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Abstract—Robust and reliable vehicle detection from images
acquired by a moving vehicle is an important problem with
numerous applications including driver assistance systems and
self-guided vehicles. Our focus in this paper is on improving the
performance of on-road vehicle detection by employing a set of
Gabor filters specifically optimized for the task of vehicle detec-
tion. This is essentially a kind of feature selection, a critical issue
when designing any pattern classification system. Specifically, we
propose a systematic and general evolutionary Gabor filter opti-
mization (EGFO) approach for optimizing the parameters of a set
of Gabor filters in the context of vehicle detection. The objective is
to build a set of filters that are capable of responding stronger to
features present in vehicles than to nonvehicles, therefore improv-
ing class discrimination. The EGFO approach unifies filter design
with filter selection by integrating genetic algorithms (GAs) with
an incremental clustering approach. Filter design is performed
using GAs, a global optimization approach that encodes the Gabor
filter parameters in a chromosome and uses genetic operators to
optimize them. Filter selection is performed by grouping filters
having similar characteristics in the parameter space using an
incremental clustering approach. This step eliminates redundant
filters, yielding a more compact optimized set of filters. The re-
sulting filters have been evaluated using an application-oriented
fitness criterion based on support vector machines. We have tested
the proposed framework on real data collected in Dearborn, MI, in
summer and fall 2001, using Ford’s proprietary low-light camera.

Index Terms—Evolutionary computing, Gabor filter optimiza-
tion, support vector machines, vehicle detection.

I. INTRODUCTION

R ECOGNIZING that vehicle safety is a primary concern
for motorists, many national and international companies

have launched multiyear research projects to investigate new
technologies for improving safety and accident prevention [1].
Vehicle accident statistics disclose that the main threats drivers
are facing are from other vehicles. Consequently, onboard auto-
motive driver assistance systems—aiming to alert a driver about
driving environments, possible collision with other vehicles, or
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take control of the vehicle to enable collision avoidance and
mitigation—have attracted more and more attention lately. In
these systems, robust and reliable vehicle detection is a required
critical step.

The most common approach to vehicle detection is using
active sensors such as lidar, millimeter wave radars, and lasers
[1]. Prototype vehicles employing active sensors have shown
promising results. However, active sensors have several draw-
backs, such as low spatial resolution, slow scanning speed,
and high cost. Moreover, when there is a large number of
vehicles moving simultaneously in the same direction, inter-
ference among sensors of the same type poses a big problem.
Passive sensors on the other hand, such as optical cameras,
offer a more affordable solution and can be used to track
more effectively cars entering a curve or moving from one
side of the road to another. Visual information can be very
important in a number of related applications, such as lane
detection, traffic sign recognition, or object identification (e.g.,
pedestrians, obstacles), without requiring any modifications to
road infrastructures. Our emphasis in this paper is on improving
vehicle detection using optical sensors.

Robust and reliable vehicle detection from images acquired
by a moving vehicle (i.e., on-road vehicle detection) has nu-
merous applications including driver assistance systems, self-
guided vehicles, etc. In general, vehicle detection using optical
sensors is very challenging due to huge within class variabil-
ities. For example, vehicles may vary in shape [Fig. 1(a)],
size, and color. Also, vehicle appearance depends on its pose
[Fig. 1(b)] and is affected by nearby objects. Complex outdoor
environments, e.g., illumination conditions [Fig. 1(c)], cluttered
background, and unpredictable interactions between traffic par-
ticipants [Fig. 1(d)], are difficult to control.

A. Vehicle Detection Overview

Optical-sensor-based vehicle detection systems follow two
basic steps: 1) hypothesis generation (HG) where the locations
of possible vehicles in an image are hypothesized, and 2) hy-
pothesis verification (HV) where tests are performed to verify
the presence of vehicles in an image (see Fig. 2). The objective
of HG step is to provide some candidate locations quickly
for further exploration. Methods reported in the literature fall
in one of the following three basic categories: 1) knowledge
based, 2) stereo vision based, and 3) motion based. Knowledge-
based methods employ a priori knowledge to hypothesize
vehicle locations in an image such as: a) symmetry [2]–[4],
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Fig. 1. A variety of vehicle appearances pose a big challenge for vehicle detection.

Fig. 2. Illustration of the two-step vehicle detection strategy.

b) shadow [5]–[7], c) texture [8], d) horizontal/vertical edges
[9]–[12], and e) color [13]–[15]. Stereovision-based approaches
take advantage of the inverse perspective mapping [16]–[19]
to estimate the locations of vehicles and obstacles in images.
Motion-based methods detect vehicles and obstacles using
dense optical flow [20], [21] or “sparse optical flow” based
on image features, such as corners [22] or local minima and
maxima [23].

In the phase of HV, tests are performed to verify the cor-
rectness of each hypothesis. HV approaches can be classified
into two main categories: 1) template based and 2) appearance
based. Template-based methods use predefined patterns of ve-
hicle class and perform correlation between an input image and
the template. Betke et al. [24] proposed a multiple-vehicle de-
tection approach using deformable gray-scale template match-
ing. In [25], a deformable model was built from manually
sampled data using principal component analysis (PCA). Both
the structure and the pose of a vehicle were recovered by fitting
the PCA model to the image.

