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Genetic Object Recognition Using Combinations of
Views

George Bebis, Member, IEEE, Sushil Louis, Yaakov Varol, and Angelo Yfantis

Abstract—We investigate the application of genetic algorithms
(GAs) for recognizing real two-dimensional (2-D) or three-dimen-
sional (3-D) objects from 2-D intensity images, assuming that the
viewpoint is arbitrary. Our approach is model-based (i.e., we as-
sume a predefined set of models), while our recognition strategy
lies on the recently proposed theory of algebraic functions of views.
According to this theory, the variety of 2-D views depicting an ob-
ject can be expressed as a combination of a small number of 2-D
views of the object. This implies a simple and powerful strategy for
object recognition: novel 2-D views of an object (2-D or 3-D) can
be recognized by simply matching them to combinations of known
2-D views of the object. In other words, objects in a scene are recog-
nized by “predicting” their appearance through the combination of
known views of the objects. This is an important idea, which is also
supported by psychophysical findings indicating that the human
visual system works in a similar way. The main difficulty in imple-
menting this idea is determining the parameters of the combination
of views. This problem can be solved either in the space of feature
matches among the views (“image space”) or the space of parame-
ters (“transformation space”). In general, both of these spaces are
very large, making the search very time consuming. In this paper,
we propose using GAs to search these spaces efficiently. To im-
prove the efficiency of genetic search in the transformation space,
we use singular value decomposition and interval arithmetic to re-
strict genetic search in the most feasible regions of the transforma-
tion space. The effectiveness of the GA approaches is shown on a
set of increasingly complex real scenes where exact and near-exact
matches are found reliably and quickly.

Index Terms—Algebraic functions of views, genetic algorithms,
object recognition.

I. INTRODUCTION

T HE PROBLEM of object recognition is fundamental in
computer vision. Although a variety of approaches have

been proposed to tackle the recognition problem during the last
two decades [1], [2], building computer vision systems capable
of recognizing relevant objects in their environment with
accuracy and robustness has been a difficult and challenging
task. Object recognition is difficult because the appearance of
an object can have a large range of variation due to photometric
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Fig. 1. New views can be obtained by combining three reference views.

effects, scene clutter, changes in shape (e.g, onrigid objects),
and, most importantly, viewpoint changes. As a result, different
views of the same object can give rise to widely different
images. Accommodating variations due to viewpoint changes
is a central problem in the design of any object recognition
system.

Typical strategies for coping with the variable appearance of
objects due to viewpoint changes include the use of invariants
[3], explicit models [4], and multiple views [5]. According to
the first strategy, invariant properties (i.e., properties that re-
main unchanged as viewing conditions change) are employed
during recognition. The problem with this approach is that there
areno general case invariants for three-dimensional (3-D) ob-
jects [6]. The second strategy employs explicit 3-D models.
During recognition, a model of the image formation process is
applied to the 3-D model objects in order to predict the objects’
appearance and determine whether something of similar appear-
ance can be found in the image. Methods based on this approach
are not very practical since 3-D models are not always available.
The last strategy models an object by a set of views showing
how the object appears from various viewpoints. Systems based
on this approach recognize the object in an image when they
are able to match one of the reference views to some part of
the image. The problem with this strategy is that it requires the
storage of many views for each model.

The theory of algebraic functions of views (AFoVs) [7]–[13]
provides a powerful foundation for tackling variations in the
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Fig. 2. (a) Known view of a planar object (b)-(d) new views of the same object obtained using (5) and (6). Thex axis corresponds to thex coordinates of the
contour and they axis to they coordinates.

(a)

(b) (c)

Fig. 3. (a) Two different hypothetical matches of two-point correspondences
between the model and the scene. (b)Match1produces more matches (good
match), while (c)Match2fails to produce more matches (bad match).

appearance of an object’s shape due to viewpoint changes.
According to this theory, the variety of two-dimensional (2-D)
views depicting an object (2- or 3-D) can be expressed as a
combination of a small number of 2-D views of the object [7],
[8], in the case of 2-D objects, for viewpoint. In this case, the
combination scheme is equivalent to an affine transformation
of the image coordinates from the known view. Various results
exist for 3-D objects. Under the assumption of orthographic
projection and 3-D rigid transformations, e.g., three views are
enough to represent any view from the same aspect [7]. These
results suggest a simple but powerful framework for object
recognition: novel views of an object (2-D or 3-D) can be rec-

TABLE I
COMPUTED VALUE INTERVALS FOR THE2-D OBJECT

ognized by simply matching them to combinations of a small
number of stored views (reference views) of the object. This
result is also supported by psychophysical findings indicating
that the human visual system works in a similar way [14], [15].

