.4 Its success has triggered significant
research in the area of face recognition and many powerful dimensionality reduction techniques (e.g., Probabilistic
PCA, Linear Discriminant Analysis (LDA) Independent Component Analysis (ICA), Local Feature Analysis
(LFA), Kernel PCA) have been proposed for finding appropriate low-dimensional face representations.1

Recently, RP has emerged as a powerful dimensionality reduction method.5 Its most important property is
that it is a general data reduction method. In RP, the original high-dimensional data is projected onto a low-
dimensional subspace using a random matrix whose columns have unit length. In contrast to other methods, such
as PCA, that compute a low-dimensional subspace by optimizing certain criteria (e.g., PCA finds a subspace that
maximizes the variance in the data), RP does not use such criteria, therefore, it is data independent. Moreover,
it represents a computationally simple and efficient method that preserves the structure of the data without
introducing significant distortion. For example, there exist a number of theoretical results supporting that RP
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preserves approximately pairwise distances of points in Euclidean space,6 volumes and affine distances,7 and
the structure of data (e.g., clustering).5

RP has been applied on various types of problems yielding promising results (see Section 2.2 for a brief review).
In this paper, our goal is to investigate the feasibility of RP for face recognition. Specifically, we have evaluated
RP for face recognition under various conditions and assumptions, and have compared its performance to PCA.
Our results indicate that RP compares quite favorably with PCA while, at the same time, being simpler, more
computationally efficient, and data independent. Our results are consistent with previous studies comparing RP
with PCA,5, 6, 8, 9 indicating that RP might be an attractive alternative for dimensionality reduction in certain
face recognition applications.

The rest of the paper is organized as follows: in Section 2 we review RP and present a brief review of its
properties and applications. In Section 3, we discuss using RP for face recognition and present the main steps
of such an approach. Section 4 presents our experiments and results. Finally, Section 5 contains our conclusions
and directions for future research.

2. RANDOM PROJECTION

RP is a simple yet powerful dimension reduction technique that uses random projection matrices to project
data into low-dimensional spaces. We summarize below the key points of RP and present a brief review of its
applications.

2.1. Background

Let us suppose that we are given a set of vectors Γi, i = 1, 2, ..., M , in a p-dimensional space. Then, RP
transforms Γi to a lower dimension d, with d<<p, via the following transformation:

Γ̃i = RΓi (1)

where R is orthonormal and its columns are realizations of independent and identically distributed (i.i.d.)
zero-mean normal variables, scaled to have unit length.

RP is motivated by the Johnson-Lindenstrauss lemma10 that states that a set of M points in a high-
dimensional Euclidean space can be mapped down onto a d>=O(logM/ε2) dimensional subspace such that
the distances between the points are approximately preserved (i.e., not distorted more than a factor of 1± ε, for
any 0 < ε < 1). A proof of this theorem as well as tighter bounds on ε and d are given in11 and.12 There is
also experimental evidence suggesting that the lower bound for d is not very tight and that, in practice, lower d
values have yielded good results.13

The entries of the matrix R can be calculated using the following algorithm5:

Step 1. Set each entry of the matrix to an i.i.d. N(0, 1) value.

Step 2. Orthogonalize the d rows of the matrix using the Gram-Schmidt algorithm.

Step 3. Normalize the rows of the matrix to unit length (i.e., important for preserving similarities in the low-
dimensional space).

The main reason for orthogonalizing the random vectors is to preserve the similarities between the original
vectors in the low-dimensional space. In high enough dimensions, however, it is possible to save computation
time by avoiding the orthogonalization step without affecting much the quality of the projection matrix. This is
due to the fact that, in high-dimensional spaces, there exist a much larger number of almost orthogonal vectors
than orthogonal vectors.14 Thus, high-dimensional vectors having random directions are very likely to be close
to orthogonal.

It should be mentioned that a simpler algorithm has been proposed by Achlioptas12 for approximating the
random matrix, yielding significant computational savings during the compution of R and the projections RΓi.



The algorithm produces a sparse random matrix with elements belonging in -1, 0, 1, therefore, simplifying
the computations considerably. Brigham et al.8 has found that this algorithm performs quite in practice. In
this study, we have chosen to compute the random matrix using the 3-step algorithm outlined above to avoid
introducing potential errors in our results due to the non-orthogonality of R.