Appearance-based methods learn the characteristics of the
vehicle class from a set of training images, which capture the
variability in vehicle appearance. Usually, the variability of
the nonvehicle class is also modeled to improve performance.
First, each training image is represented by a set of local or
global features. Then, the decision boundary between vehicle
and nonvehicle classes is learned either by training a classifier
[e.g., neural network (NN)] or by modeling the probability
distribution of the features in each class (e.g., using the Bayes
rule assuming Gaussian distributions). In [9], PCA was used
for feature extraction and NNs for classification. Goerick et al.
[26] used a method called local orientation coding (LOC) to
extract edge information. The histogram of LOC within the
area of interest was then provided to a NN for classification.
A statistical model for vehicle detection was investigated by
Schneiderman et al. [27], [28]. A view-based approach based
on multiple detectors was used to cope with viewpoint varia-
tions. The statistics of both object and “nonobject” appearances
were represented using the product of two histograms with
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each histogram representing the joint statistics of a subset of
PCA features in [27] or Haar wavelet features in [28] and
their position on the object. A different statistical model was
investigated by Weber et al. [29]. They represented each ve-
hicle image as a constellation of local features and used the
expectation–maximization algorithm to learn the parameters of
the probability distribution of the constellations. An interest
operator, followed by clustering, was used to identify important
local features in vehicle images. Papageorgiou and Poggio [30]
have proposed using the Haar wavelet transform for feature ex-
traction and support vector machines (SVMs) for classification.

B. Feature Selection for Vehicle Detection

On-road vehicle detection involves “concepts,” rather than a
specific vehicle, that is, we need to detect any vehicle regardless
of its maker, model, color, etc. This “conceptual vehicle” has
large within class variabilities; therefore, there is no easy way
to come up with an analytical decision boundary to separate
vehicles from other objects. One feasible approach is to learn
the decision boundary of the vehicle class from a set of train-
ing examples using supervised learning where each training
instance is associated with a class label (i.e., vehicle versus
nonvehicle) [9], [26], [30].

Building a vehicle detection system under the supervised
learning framework involves two main steps: 1) extracting a
number of features (e.g., PCA features [9], wavelet features
[28], Gabor features [31], etc.) and 2) training a classifier
(e.g., NNs [9], SVMs [32], modified quadratic discriminant
function [33], etc.) using the extracted features to distinguish
between vehicle and nonvehicle classes. A key issue with this
approach is selecting a number of appropriate features. In most
cases, relevant features are unknown. Often, a large number of
features are extracted to better represent the target; however,
without explicitly employing a feature selection strategy, many
of them could be either redundant or even irrelevant to the
classification task. As a result, classification performance might
not be optimum.

Watanabe [34] has shown that it is possible to make two
arbitrary patterns similar by encoding them with a sufficiently
large number of redundant features. Ideally, we would like to
use only features having high separability power while ignoring
or paying less attention to the rest. In the context of vehicle
detection, it would be desirable if we could exclude features
encoding fine details (i.e., features that might be present in
particular vehicles only). Finding out what features to use
in a classification task is referred to as feature selection. A
limited yet salient feature set can simplify both the pattern
representation and the classifiers that are built on the selected
representation.

In our recent work, we have investigated the application of
Gabor features for vehicle detection, demonstrating their supe-
riority compared to other features including PCA and wavelet
features [12], [31], [32], [35]. Like others, we employed a
generic Gabor filter bank for feature extraction. To improve
classification performance, however, it would be critical select-

ing an optimum set of features and, consequently, an optimum
set of Gabor filters. This raises the problem of Gabor filter
optimization. Despite considerable amount of work on the ap-
plication of Gabor filters in various pattern classification tasks,
their design and selection have not been systematic. Existing
techniques are either only suitable for a small number of filters
or problem oriented.

C. Proposed Approach

An evolutionary Gabor filter optimization (EGFO) approach
is proposed in this paper. The EGFO approach unifies filter
design with filter selection by integrating genetic algorithms
(GAs) with an incremental clustering approach. GAs allow
for searching the space of filter parameters efficiently while
clustering removes redundant filters. Specifically, filter design
is performed using GAs, a global optimization approach that
encodes the parameters of the Gabor filters in a chromosome
and uses genetic operators to optimize them. Filter selection is
performed by grouping together filters having similar charac-
teristics (i.e., similar parameters) using incremental clustering
in the parameter space. Each group of filters is represented
by a single filter whose parameters correspond to the average
parameters of the filters in the group. This step eliminates
redundant filters, leading to a compact optimized set of filters.
The average filters are evaluated using an application-oriented
fitness criterion based on SVMs.

The EGFO approach is suitable for optimizing any number of
filters for a given application. The search space of our method
is much larger than those of the existing methods (see Section II
for a review), providing a higher likelihood of getting close to
the optimal solution. Moreover, we represent filter optimization
as a closed-loop learning problem. The search for an optimal
solution is guided by the performance of a classifier on features
extracted from the responses of the Gabor filters. We use SVMs
in this paper.

The rest of the paper is organized as follows. In Section II,
we present a brief review of Gabor filters, their design, and
optimization methods. Section III presents our EGFO approach
in detail. The Gabor filter feature extraction method and the
learning engine used in our experiments are described in Sec-
tion IV. Experiments and results are presented in Section VI. A
discussion of our experimental results is given in Section VII.
Finally, Section VIII contains our conclusions and directions
for future work.

II. GABOR FILTER DESIGN

Motivated by biological findings on the similarity of two-
dimensional (2-D) Gabor filters and receptive fields of neurons
in the visual cortex [36], there has been increased interest in
deploying Gabor filters in various computer vision applications.
One of their most important properties is that they have optimal
joint localization in both spatial and frequency domains [36].
Gabor filters have been successfully applied to various im-
age analysis applications including edge detection [37], image
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coding [36], texture analysis [38]–[40], handwritten number
recognition [41], face recognition [42], vehicle detection [32],
and image retrieval [43].