Employing AFoVs for recognition has several advantages.
First, it is more practical than methods requiring explicit 3-D
models. In fact, a sparse set of 2-D views is required to repre-
sent a 3-D object, however, the scheme is as powerful as using
3-D models. Second, it is more efficient since it stores and ma-
nipulates 2-D views only. In contrast to multiview approaches,
however, novel views are compared to “predicted” views (i.e.,
combinations of reference views) rather than to the reference
views themselves. Since the predicted views can be very dif-
ferent from the reference views, recognition does not depend on
the similarity between novel and reference views, as it is the case
with multiview approaches. Finally, it is more general since the
above theoretical results hold true for various projection models
and transformations (see Section II), giving rise to a “family” of
methods.

Given a novel view of an object, recognition based on AFoVs
implies “predicting” the novel view by combining together
known views of the object. The main difficulty in implementing
this idea is choosing the parameters of the combination scheme.
As discussed in [7], the parameters of the combination can
be recovered either by: 1) identifying a set of features from
the novel view that approximately match a set of features
from the known views [image space (IS)] or 2) searching the
space of parameters [transformation space (TS)] explicitly. In
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Fig. 4. One of the 3-D objects and the reference views used in our experiments. (a) First reference view. (b) Second reference view. (c) Interest pointsfrom the
first reference view (lines connecting the corners have been added to enable visualization purposes only). (d) Interest points from the second reference view (lines
connecting the corners have been added to enable visualization purposes only). Thex axis corresponds to thex coordinates of the contour and they axis to they
coordinates.

the IS, one has to compute the transformation that aligns the
model with the scene by solving a system of linear equations.
The main problem with this approach is that the number
of model-scene feature matches grows exponentially as the
number of scene features increases. Searching the TS avoids
the feature matching step. However, this can be very time
consuming due to the large number of possible transformations.

In this paper, we propose using genetic algorithms (GAs)
for searching these spaces efficiently [16]–[18]. Our goal is to
find if an instance of a given model appears in a scene or not.
Two different approaches are considered: genetic algorithm in
the image space (GA-IS) and genetic algorithm in the transfor-
mation space (GA-TS). GAs are search procedures that have
been shown to perform well when the space to be searched is
very large [16], [17].To facilitate GA-TS, we employ singular
value decomposition (SVD) [19] and interval arithmetic (IA)
[20], [21] to estimate the interval of values that the parameters
of the combination scheme can assume [22]–[24]. Thus, genetic
search is confined to only the most feasible regions of the TS.

GAs have been used to solve various problems in computer
vision. For example, they have been used for feature selection
[25], target recognition [26], and face detection/verification

[27]–[29]. There have also been several attempts to apply GAs
in object recognition [30], [31]. In [30], GAs were used to solve
the object recognition problem, formulated as a graph matching
problem. The results reported in [30] were encouraging, but
were based on artificial objects only. Extending this approach
to 3-D object recognition is not easy since it requires that the
3-D representation of the objects is available. Our approach,
on the other hand, relies on 2-D representations only. In [31],
point patterns were matched using GA-IS, assuming similarity
transformations (i.e., camera perpendicular to the image plane).
That work has similarities with our GA-IS approach, however,
it does not generalize efficiently to 3-D object recognition (i.e.,
it would require either 3-D models or a very large number of
2-D views). Our approach, on the other hand, is based on a
powerful recognition framework which can handle both 2-D
and 3-D objects, i.e., AFoVs. Also, we used real objects in our
experiments whereas the results reported in [31] are based on
artificialdata only. In a different application, GAs were used
for image registration [32]. The main idea in that work was
applying GA-TS to register a set of images. This approach has
similarities with our GA-TS approach; however, the problem
considered here is different. Also, our search is more efficient
since the GA searches the most feasible regions of the TS.
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The remainder of this paper is organized as follows. Section II
presents an overview of the theory of AFoVs. A brief review of
GAs is provided in Section III. Section IV discusses the two
solution spaces: the IS and the TS. The methodology used to
estimate the value intervals for the parameters of the combina-
tion scheme is described in Section V. This section also presents
the genetic search approaches. Specifically, we present the en-
coding mechanism, the selection scheme, genetic operators, and
fitness function used. Section VI includes our experimental re-
sults and finally, our conclusions are given in Section VII.