2.2. Applications

RP has been applied on various types of problems including information retrieval,15, 16 machine learning,5, 6, 8, 9, 17, 18

and optimization.19 Although it is based on a simple idea, RP has demonstrated good performance in a number
of applications, yielding results comparable to conventional dimensionality reduction techniques, such as PCA,
while having much lower computational requirements.

Several researchers have introduced RP in nearest-neighbor query problems which arise quite often in database
applications when performing similarity searching. Kleinberg15 developed an algorithm for finding approximate
nearest neighbors by combining randomly chosen one-dimensional projections of the underlying data. Indyk and
Motwanti20 used RP, in the form of a locality-sensitive hashing, as part of a randomized algorithm for solving
the nearest-neighbor problem in high dimensions. Using random projection to reduce the original problem to a
series of tractable low-dimensional problems, they produced an algorithm that scales better with dimension that
deterministic methods and is efficiently implementable in practice for sparse indexing of databases.

Papadimitriou et al.,21 have combined RP with Latent Semantic Indexing (LSI) for document categorization
and classification. LSI has shown to be an elegant and accurate technique for solving these problems, however,
its high computational cost make it infeasible for large databases. In their approach, RP was used to speed-up
LSI by reducing the dimensionality of the data prior to applying LSI. In a similar manner, Kurimo22 applied RP
to the indexing of audio documents, prior to using LSI and Self-Organizing Maps (SOMs).

Dasgupta5 combined RP with Expectation-Maximization (EM) to learn high-dimensional Gaussian mixture
models. His results illustrate that data from a mixture of k Gaussians can be projected down to O(logk) dimen-
sions while retaining data separation. He applied this algorithm on a hand-written digit data set achieving good
results. Recently, Li et al.18 used RP with EM to learn geometric object appearance for object recognition. Mo-
tivated by the results of,5 Fern and Brodley17 investigated the application of RP for clustering high-dimensional
data. Using single runs of RP, they demonstrated that the clustering results were very unstable. To deal with
this problem, they proposed using ensembles of RP. Using three different data sets, they demonstrated better
results than using individual runs of RP but also clustering using the EM algorithm and PCA for dimensionality
reduction.

Kaski,6 presented experimental results using RP in the context of a system for organizing textual documents
using SOMs (i.e., WEBSOM). His results illustrate that RP needs moderate number of dimensions for producing
a good mapping. In this case, the results were as good as those obtained using PCA, and almost as good
as those obtained using the original vectors. Brigham and Manilla8 compared several dimensionality reduction
techniques on image and text data. Their results indicate again that RP preserves distances and has performance
comparable to that of PCA while being much faster. More recently, Fradkin and Madigan,9 evaluated RP in
the context of supervised learning. In particular, RP was compared with PCA on a number of different problems
using different machine learning algorithms. They concluded that although RP was slightly worst than PCA, its
computational advantages might make it attractive in certain applications.

Other applications of RP include solving VLSI layout,19 performing approximate kernel computations,23

similarity computations for histogram models,16 protein similarity search,24 and DNA motif discovery.25

3. FACE RECOGNITION USING RANDOM PROJECTION

There are several reasons that make RP attractive for face recognition. First of all, RP is data independent.
This is in contrast to other techniques such as PCA, where the data is projected on a low-dimensional subspace
computed from a training set. This implies that RP is faster to compute compared to PCA as discussed in
the next paragraph. In particular, PCA becomes very expensive to compute when the dimensionality of the
data is very high. Although there exist efficient algorithms for computing the largest eigenvectors (i.e., the ones
corresponding to the largest eigenvalues) without considering the original covariance matrix which is very large



(see4), the number of eigenvectors computed by these methods is limited by the number of training data. This
implies that these algorithms might not be very useful when the data set is small.

Second, RP does not require that the face representations are updated when the face database changes (i.e.,
when new faces are added to the database or old faces are deleted). In contrast, traditional dimensionality
reduction techniques, such as PCA, require recomputing the basis vectors and re-projecting the faces for main-
taining their optimality. Our experimental results in Section 4 (i.e., subjects with same/different identity in
the training/gallery sets) illustrate this fact for PCA. Although there exist algorithms for updating the basis
vectors adaptively,26 there are stability issues with algorithms while the faces still have to be re-projected on
the updated basis.