The general functionality of the 2-D Gabor filter family can
be represented as a Gaussian function modulated by a complex
sinusoidal signal. Specifically, a 2-D Gabor filter g(x, y) can be
formulated as

g(x, y) =
1

2πσxσy
exp

[
−1

2

(
x̃2

σ2
x

+
ỹ2

σ2
y

)]
exp[2πjWx̃] (1)

{
x̃ = x cos θ + y sin θ
ỹ = −x sin θ + y cos θ

(2)

where σx and σy are the scaling parameters of the filter and
determine the effective size of the neighborhood of a pixel
in which the weighted summation takes place. θ(θ ∈ [0, π))
specifies the orientation of the Gabor filters. W is the radial
frequency of the sinusoid. A filter will respond stronger to a
bar or an edge with a normal parallel to the orientation θ of the
sinusoid. The Fourier transform of the Gabor function in (1) is
given by
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where σu = 1/2πσx, σv = 1/2πσy. The Fourier domain repre-
sentation in (3) specifies the amount by which the filter modifies
each frequency component of the input image.

Gabor filters act as local bandpass filters. Fig. 3 shows four
Gabor filters with different parameter settings in frequency
domain. The light areas of the power spectrum indicate fre-
quencies and wave orientations. It is obvious from Fig. 3 that
different parameter settings will lead to quite different filter
responses, an important issue in pattern classification problems.
Each filter is fully determined by choosing the four parameters
in Φ = {θ, W, σx, σy}. Therefore, choosing a filter for a par-
ticular application involves optimizing these four parameters.
Assuming that N filters are needed in an application, 4N pa-
rameters need to be optimized. Solving this high-dimensional
multivariate optimization problem is very difficult in general.

Previous efforts in designing Gabor filters follow two main
directions: the “Filter design approach” and the “Filter bank
approach” [38], [44]. In the “filter design approach” the filter
parameters are chosen by considering the data available, that is,
the parameters are appropriate for the problem at hand only. In
one of the pioneering studies on the design of Gabor filters con-
ducted by Bovik et al. [45], the peak detection technique was
used. Okombi-Diba et al. [46] implemented a multi-iteration
peak detection method for a texture segmentation problem.
Dunn and Higgins [47] investigated an exhaustive search to find
the center frequency. Due to the exhaustive search, this method
is quite time consuming. A more computationally efficient
method was described in [38], [44] using a segmentation error
criterion similar to [47].

In the “filter bank approach,” first, the filter parameters are
chosen in a data independent way. Then, a subset of filters

Fig. 3. Gabor filters with different parameters Φ = {θ, W, σx, σy} in the
frequency domain (i.e., the Fourier transform of the Gabor functions). (a)
Φa = {0◦, 0.0961, 0.0204, 0.01219}, (b) Φb = {0◦, 0.3129, 0.06, 0.359}, (c)
Φb = {90◦ , 0.3129, 0.06, 0.359}, (d) Φc = {90◦ , 0.3921, 0.0503, 0.3066}.

is selected for a particular application. Turner [48] used 32
filters (four frequencies × four orientations × two phase pairs)
in a texture discrimination problem. Jain and Farrokhnia [39]
chose the filter parameters such that the radial frequencies
were one octave apart. To reduce the computational burden,
a greedy filter selection method was employed. To reduce the
redundancy in the Gabor feature representation, Manjunath and
Ma [43] proposed a design method to ensure that the half-
peak magnitude supports of the filter responses in the frequency
domain touch each other. For fast image browsing, they imple-
mented an “adaptive filter selection algorithm,” where spectrum
difference information was used to select filters with better
performance. In the context of handwritten number recognition,
Hamamoto et al. [41] optimized the filters by checking the error
rate for all possible combinations of filter parameters and then
choosing those minimizing the error rates.

Although good performances have been reported in the liter-
ature, certain limitations still exist. “Filter design approaches,”
for example, divide the design process into two stages: prefilter
and postfilter. Several prefilter design approaches have been
investigated; however, an explicit methodology for selecting an
appropriate postfilter step for a given prefilter step has not been
suggested. Moreover, the selection of the bandwidth parameter
is done mostly heuristically. The design stage in the “filter bank
approach” is mostly problem independent. Different pattern
classification problems, however, might require selecting an
optimum set of features and, consequently, an optimum set of
Gabor filters. We would not expect, for example, that a set
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of Gabor filters optimized for a vehicle classification applica-
tion (compact car versus truck) would work well in a vehicle
detection application (vehicle versus nonvehicle), since more
detailed information is required in the former case than in the
latter.

Many researchers have realized that this is a serious problem
and have suggested filter selection schemes to deal with it;
however, filters are selected from an original small pool of
filters that might not be suitable for the problem at hand (e.g.,
Hamamoto et al. [41] performed filter selection using a pool
of 100 predefined filters). The main issue with this approach is
that there is no guarantee that the optimum set of filters would
be included in the predefined pool of filters.

III. EGFO

In this section, we describe the proposed EGFO approach.
Gabor filter optimization corresponds to selecting the proper
values for each of the four parameters in the parameter set
Φ = {θ, W, σx, σy}.