II. BACKGROUND ONALGEBRAIC FUNCTIONS OFVIEWS

AFoVs were first introduced by Ullman and Basri [7]. In par-
ticular, it was shown that if we let an object undergo 3-D rigid
transformations, (i.e., rotations and translations in space), and
we assume that the images of an object are obtained by ortho-
graphic projection followed by a uniform scaling, then any novel
view of the object can be expressed as a linear combination of
three other views of the same object. Specifically, consider three
reference views of the same object and , which have
been obtained by applying different rigid transformations, each
view represented by a set of “interest” points (e.g., corners and
junctions). Take now three points , ,
and , one from each view, which are in corre-
spondence. If is a novel view of the same object, obtained
by applying a different rigid transformation, and is
a point that is in correspondence with, , and , then the
coordinates of can be expressed in terms of the coordinates
of , , and as the following:

(1)

(2)

where the parameters are the same for all
the points that are in correspondence across the four views. This
idea is illustrated in Fig. 1. The parametersand can be
recovered by solving a linear system of equations, given that
we know at least four point correspondences across the views.

The above result can be simplified if we assume that the ob-
ject undergoes a 3-D linear transformation in space (i.e., remove
the orthonormality constraint associated with the rotation ma-
trix). In this case, the AFoVs are simpler and involve only two
reference views. Specifically, consider two reference views
and of the same object which have been obtained by applying
different linear transformations and two points ,

, one from each view, which are in correspon-
dence. Then, given a novel view of the same object, ob-
tained by applying another linear transformation, and a point

, which is in correspondence with points and ,
the coordinates of can be expressed as a linear combination
of the coordinates of and as the following:

(3)

(4)

where the parameters , , are the same for all
the points that are in correspondence across the three views. It

TABLE II
COMPUTED VALUE INTERVALS FOR THE3-D OBJECT

Fig. 5. Chromosome contains the binary encoded points to be matched
between the model and scene.

Fig. 6. Chromosome contains the binary encoded parameters.

should be noted that (3) and (4) can be rewritten using the
coordinates of the second reference view instead.

Although it was not explicitly discussed in [7], algebraic
functions, involving one reference view, also exist in the case
of planar objects. This is because in the case of planar objects,
scaled orthographic projection is equivalent to a 2-D affine
transformation [4]. Consider a reference view and a point

. Given a novel view and a point that
is in correspondence with, the coordinates of are related to
the coordinates of as the following:

(5)

(6)

Fig. 2(b)-(d) shows new views of the object in Fig. 2(a), obtained
using (5) and (6).

The extension of AFoVs in the case of perspective projec-
tion has been considered by several authors [8], [12]. In partic-
ular, it has been shown that three perspective views of an object
satisfy a trilinear function. Moreover, Shashua [8] has shown
that a simpler and more practical pair of algebraic functions
exist when the reference views have been obtained under scaled
orthographic projection (one perspective and two orthographic
views satisfy a bilinear function). More results exist that sup-
port the validity of the theory of AFoVs under various projec-
tion models, transformations, and object types (paraperspective
projection [10], rigid or nonrigid objects [9], and objects with
smooth or nonsmooth surfaces [13]).