Finally, RP has much lower computational requirements compared to PCA. Computing a d × p random
matrix is O(pd2)5 using the algorithm presented in Section 2.1 and O(pd) using the simplified algorithm by
Achlioptas.12 On the other hand, traditional methods such as PCA and SVD are more expensive with PCA
being O(p2M)+O(p3) and SVD being O(prM) assuming sparse matrices with r non-zero entries per column.21, 27

It should be mentioned that in general, performing the projection of M points is O(pdM) both for PCA and
RP. However, when approximating the projection matrix using integer values as in,12 the projections can be
computed much faster.

RP has shown to have several other properties that can benefit face recognition. For example, it has been
shown that when the original data form highly eccentric Gaussian clusters, RP preserves the clustering effect
down in lower dimensions (i.e., up to O(logk) dimensions where k is the number of clusters) and produces
more spherical clusters5 which could improve recognition performance. In addition, it has been shown that
for moderate dimensions, the inner product between the mapped vectors follows closely the inner product of
the original vectors, that is, random mappings do not introduce distortion in the data and preserve similarities
approximately.27

Below, we outline the steps of face recognition using RP. The algorithm is similar to the eigenface approach
except that the projection matrix is computed randomly instead of applying PCA on the sample covariance
matrix of the data. Representing each image I as a N ×N vector Γi, we follow the steps below to represent I
in a low-dimensional random space:

Step 1. Compute the average face:

Ψ =
1
M

M∑

i=1

Γi (2)

where, M is the number of face images in the training set.

Step 2. Subtract the mean face from each other face:

Φi = Γi −Ψ (3)

Step 3. Generate the random matrix using the algorithm given in Section 2.1.

Step 4. Project the normalized face images in the random subspace:

wi = RΓi (4)

Each face in the training set is then represented by the coefficients of projection wi. During recognition, the
input face is normalized the same way and projected in the same random space. Then, the face is recognized by
comparing its projections to the projections of the training images, using a similarity-based procedure. Three
different procedures have been considered in this study (see Section 4.2).

4. EXPERIMENTS AND RESULTS

In this section, we evaluate RP for face recognition by conducting a large number of experiments using different
scenarios and several data sets.



4.1. Data Sets

We have considered three popular face databases in this study: ORL,28 CVL,29 and AR.30 The ORL database28

contains 400 face images from 40 subjects with 10 frontal exposures of each assuming different facial expressions,
lighting, and slight orientation changes. The CVL database29 contains 798 images from 114 subjects with 7
exposures of each assuming different facial expressions and orientations. We only used the frontal exposures of
each subject in our experiments (i.e., 3 exposures assuming different facial expressions, that is, 342 images). The
AR database30 is the most extensive of all, containing 3,276 images from 126 subjects. There are 26 frontal
exposures for each subject taken in two different sessions assuming neutral poses (2 images), different facial
expressions (6 images), illumination changes (6 images), occlusions due to sunglasses (6 images) and occlusions
due to scarf (6 images). In each experiment, we divided the database under experimentation into three subsets:
training, gallery, and test. The training set was used only in the case of PCA (i.e., to compute the eigenspace),
which was considered in this study for comparison purposes.

4.2. Experimental Procedure

For each database, we have performed a number of experiments using three different procedures for evaluating
recognition accuracy (i) closest match, (ii) majority voting, and (iii) scoring.

Given a test face, the closest match approach performs recognition by finding the nearest face from the gallery
set. In this case, recognition accuracy is computed as the ratio of the faces recognized correctly from the test set
over the total number of faces in the test set. To account for instabilities in the performance of RP due to the
random nature of the projection matrix, the recognition performance reported for RP is the average over five
different RPs.

In the majority voting approach, we run five different RPs (i.e., the number of RPs was chosen arbitrarily;
running more RPs would produce more stable results) for each test face and find the closest match in each
case. Then, the identity of the face is determined by applying majority voting on the five closest matches found.
Recognition accuracy is computed by dividing the number of correctly recognized faces from the test set with
the total number of faces in the test set.

Given a test face, the scoring approach retrieves the closest x matches from the gallery set. Then, we compute
the recall rate for each test face, that is, the ratio of the face images retrieved from the gallery set that belong
to the same person as in the test face, over the total number of images stored in the gallery for that person.
Recognition accuracy is computed by averaging the recall rates for the test set. In the case of RP, we report
again the average over five different RPs to account for instabilities in the performance of RP due to the random
nature of the projection matrix.

In each experiment, we have evaluated and compared RP with PCA by varying the number of dimensions as
well as the number of images per subject in the gallery set. We have also experimented with varying the identity
of the subjects in the training and gallery sets. This has an effect only on the performance of PCA since RP is
independent of the training set. We describe below our experiments and results in more detail.