A. A Brief Review of GAs

GAs are a class of optimization procedures inspired by
the biological mechanisms of reproduction. In the past, they
have been used to solve various problems including target
recognition [49], object recognition [50], [51], face recognition
[52], and face detection/verification [53]. This section contains
a brief summary of the fundamentals of GAs. Goldberg [54]
provides a great introduction to GAs and the reader is referred
to this source as well as to the survey paper of Srinivas and
Patnaik [55] for further information.

GAs operate iteratively on a population of structures, each
of which represents a candidate solution to the problem at
hand, properly encoded as a string of symbols (e.g., binary).
A randomly generated set of such strings forms the initial pop-
ulation from which the GA starts its search. Three basic genetic
operators guide this search: selection, crossover, and mutation.
The genetic search process is iterative: evaluating, selecting,
and recombining strings in the population during each iteration
(generation) until reaching some termination condition.

Evaluation of each string is based on a fitness function that
is problem dependent. It determines which of the candidate
solutions are better. Selection of a string, which represents a
point in the search space, depends on the string’s fitness relative
to those of other strings in the population. It probabilistically
removes, from the population, those points that have relatively
low fitness. Mutation, as in natural systems, is a very low prob-
ability operator and just flips a specific bit. Mutation plays the
role of restoring lost genetic material. Crossover in contrast is
applied with high probability. It is a randomized yet structured
operator that allows information exchange between points. Its
goal is to preserve the fittest individuals without introducing
any new value.

GAs do not guarantee a global optimum solution. However,
they have the ability to search through very large search spaces

Fig. 4. Encoding scheme.

and come to nearly optimal solutions fast. Their ability for fast
convergence is explained by the schema theorem (i.e., short-
length bit patterns in the chromosomes with above-average
fitness get exponentially growing number of trials in subsequent
generations [54]).

B. Parameter Encoding/Decoding

Using a binary encoding scheme, each Gabor filter is rep-
resented by M bits that encode its four parameters. To design
N filters, we use a chromosome of length MN bits. Each of
the four parameters in Φ is encoded using n = M/4 bits as
illustrated in Fig. 4. It is worth mentioning that the encoding
scheme is quite flexible and allows us to encode any number
of filters by simply varying the length of the chromosome. The
numbers of bits associated with each parameter need not be the
same, we can make the search for a particular parameter finer
or coarser by simply adding or removing bits for this parameter.
If we need to fix certain parameter(s) using prior knowledge,
we can remove the parameter(s) from the chromosome. In this
case, the GA will optimize the remaining parameters. Each
of the parameters in Φ has its own constraints and ranges.
The encoding/decoding scheme was designed to ensure that the
generated filters satisfy these requirements.

The orientation parameter θ should satisfy θ ∈ [0, π). If Dθ

denotes the decimal number corresponding to the chunk of
bits associated with θ (see Fig. 4), then the value of θ is
computed by

θ =
Dθπ

2n
. (4)

that always satisfies the range requirement.
W is the radial frequency of the Gabor filter, which is appli-

cation dependent. Using some prior knowledge, we can limit
the range of W into [Wmin, Wmax]. Then the decoding formula is
given by

W = Wmin +
(Wmax − Wmin)DW

2n
(5)

where DW is the decimal number corresponding to the chunk
of bits associated with W. In this study, we have used Wmin = 0
and Wmax = 0.5.

σx and σy are essentially the effective sizes of the Gaussian
functions and are within the range [σmin, σmax]. The upper
limit σmax is determined by the mask width w [56]. A relation
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between σmax and the mask size w can be obtained by im-
posing that w subtends most of the energy of the Gaussian.
An adequate choice is σmax < w/5, which subtends 98.76%
of the energy of the Gaussian filter. The lower limit can be
derived using the sampling theorem. If the pixel width is
taken as our unit step, we cannot reconstruct completely a
signal containing frequencies higher than 0.5 pixel−1 from
its samples, which means that any frequency component at
|ω| > ωc = 2π(0.5) = π is distorted. The ωc is determined
by the pixelization, not by the signal. The Fourier trans-
form of the Gaussian function g(x, σ) = e−x2/2σ2

is Fx(k) =√
2πσ2e−(πk)22σ2

= g(ω, σ′), which is also a Gaussian func-
tion. Also, we have σ = 1/σ′. To avoid aliasing, we need to
keep most of the energy of the Gaussian function g(ω, σ′)
within the interval [−π, π]. Applying the “98.76% of the
energy” criterion, we have 5σ′ = 5/σ ≤ 2π or σ ≥ 5/2π =
0.796. To meet the range constraint ([σmin, σmax]), our decoding
scheme follows

σx = σmin +
(σmax − σmin)Dσx

2n
(6)

for σx and

σy = σmin +
(σmax − σmin)Dσy

2n
(7)

for σy. Dσx and Dσy are again the decimal numbers corre-
sponding to the chunk of bits associated with σx and σy

correspondingly.

C. Eliminating Redundant Filters Through Clustering

During parameter optimization, some of the Gabor filters
encoded in a chromosome might end up being very similar to
each other or even identical. These filters will result in similar/
identical responses, therefore introducing great redundancy
and increasing time requirements. To eliminate redundant fil-
ters, we perform filter selection, implemented through filter
clustering in the parameter space. An incremental clustering
algorithm [57] has been adopted in this paper for its simplicity.
A high-level description of the clustering algorithm is given
below.