In this paper, we have used (5) and (6) for 2-D recognition and
(3) and (4) for 3-D recognition. In general, (3) and (4) will not
give satisfactory results when perspective distortions are large
to be neglected. This is the case when the objects are close to
the camera. When the distance of an object from the camera is
large compared to its depth, however, it is well known that per-
spective projection can be approximated by scaled orthographic
projection [4], [39]. In this case, (3) and (4) will give good re-
sults as is also verified by our experimental results.
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(a) (b)
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Fig. 7. Some of the test scenes used in our 2-D experiments. (a) First test scene. (b) Second test scene. (c) Interest points extracted from the first test scene. (d)
Interest points extracted from the second test scene. Note that we have intentionally left out the internal contour of the scene to make the problem more challenging.

III. SOLUTION SPACES

In general, object recognition approaches operate in one of
the following two solution spaces: the IS [39] or the TS [37].
IS techniques begin by first extracting a collection of scene fea-
tures (e.g., points corresponding to curvature maxima or zero-
crossing). Then, a correspondence between these features and a
set of model features is hypothesized. The transformation that
aligns the model with the scene is then determined by this hy-
pothesis. In the case of similarity transformations, e.g., at least
two point correspondences between the model and the scene are
required. Fig. 3 illustrates a simple case. The open circles corre-
spond to model point features and the black circles correspond
to scene point features.Match1andMatch2are two different
hypothetical matches. Based on these hypothetical matches, we
compute a similarity transformation to align the model with the
scene. As can be seen,Match1 is a good match since it aligns
more model points with the scene (i.e., not just the hypothesized
two-point correspondences). On the other hand,Match2is a bad
match since no more model points, besides the ones hypothe-
sized, have been aligned with the scene.

Since there is usually noa priori knowledge of which model
features correspond to which scene features, recognition can
be computationally too expensive, even for relatively simple
scenes. Assuming model points and image points, the

maximum number of possible alignments is of the order of
, where is the minimum number of point matches

required. Usually, due to errors in the location of the scene
points, more than point correspondences are required to
compute the corresponding transformation more accurately.

The same arguments hold true using AFoVs for object recog-
nition. Specifically, given an unknown scene containing an in-
stance of the model to be recognized, we need to match sets of
scene points to sets of points from known views of the model.
From each match, the parameters of the views combination that
predict the appearance of the model in the scene can be com-
puted. The number of points that need to be matched depends
on the the number of the parameters of the combination [i.e.,
three-point matches are required if (5) and (6) are used and
four-point matches are required if (3) and (4) are used]. Our
first approach involves using GA-IS to find the point matches
efficiently.

Alternatively, TS techniques deal with the space of possible
geometric transformations between the model and the scene.
The objective is to search the space of all possible transfor-
mations in order to find a transformation which would bring a
large number of model points into alignment with the scene. In
the case of similarity transformations, e.g., the TS is four-di-
mensional. Using AFoVs, the dimensionality of the TS is de-
termined by the parameters of the view combination scheme



BEBIS et al. : GENETIC OBJECT RECOGNITION USING COMBINATIONS OF VIEWS 137

(a) (b)

(c) (d)

Fig. 8. Best and worst solutions found by (a) and (d) GA-IS and (b) and (d) GA-TS forScene1. Thex axis corresponds to thex coordinates of the contour and
they axis to they coordinates. (c) and (d) Performance plots for the best solutions (the horizontal axis corresponds to number of generations, while the vertical
one to the fitness).

[i.e., six parameters if (5) and (6) are used and eight parame-
ters if (3) and (4)are used]. Searching the TS is very expensive
computationally due to the large number of possible parameter
values. Our second approach involves using GA-TS to find the
best transformation efficiently.

In general, the TS being much larger than the IS would
imply that the GA-TS approach has more work to do. Without
somehow bounding the parameters of the combination scheme,
it is difficult and time consuming for the GA to find good
solutions. To facilitate GA-TS, it is important that we restrict
genetic search to a smaller subspace of the TS. In the next
Section, we describe a method based on SVD [19] and IA [20]
for estimating the intervals of values that the parameters of the
combination scheme can assume.

IV. ESTIMATING THE PARAMETERS’ V ALUE INTERVALS

In this section, we consider the case of orthographic projec-
tion under the assumption of linear transformations. However,
the same methodology can be applied on all other cases. As dis-
cussed in Section II, two reference views and must be
combined in order to obtain a new view [see (3) and (4)].