4.3. Recognition Results Using Closest Match

First, we tested RP and PCA using the closest match approach. Given a test face, we used RP to project it in
a random, low-dimensional, space using the algorithm outlined in Section 3. The same procedure was used for
PCA except that the low-dimensional space was built using the training set. For each experiment, we varied the
number of dimensions and reported the recognition accuracy using the three procedures discussed in Section 4.2.

We have performed two types of experiments: (a) the training set contains images of the same subjects as
in the gallery set, and (b) the training and gallery sets contain different subjects. The second scenario is more
realistic when we do not have a representative set of images for training (e.g., we do not have enough subjects
or we do not have enough images under different illumination conditions). In this case, we would need to use
images of other subjects to create a representative training set and compute the eigenspace.

Figures 1(a)-(c) show the results using the ORL database assuming subjects with the same identity both in
the training and gallery sets while Figures 1(d)-(f) show the case of subject having different identity. In the first



case, we built the training set using 3 images from each subject (i.e., 120 images) while in the second case, we
built the training set using the images of 13 subjects (i.e., 130 images). The images of the rest 27 subjects (i.e.,
270 images) were used to create the gallery and test sets.

To test the sensitivity of each method, we also varied the number of images per subject in the gallery set,
(i.e., Figure 1(a) - 3 images per subject, Figure 1(b) - 2 images per subject, Figure 1(c) - 1 image per subject,
Figure 1(d) - 5 images per subject, Figure 1(e) - 4 images per subject, and Figure 1(f) - 3 images per subject).
In each graph, the blue line corresponds to PCA while the red line corresponds to RP.

Our first observation is that PCA in general performs better when the identity of the subjects in the gallery
set is the same to the identity of the subjects in the training set. Comparing RP with PCA, our results show that
PCA performs better than RP mostly for low dimensions (i.e., 20-30). This result is consistent with previous
studies where it has been reported that RP compares favorably with PCA for moderate or higher number of
dimensions. The difference in performance becomes smaller and smaller as the number of dimensions increases.

The results using different subjects in the gallery set than in the training set are more interesting. In this
case, it is obvious that RP and PCA have very close performances. In fact, RP seems to be doing slightly better
(i.e., 1%-2%) than PCA for higher dimensions. This is mainly because PCA is data dependent while RP is data
independent. Overall, both methods seem to be affected by the number of images per subject in the gallery set.
Their performance degrades as the number of images per subject in the gallery set decreases. The degradation
in the performance of the two methods has been emphasized by the fact we increase the size of the test set as
we decrease the size of the gallery set (i.e., the images removed from the gallery set are added to the test set).

The results for the CVL database are shown in Figure 2. Figure 2(a) corresponds to using subjects with the
same identity both in the training and gallery sets while Figures 2(b) and (c) correspond to different subjects.
In Figure 2(a), we built the training, gallery, and test sets by splitting the CVL database into three equal parts,
keeping 1 image per subject for each part. In Figures 2(b) and (c) we built the training set using the images of
34 subjects (i.e., 102 images). Figure 2(b) corresponds to storing 2 images per subject in the gallery set while
Figures 2(c) corresponds to storing 1 image per subject in the gallery set. The results for the CVL database are
quite consistent with those for the ORL database. Figure 2(b) presents an interesting case where RP seems to
be doing better than PCA (i.e., 3%-5%) using 50 dimensions and higher.

4.4. Recognition Results Using Majority Voting

It has been reported that RP performs better when averaging the results over several RPs.17 Motivated by
this observation, we report in this section experiments using majority voting on a relatively small ensemble
of five different random projections. The results for the ORL and CVL databases are shown using the green
line in Figures 1 and 2. Since we have performed the same exactly experiments as in the case of the closest
match approach, we chose to plot the results on the same graphs to facilitate comparisons. Our results indicate
that there is a slight improvement in performance using majority voting. In some cases, (i.e., Figure 2(b)), the
improvement seems to be more important than in others.