1) Assign the first Gabor filter to a cluster.
2) Compute the distance of the next Gabor filter from the

centroid of each cluster.
3) Find the smallest distance.
4) If the distance is less than a threshold, assign the filter to

the corresponding cluster; otherwise, assign the filter to a
new cluster.

5) Repeat steps 2–4 for each of the remaining filters.
6) Represent the filters in each cluster by a single filter

whose parameters correspond to the cluster’s centroid.

As it can be depicted from the above pseudocode, if a filter
lies within a predefined range/threshold from a cluster, it is
added to that cluster. Otherwise, it is used to create a new
cluster. This incremental clustering is a one-pass approach,

very simple and efficient. We have obtained satisfactory results
using this method as shown in Section VI. We envision that a
more sophisticated clustering approach will produce even better
results at the expense of higher computational burden.

The optimized filters are evaluated using the fitness function
defined in Section III-D. In our implementation, clustering is
carried out in the parameter domain. Representing the parame-
ters of a Gabor filter with {θn, Wn, σn

x , σn
y} and the centroid of

the clusters with {θi
c, Wi

c, σ
i
cx, σ

i
cy} with i ∈ [1 N], where N is

the number of currently existing clusters, we assign the filter to
the ith cluster only if all of the following conditions are satisfied

θi
c −

1
2
× Thrθ ≤ θn ≤ θi

c +
1
2
× Thrθ (8)

Wi
c −

1
2
× ThrW ≤ Wn ≤ Wi

c +
1
2
× ThrW (9)

σi
cx −

1
2
× Thrσ ≤ σn

x ≤ σi
cx +

1
2
× Thrσ (10)

σi
cy −

1
2
× Thrσ ≤ σn

y ≤ σi
cy +

1
2
× Thrσ. (11)

Otherwise, the filter is assigned to a new cluster. The
above conditions are quite strict to make sure that filters
falling in the same cluster are very similar to each other. We
can always relax the criterion by increasing the predefined
thresholds. The following thresholds were used in our experi-
ments: Thrθ = π/K, ThrW = (Wmax − Wmin)/K, and Thrσx =
Thrσy = Thrσ = (σmax − σmin)/K. The value of K determines
the number of “bins” we are going to divide the parameter range
into. The bigger the K is, the more “bins” we have, the more
compact the clusters are. Depending on different applications
and the desired tradeoff between model compactness and accu-
racy, K can be set to different values.

D. Fitness Evaluation

Each individual’s fitness will determine whether or not it
will survive in subsequent generations. The fitness value used
here is the performance of an SVM classifier on a validation
set using features extracted from the responses of the selected
Gabor filters. In this way, the Gabor filter optimization design
is implemented as a closed-loop learning scheme, which is
more powerful, more problem specific, and less heuristic than
previous approaches.

E. Initial Population

The initial population is generated randomly (i.e., each bit in
an individual is set by flipping a coin). In all of our experiments,
we used a population size of 700 and 100 generations. In most
cases, the GA converged in less than 100 generations.

F. Selection

Our selection strategy was cross generational. Assuming a
population of size N, the offspring double the size of the
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population and we select the best N individuals from the
combined parent–offspring population [58].

G. Crossover

There are three basic types of crossovers: one-point
crossover, two-point crossover, and uniform crossover. For one-
point crossover, the parent chromosomes are split at a com-
mon point chosen randomly and the resulting subchromosomes
are swapped. For two-point crossover, the chromosomes are
thought of as rings with the first and last gene connected (i.e.,
wrap-around structure). In this case, the rings are split at two
common points chosen randomly and the resulting subrings are
swapped. Uniform crossover is different from the above two
schemes. In this case, each gene of the offspring is selected
randomly from the corresponding genes of the parents. Since
we do not know in general how parameters from different filters
depend on each other, if dependent parameters are far apart
in the chromosome, it is very likely that traditional one-point
or two-point crossover will destroy the schemata. To avoid
this problem, uniform crossover is used here. The crossover
probability used in all of our experiments was 0.66.

H. Mutation

We use the traditional mutation operator that just flips a spe-
cific bit with a very low probability. The mutation probability
used in all of our experiments was 0.03.

IV. GABOR FEATURE EXTRACTION AND CLASSIFICATION

Designing an optimal set of Gabor filters is the first step
in building a pattern classification algorithm. Then, we need
to extract features using the responses of the selected filters
and train a classifier using those features. To demonstrate the
proposed filter design approach, redundant statistical Gabor
features and SVMs are utilized.

A. Gabor Filter Features

Given an input image I(x, y), Gabor feature extraction is
performed by convolving I(x, y) with a set of Gabor filters

r(x, y) =
∫ ∫

I(ξ, η)g(x − ξ, y − η) dξ dη. (12)

Although the raw responses of the Gabor filters could be used
directly as features, some kind of postprocessing is usually ap-
plied (e.g., Gabor energy features, thresholded Gabor features,
and moments based on Gabor features [59]). In this study, we
use moments derived from Gabor filter outputs on subwindows
defined on subimages extracted from the whole input image.

First, each subimage is scaled to a fixed size of 32 × 32.
Then, it is divided into nine overlapping 16 × 16 subwindows.
Each subimage consists of sixteen 8 × 8 patches as shown
in Fig. 5(a), patches 1, 2, 5, and 6 comprise the first 16 ×
16 subwindow, 2, 3, 6, and 7 the second, 5, 6, 9, and 10 the

Fig. 5. (a) Feature extraction patches. (b) Gabor filter bank with four scales
and six orientations. (c) Gabor filter bank with three scales and five orientations.

fourth, and so forth. The Gabor filters are then applied on each
subwindow separately. The motivation for extracting—possibly
redundant—Gabor features from several overlapping subwin-
dows is to compensate for the error due to the subwindow
extraction step (e.g., subimages containing partially extracted
objects or background information), making feature extraction
more robust.