Given the point correspondences across the reference and new
views, the following system of equations should be satisfied:

(7)

where , , and
are the coordinates of the

points in the reference views and , respectively, and
, are the coordinates of the

points in the new view . Splitting the above system into two
subsystems, we have

(8)

(9)

where the columns of the matrix are shown in (7), and
are vectors corresponding to’s and ’s (the parameters of
the combination scheme), and, are vectors corresponding
to the and coordinates of the new view. To solve (8) and
(9), a least-squares approach, such as SVD [19], can be used.
Using SVD, can be factorized as , where both

and are orthonormal matrices, while is a diagonal
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Fig. 9. Best and worst solutions found by (a) and (c) GA-IS and (b) and (d) GA-TS forScene2. Thex axis corresponds to thex coordinates of the contour and
they axis to they coordinates. (c) and (d) Performance plots for the best solutions (the horizontal axis corresponds to number of generations, while thE vertical
one to the fitness).

matrix whose elements are always nonnegative (the singular
values of ).The solutions of the above two systems are

and , where is the pseudoinverse of.
Assuming that has been factorized, its pseudoinverse is

, where is also a diagonal matrix with elements
if is greater than zero (or a very small threshold in

practice) and zero otherwise. The solutions of (8) and (9) are
given by the following [19]:

(10)

(11)

where is the th column of matrix , is the th column
of matrix , and . To determine the range of values for

and , we assume first that the novel view has been scaled
such that the and coordinates belong within a specific in-
terval. This can be done, e.g., by mapping the novel view to the
unit square. In this way, its and image coordinates will be
mapped to the interval [0,1]. To determine the range of values
for and , we need to consider all possible solutions of (8)
and (9), assuming that and belong to [0,1]. We are using
IA [20] to solve this problem. In IA, each variable is represented

as an interval of possible values. Given two interval variables
and , the sum and the product of these

two interval variables are defined as the following [20]:

(12)

(13)

Applying IA to (10) and (11), instead of the standard arithmetic,
we can compute interval solutions forand by setting

and . In interval notation, we solve the systems

(14)

(15)

where the superscript denotes an interval vector. The solu-
tions and should be understood to mean

and . It should be men-
tioned that since the matrix and the intervals for are all
the same, the interval solutions forand will be the same.We
have applied this methodology on the models used in our ex-
periments to estimate the parameter intervals. The first row of
Table I shows the intervals computed for the object shown in
Fig. 2(a) [planar object assuming (5) and (6)]. It can be shown
that the width of the ranges depends on the condition of the ma-
trix and that the reference view(s) can be “preconditioned”
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(c) (d)

Fig. 10. Best and worst solutions found by (a) and (c) GA-IS and (b) and (d) GA-TS forScene3. Thex axis corresponds to thex coordinates of the contour and
they axis to they coordinates. (c) and (d) Performance plots for the best solutions (the horizontal axis corresponds to number of generations, while the vertical
one to the fitness).

TABLE III
SUMMARY OF RESULTS(GA-IS APPROACH)

TABLE IV
SUMMARY OF RESULTS(GA-TS APPROACH)

to narrow the parameter intervals (see [22]–[24]). By precondi-
tioning, we mean an appropriate transformation that maps the
reference views to new reference views, yielding a matrix
with good condition number. The second row of Table I shows
the tighter intervals obtained using this procedure. The model
and reference views used in our 3-D experiments are shown in
Fig. 4. Table II shows the interval values obtained in this case
(after preconditioning).

V. METHODOLOGY

In this section, we present the genetic search approaches.
Specifically, we present the encoding mechanism, the selection
scheme, genetic operators, and the fitness function used.