Figure 3 shows the results using the AR database and majority voting. The blue line corresponds to PCA
while the red line corresponds to RP. In these experiments, the training set was built by choosing 300 images
randomly from the whole AR data set. In Figure 3(a), the gallery set was built using the neutral poses of each
subject while the test set was built using the frames corresponding to different facial expressions. In Figure 3(b),
we used the neutral poses for the gallery set and the frames corresponding to illumination changes for testing.
In Figure 3(c) and (d), we built the gallery set using both the neutral poses and the frames corresponding to
illumination changes. For testing, we used the frames with sunglasses (i.e., Figure 3(c)) and the frames with the
scarf (i.e., Figure 3(d)). Our results indicate that RP using majority voting and PCA have similar performances
with PCA doing better for lower dimensions and RP doing better for higher dimensions. The only exception is
when using occlusion due to scarf for testing in Figure 3(d) where PCA seems to perform better for dimensions
up to 200. As expected, the performance of both methods degrades seriously with occlusion due to sunglasses
and scarf.



4.5. Recognition Results Using Scoring

In this set of experiments, we tested RP and PCA using scoring. It should be mentioned that scoring yields
lower accuracy in general compared to the closest match and majority voting due to the fact that it evaluates
the recall ratio as discussed in Section 4.2. The results for the ORL database are shown in Figure 4, for the
CVL database in Figure 5, and for the AR database in Figure 6. The number of images x retrieved in each
case is shown in the corresponding graphs. When the subjects in the training and gallery sets have the same
identity, PCA shows better performance as before, however, differences in performance decrease with increasing
the number of dimensions. When the identity of the subjects is different, then both methods have yielded
comparable performances. In the case of the AR database, the performance drops significantly when testing
both methods on occlusion due to sunglasses and scarf.

5. CONCLUSIONS

We have presented an experimental study to evaluate RP for face recognition. Our results indicate that RP
compares favorably with PCA, especially when using majority voting and the training and gallery sets contain
subjects having different identity. However, RP is much faster to compute and data independent which might
be important factors to consider in a given face recognition application.

For future research, we plan to investigate more systematically the use of ensembles of RPs for face recognition.
Overall, we did not obtain significant performance improvements in our experiments using majority voting. This
could be due to the small ensemble size or the simplicity of the rule for combining the decisions. We plan to
investigate much larger ensembles as well as more powerful combination rules such as those presented in.31

Using ensembles of RPs is a very promising idea since they can be built very fast and cheap. Preliminary
results using ensembles of size 30 have shown that there is good diversity in recognition performance among
different RPs which is important for improving overall performance. We also plan to perform comparisons with
more powerful dimensionality reduction techniques such as LDA and ICA.
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(a) (b) (c)
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Figure 1. Experiments using the ORL database, closest match, and majority voting. (a)-(c) Same subjects in the training
and gallery sets, (d)-(f) Different subjects in the training and gallery sets. The proportion of subjects in the gallery and
test sets varies as shown. The blue line corresponds to PCA using closest match, the red line corresponds to RP using
closest match, and the green line corresponds to RP using majority voting.

(a) (b) (c)

Figure 2. Experiments using the CVL database, closest match, and majority voting. (a) Same subjects in the training
and gallery sets (b)-(c) Different subjects in training and gallery sets. The proportion of subjects in the gallery and test
sets varies as shown. The blue line corresponds to PCA using closest match, the red line corresponds to RP using closest
match, and the green line corresponds to RP using majority voting.



(a) (b)

(c) (d)

Figure 3. Experiments using the AR database and majority voting. The subjects in the training set were chosen randomly
(i.e., not necessarily the same to those in the gallery set). The proportion of subjects in the gallery and test sets varies as
shown. (a) neutral versus facial expressions, (b) neutral versus illumination, (c) neutral + illumination versus sunglasses,
(d) neutral + illumination versus occlusion. The blue line corresponds to PCA using closest match, while the red line
corresponds to RP using majority voting.
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(c) (d)

Figure 4. Experiments using the ORL database and scoring. (a)-(b) the subjects in the training and gallery sets were
the same, (c)-(d) the subjects in the training and gallery sets were different. The blue line corresponds to PCA using
scoring, while the red line corresponds to RP using scoring. The proportion of subjects in the gallery and test sets varies
as shown.

Figure 5. Experiments using the CVL database and scoring. The subjects in the training and gallery sets were different.
The blue line corresponds to PCA using scoring, while the red line corresponds to RP using scoring. The proportion of
subjects in the gallery and test sets varies as shown.
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Figure 6. Experiments using the AR database and scoring. The subjects in the training set were chosen randomly (i.e.,
not necessarily the same to those in the gallery set). The proportion of subjects in the gallery and test sets varies as
shown. The blue line corresponds to PCA using scoring, while the red line corresponds to RP using scoring.