The magnitudes of the Gabor filter responses are collected
from each subwindow and represented by three moments: the
mean µij, the standard deviation σij, and the skewness κij,
where i corresponds to the ith filter and j corresponds to the
jth subwindow. We have investigated different combinations of
various moments in our past work; however, we have found
that the triplet (µ, σ, κ) gives the best performance [31], [32].
Using moments implies that only the statistical properties of
a group of pixels are taken into consideration, while position
information is discarded. This is particularly useful to compen-
sate for errors in the extraction of the subimages. Suppose we
are using N = 6 filters. Applying the filter bank on each of the
nine subwindows yields a feature vector of size 162, having the
following form

[µ11σ11κ11, µ12σ12κ12 . . . µ69σ69κ69] (13)

B. SVM Classifier

SVMs are primarily two-class classifiers that have been
shown to be an attractive and more systematic approach to
learning linear or nonlinear decision boundaries [60], [61].
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Given a set of points that belong to either one of the two
classes, SVM finds the hyperplane leaving the largest possible
fraction of points of the same class on the same side while
maximizing the distance of either class from the hyperplane.
This is equivalent to performing structural risk minimization to
achieve good generalization [60], [61]. Given l examples from
two classes

(x1, y1)(x2, y2) . . . (xl, yl), xi ∈ RN yi ∈ {−1, +1} (14)

finding the optimal hyperplane implies solving a constrained
optimization problem using quadratic programming. The opti-
mization criterion is the width of the margin between classes.
The discriminating hyperplane is defined as

f (x) =
l∑

i=1

yiaik(x, xi) + b (15)

where k(x, xi) is a kernel function and the sign of f (x) indicates
the membership of x. Constructing the optimal hyperplane is
equivalent to finding all the nonzero ai. Any data point xi

corresponding to a nonzero ai is a support vector of the optimal
hyperplane.

Kernel functions, which satisfy Mercer’s condition, can be
expressed as a dot product in some space [60]. By using dif-
ferent kernels, SVMs implement a variety of learning machines
(e.g., a sigmoidal kernel corresponds to a two-layer sigmoidal
NN while a Gaussian kernel corresponds to a radial basis
function NN). The Gaussian radial basis kernel, which is used
in this study, is given by

k(x, xi) = exp

(
−‖x − xi‖2

2δ2

)
(16)

Our experiments with different kernels have shown that the
Gaussian kernel outperforms the others in the context of our
application.

Given the real-time constraints for a vehicle detection sys-
tem, a natural question might be why we decided to use the
costly SVM classifier instead of some simple classifier, for
instance, a nearest neighbor classifier. In our previous work
[31], [32], [35], [62], [63], we have investigated various feature
extraction/selection methods along with different classifiers
(e.g., NNs, Bayes classifier, Fischer discriminant function, and
SVM). Comparisons across different classifiers have shown that
the SVMs achieve the best performance. It should be mentioned
that we have already implemented a real-time vehicle detection
system using a traditional Gabor filter bank and SVMs [11]
(see also Section VII).

V. VEHICLE DETECTION USING OPTIMIZED

GABOR FILTERS

In this section, we consider the problem of vehicle detection
from gray-scale images. The first step in vehicle detection
is usually to hypothesize the vehicle locations in an image.
Then, verification is applied to test the hypotheses, as we have

discussed in Section I. Our emphasis in this paper is on im-
proving the performance of the verification step by optimizing
the Gabor filters. Therefore, we assume that the hypothesized
candidate windows are already available. For completeness, we
discuss briefly below the HG step.

A. Hypothesizing Vehicle Locations

An edge-based HG method has been proposed in our pre-
vious work [11]. It is a multiscale approach that combines
subsampling with smoothing to hypothesize possible vehicle
locations more robustly. Assuming that the input image is f , let
f (K) = f . The representation of f (K) at a coarser level f (K−1) is
defined by a reduction operator. The size of the input images
was 360 × 248. We used three levels of detail: f K (360 ×
248), f K−1(180 × 124), and f K−2(90 × 62). At each level, we
process the image by applying the following operations: i)
low-pass filtering; ii) vertical edge detection, vertical profile
computation of the edge image, and profile filtering using a
low-pass filter; iii) horizontal edge detection, horizontal profile
computation of the edge image, and profile filtering using a low-
pass filter; and iv) local maxima and minima detection (e.g.,
peaks and valleys) of the two profiles. The peaks and valleys of
the profiles provide strong information about the presence of a
vehicle in the image.

Starting from the coarsest level of detail ( f K−2), first we find
all the local maxima at that level. Although the resulting low-
resolution images have lost fine details, important vertical and
horizontal structures are mostly preserved. Once we have found
the maxima at the coarsest level, we trace them down to the
next finer level f K−1. The results from f K−1 are finally traced
down to level f K where the final hypotheses are generated. It
should be mentioned that due to the complexity of the scenes,
some false peaks are expected. We used several heuristics to
get rid of them, for example, the ratio of successive maxima
and minima, the absolute value of a maximum, and perspective
projection constraints under the assumption of flat surface (i.e.,
road). These rules were applied at each level of detail.