A. Image Space Encoding

A simple encoding scheme where the identity of the points
to be matched made up the alleles in the genotype gave good
results on all the scenes we tried in our experiments. The pa-
rameters are provided in the next section. Using (5) and (6),
three pairs of points are needed to compute the parameters of
the combination scheme. Thus, the chromosome contains the
binary encoded identities of the three pairs of points. The model
used in our experiments [see Fig. 2(a)] was represented by 19
points, corresponding to curvature extrema and zero crossings
[38]. This required bits per point. The scenes used
in our experiments had between 19 and 45 points (extracted in
the same way) and required either five or six bits per point. We
did not check for repeated points and used simple two-point
crossover and point mutation. A simple linear transformation
was used to map values from the actual range to the desired
one (e.g., from [31] using five bits to [18] assuming 19 interest
model points). Fig. 5 illustrates the encoding scheme.
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B. Transformation Space Encoding

A simple binary encoding scheme was also used to represent
solutions in the TS. In the case of 2-D objects, each chromosome
contains six fields, with each field corresponding to one of the
six parameters of (5) and (6). Fig. 6 illustrates the encoding
scheme. In the case of 3-D objects, each chromosome contains
eight fields with each field corresponding to one of the eight
parameters of (3) and (4). Only the range (difference between
the maximum and minimum values) needs to be represented.
In the 2-D case, for example, assumes values in the interval

(see second row of Table I). Thus, its range is
. Assuming that up to two

decimal points are important in the estimation of the parameters,
82 possible values ( ) should be encoded.
This means that seven bits are enough to encode’s range. It
only needs to represent values from zero to 81. As a result, it
is possible for the GA to find solutions that are not within the
desired range (i.e., [0, 81]). To deal with this problem, a simple
transformation is used to map values from [0, 127] to [0, 81].
Assuming that is a binary encoded solution corresponding
to , ’s actual value is obtained as the following:

where and is the decimal
representation of . The decoding of the other parameters is
performed in a similar way. The constant is used to map
values from [0, 127] to [0, 81].

C. Fitness Evaluation

We evaluate fitness of individuals by computing the back-pro-
jection error ( ) between the model and scene. Specifically,
to evaluate the goodness of the match specified by an individual
in the case of the GA-IS approach, we first compute the parame-
ters of the combination scheme which maps the model points to
their corresponding scene points. This requires solving a system
of six equations with six unknowns in the case of (5) and (6) and
a system of eight equations with eight unknowns in the case of
(3) and (4). After the parameters have been computed, we pre-
dict the appearance of the model in the scene and we compare
it with its actual appearance (i.e., back-project the model onto
the scene). This is the standard verification step used in object
recognition [4], [5], [23], [39]. Finally, we compute the error

between the back-projected model and the scene. To com-
pute , for every model point, we find the closest scene point
and then compute the distancebetween these two points. The
overall back-projection error is given by

where is the number of model points. Since we need to max-
imize fitness but minimize the error, our fitness function is

where the constant is used to change the minimization
problem to a maximization one. was set to 10 000 in all
of our experiments.

(a) (b)

(c) (d)

Fig. 11. Some of the test scenes used in our 3-D experiments. (a) First
test scene is the same as the first reference view. (b) Second test scene was
obtained by transaltion and 3-D rotation around they axis. (c) Third test view
was obtained by moving the camera higher and closer to the object (i.e., to
introduce more perspective distortions). (d) Fourth test view demonstrates
some degree of occlusion.

To evaluate fitness of individuals in the case of the GA-TS ap-
proach, we follow exactly the same procedure except that we do
not have to solve for the parameters of the combination scheme.
This is because the parameters are directly encoded in the chro-
mosome and all that is required is to decode it by following the
procedure outlined in the previous section.

VI. EXPERIMENTS AND RESULTS

We have performed a number of experiments using both 2-
and 3-D objects. In the case of 2-D object recognition, we used
the set of equations given by (5) and (6), while in the case of
3-D object recognition, we used the set of equations given by
(3) and (4). A number of increasingly complex recognition tasks
were used to demonstrate the proposed approaches. Our selec-
tion strategy was cross generational. Assuming a population of
size , the offspring double the size of the population and we se-
lect the best individuals from the combined parent–offspring
population for further processing [39]. This kind of selection
does well with small populations and leads to quick convergence
(sometimes prematurely). We also linearly scale fitnesses to im-
pose a constant selection pressure [17].