B. Vehicle Data

The images used in our experiments were collected in Dear-
born, MI, in two different sessions, one in the summer of 2001
and one in the fall of 2001. To ensure a good variety of data
in each session, the images were captured at different times
of different days and on five different highways. The training
set contains subimages of rear vehicle views and nonvehicles,
which were extracted manually from the fall 2001 data set.
A total of 1051 vehicle and 1051 nonvehicle subimages were
extracted manually (see Fig. 6). In [30], the subimages were
aligned by warping the bumpers to approximately the same po-
sition. However, we have not attempted to align the data since
alignment requires detecting certain features on the vehicle
accurately. Moreover, we believe that some variability in the ex-
traction of the subimages can actually improve performance.
Each subimage in the training and test sets was scaled to a size
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Fig. 6. Examples of vehicle and nonvehicle images used for training.

TABLE I
VEHICLE DETECTION ERROR RATES USING DIFFERENT FILTERS.

THE NUMBERS IN PARENTHESES INDICATE THE NUMBER

OF OPTIMIZED FILTERS

Fig. 7. Nineteen optimized Gabor filters using K = 3.

of 32 × 32 and preprocessed to account for different lighting
conditions and contrast using the method suggested in [53].

In this study, we used a threefold cross validation strat-
egy to estimate the true performance of the proposed system.
Theoretically, the true performance of a learning system is
statistically defined as the performance of the classifier on an
asymptotically large number of unseen data that converge in the
limit to the actual population distribution of a certain class. In
practice, however, the number of samples is always finite, and
typically relatively small, making it always impossible to reach
the true performance. Several evaluation methods are often used
to estimate the true performance, including cross validation,
leaving one out, and bootstrap. A convenient rule of thumb
is to choose the method according to the number of available
samples [64]: if the number of training data is more than 100,
use cross validation; less than 100, use leaving one out; and less
than 50, use bootstrap.

Given that we have more than 100 training data, the error
rates (ER) were recorded using a threefold cross validation
procedure. Specifically, we sample the training data set ran-
domly three times (set 1, set 2, and set 3) by keeping 280 of
the vehicle subimages and 280 of the nonvehicle subimages
for training. Three hundred subimages (150 vehicle subimages
and 150 nonvehicle subimages) were used for validation during

Fig. 8. Twenty-four optimized Gabor filters without clustering.

Fig. 9. Fifteen optimized Gabor filters with K = 2.

Fig. 10. Vehicle detection error rate. 3 × 5: Gabor filter bank with three
scales and five orientations; 4 × 6: Gabor filter bank with four scales and
six orientations; NC: EGFO method without clustering; K = 3: EGFO method
using clustering with K = 3; and K = 2: EGFO method using clustering with
K = 2.

the filter optimization. For testing, we used a fixed set of 231
vehicle and nonvehicle subimages that were extracted from the
summer 2001 data set.

VI. EXPERIMENTAL RESULTS

For comparison purposes, we also report the detection error
rates using two different Gabor filter banks without optimiza-
tion: one with four scales and six orientations [Fig. 5(b)], the
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Fig. 11. Some vehicle detection results. The white box indicates correct classifications, while the black box indicates incorrect classifications (i.e., vehicle
classified as nonvehicle or nonvehicle classified as vehicle).

other with three scales and five orientations [Fig. 5(c)]. These
filter banks were designed by following the method proposed
in [43].

We have carried out a number of experiments and compar-
isons to demonstrate the proposed Gabor filter optimization
approach in the context of vehicle detection. First, a Gabor filter
bank with three scales and five orientations was tested using
SVMs for classification. Using the feature extraction method
described in Section IV-A, the size of each Gabor feature vector
was 405 in this experiment. The average error rate was found
to be 10.38% (see Table I). Then, we tested a Gabor filter bank
with four scales and six orientations that yielded feature vectors
of size 648. The error rate in this case was 9.09% that is slightly
better.

Second, we used the EGFO approach to customize a group of
filters, up to 24, for the vehicle detection problem. We limited
the number of filters to 24 to make the comparison with the
traditional filter bank design methods fair. Each parameter in
Φ = {θ, W, σx, σy} was encoded using 4 b. The total length
of the chromosome was 384(4 × 4 × 24), which corresponds
to a large search space (i.e., 2384). The threshold factor K for
the clustering was set to 3 in our experiments. The average
error rate in this case was 6.36%, and the average number of
customized filters was 19.3. The optimized 19 filters generated
for set 3 are shown in Fig. 7. The individual results from the
three data sets are shown in Table I. Fig. 10 shows the average
detection error rates for all methods. The 19 filters are displayed
in Fig. 7 in the frequency domain.

For comparison purposes, we also ran the filter optimization
method without clustering on the same data sets using the
same parameters. Fig. 8 shows the final 24 filters obtained. The
average error rate was 6.36% with clustering and 6.19% without
clustering using a threefold cross validation. The difference
(0.17%) is not statistically significant and the performances

using filters with and without clustering can be considered the
same. The main advantage of using clustering is that it produces
a more compact set of filters that is critical in a real-time system.

To get an idea regarding the effectiveness of the clustering
subcomponent, we performed more experiments using different
threshold settings for the factor K = 2. The average error rate
was 8.23% and the average number of customized filter was
14.7. The 15 filters generated for set 3 are shown in Fig. 9.

Although the focus of this work is on improving the perfor-
mance of the verification stage, we would also like to draw
attention to several other important issues related to real-time
vehicle detection. Fig. 11 shows some representative successful
and unsuccessful detection results, including a false negative
[Fig. 11(a)], a false positive [Fig. 11(b)], correct detection under
minor occlusion [Fig. 11(c)], as well as incorrect detection
under severe occlusion [Fig. 11(c)]. The main reason for the
false negatives of our system is the lack of sufficient examples,
covering all possible vehicle types. On the other hand, the
main reason for the false positives is the lack of sufficient
nonvehicle examples. It should be mentioned that an effective
method for reducing the number of false positives in object de-
tection problems where the nonobject class is much larger than
the object class is bootstrapping [65]. In terms of occlusion,
the method demonstrates some tolerance since Gabor features
are local features. In general, occlusion is not a big issue in
the context of on-road vehicle detection since most of the time
we are interested in detecting/tracking the nearest vehicle(s) to
the host vehicle.

VII. DISCUSSION

To get a better idea of the filter parameters chosen by
the EGFO approach, we computed a histogram for each of
the parameters (Fig. 12), showing the average distribution
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Fig. 12. Distributions of the Gabor filter parameters: (a) θ; (b) W; (c) σx;
(d) σy.

of their values over the three data sets. In each graph, the
x-axis corresponds to a parameter from Φ = {θ, W, σx, σy} and
has been divided into ten bins to compute the histogram. The
y-axis corresponds to the average number of Gabor filters
whose parameters are within a given interval. For example,
Fig. 12(a) shows the average distribution of θ, where the width
of each bin is 18◦, given θ ∈ [0 180◦). The bar associated
with the first bin indicates that there were four filters (average
number over the three training data sets) in the optimized Gabor
filter set whose orientation parameter satisfies θ ∈ [0 18◦).
The only difference for the rest of the parameters is the
bin size, for instance, the ith bin in Fig. 12(b) corresponds
to the interval [(i − 1)STEPW iSTEPW ), where STEPW =
(Wmax − Wmin/10).

Several interesting comments can be made based on the
experimental results presented in Section VI, the filters
shown in Figs. 7–9, and the parameter distributions shown in
Fig. 12.

1) The Gabor filters customized using the proposed ap-
proach yielded better results in vehicle detection. The
most important reason for this improvement is probably
that the Gabor filters were designed specifically for the
pattern classification problems at hand (i.e., the proposed
method is more application specific than existing filter
design methods).

2) The orientation parameters of the filters optimized by
the GA were tuned to exploit the implicit information
available in vehicle data. A Gabor filter is essentially
a bar, edge, or grating detector, and will respond most
strongly if the filter’s orientation is consistent with the
orientation of specific features in an image (i.e., bar, edge,
etc.). We can see that horizontal, 45◦, and 135◦ structures
appear more often in a rear view of a vehicle image,
which explains why most of the filter orientations chosen
were close to 0◦, 45◦, and 135◦ [see Fig. 12(a)].

3) The radial frequency parameters (W ) of the filters found
by the GA approach were also tuned to encode the
implicit information present in vehicle images. Generally
speaking, we have more filters with lower radial frequen-
cies than with higher radial frequencies [see Fig. 12(b)].
This is reasonable given that vehicle images contain large
structures (windows, bumper, etc.), requiring filters with
lower radial frequencies.

4) The parameters σx, σy were also tuned to respond to
the basic structures of a vehicle. Figs. 12(c) and (d)
show that the σy parameter has bigger values than the σx

parameter. Bigger σy values imply a wider Gaussian mask
in the y direction. This is consistent with the observation
that horizontal structures in vehicle images spread more
widely than structures in vertical direction.

5) The EGFO approach provides a good base for com-
promising between model compactness and performance
accuracy. By setting the threshold factor to 2, we ended up
with 14.7 filters on average. The error rate went up to 8.23
from 6.36%, which is still better than using the traditional
Gabor filter bank with three scales and five orientations.
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When we build a pattern classification system, among
many factors, we need to find the best balance point
between model compactness and performance accuracy.
Under some scenarios, we prefer the best performance, no
matter what the cost might be. Under different situations,
we might favor speed over accuracy, as long as the
accuracy is within a satisfactory range.

The EGFO approach is quite computationally demanding.
Fortunately, this algorithm is designed to run offline. After the
optimization is over, we get a more compact optimized set
of Gabor filter, for example, 19 in our experiments. It is this
set of optimized filters that will be used to build a real-time
vehicle detection system. It should be mentioned that we have
already built a real-time vehicle detection system running on
Ford Motor Company’s concept vehicle [11]. The system runs
in an embedded system in the concept vehicle with an average
speed of 10 Hz using a traditional Gabor filter bank (24 filters)
and SVMs for classification. Therefore, it is safe to say that the
optimized set of filters will lead to a real-time vehicle detection
system running faster than 10 Hz.

VIII. CONCLUSION

We have considered the problem of vehicle detection using
Gabor filter optimization. In particular, we presented a sys-
tematic EGFO approach that yields a more optimal problem-
specific set of filters. The EGFO approach unifies filter design
with filter selection by integrating GAs with an incremental
clustering approach. The resulting filters were evaluated us-
ing an application-oriented fitness criterion based on SVMs.
Our experimental results show that the set of Gabor filters,
specifically optimized for the problem of vehicle detection,
yields better performance than using traditional filter banks.
The proposed EGFO framework is general and can be applied in
other areas requiring filter customization such as face detection.
For future work, we plan to evaluate this framework using
different data sets and different types of filters. We also plan
to test different filter selection schemes by encoding selection
in the chromosome explicitly.
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