A. 2-D Object Recognition Experiments

The scenes we used in our experiments are shown in Figs. 7
and 8. All GA parameters were identical except for the popula-
tion size and number of generations. We used a crossover proba-
bility of 0.95, a mutation probability of 0.05, and a scaling factor
of 1.2. The population sizes were set to 100, 200, and 500 for
scenesScene1, Scene2, andScene3, respectively. The number
of generations needed in the case of the GA-TS approach were
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(c) (d)

Fig. 12. (a) and (d) Best and (b) and (d) worst solutions forScene5. (c) and (d) Performance plots (the horizontal axis corresponds to number of generations,
while the vertical one to the fitness).

twice as many than in the case of the GA-IS approach. In par-
ticular, less than 30 generations were required by the GA-IS ap-
proach forScene1and less than 50 forScene2andScene3.

In the case of the GA-TS approach, approximately 100 gen-
erations were required for each scene. This can be justified by
the fact that the TS is larger than the IS. It should be mentioned,
however, that although the GA-TS approach required more gen-
erations to converge, this does not mean that it is necessarily
slower than the GA-IS approach. The reason is that the GA-TS
approach does not have to solve for the parameters of the com-
bination (i.e., they are directly encoded in the chromosome), a
time-consuming step. For each scene, we ran each approach ten
times with different random seeds. Performance plots indicate
that the GA very quickly predicts roughly the correct appear-
ance of the model in the scene and then spends most of its time
making little progress.

Scene1was chosen to be the same as the reference view. Exact
mappings (i.e., zero back-projection error) were found using the
GA-IS approach in nine out of ten trials. Fig. 8(a) shows the
best and worst solutions found (the solid lines represents the
scene and the dashed lines correspond to the best and worst so-
lutions). In the case of the best solution, the GA has predicted the
model appearance exactly, thus, the model and the scene overly
each other and present a single outline. Fig. 8(c), shows thefit-

ness corresponding to the best solution (solid line) and average
fitness (dashed line) corresponding to that solution. As it can
be observed, the GA-IS approach found this solution within the
first ten generations or so. In the case of GA-TS approach, al-
most exact mappings (i.e., very small back-projection error, but
not zero) were found in all cases. Fig. 8(b) shows the best and
worst solutions. Fig. 8(d) shows the best and average fitnesses
for the best solution found by the GA-TS approach. Comparing
the performance curves in both cases, the convergence of the
GA-TS approach is slower.

Results forScene2andScene3are shown in Figs. 9 and 10.
The best and worst solutions found by the two approaches in the
case ofScene2are comparable. In the case ofScene3, the GA-IS
approach found the correct solution in all ten trials, while the
GA-TS approach missed the correct solution once. This case is
actually shown in Fig. 10(b). It should be mentioned, however,
that Scene3is considerably more difficult thanScene2since
a large part of the boundary of the object to be recognized is
missing (the boundary was removed intentionally to make the
problem harder). More experiments have shown that finding
the wrong solution can be alleviated by increasing the popu-
lation size and the number of generations. Performance plots in
both cases illustrate similar results (GA-IS converges faster than
GA-TS).
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(a) (b)

(c) (d)

Fig. 13. (a) and (c) Best and (b) and (d) worst solutions forScene6. (c) and (d) Performance plots (the horizontal axis corresponds to number of generations,
while the vertical one to the fitness.

Table III provides a summary of our results in the case of
the GA-IS approach. The first column specifies the scene. The
second and third columns describe the size of the test problems.

The columns list (in order) the number of scene points and the
size of search space. The last column indicates GA-IS’s effort in
terms of the number of matches explored and the corresponding
fraction in the searched space. In our experiments, the number
of model points is 19; thus, the number of possible triplets

is

The order of points matters in computing the total number
of possible matches between model and scene points and is,
thus, given by , where is the number of possible
scene triplets. Table IV presents similar results for the case of
the GA-TS approach. The number of values we need to con-
sider in order to represent ’s range is 82 (see our discus-
sion in Section VI-B). In the case of , we need to consider
79 values, while in the case of , we need to consider 101
values. The values for and are the same (same in-
terval solutions — see our discussion in Section V). The total
number of possible transformations is, thus,

. The second column of Table IV indicates the

number of matches the GA-TS approach searched through. The
numbers in the parentheses have the same meaning as before.

B. 3-D Object Recognition Experiments

In this section, we report experiments using 3-D objects.
Since the GA-TS approach performed very satisfactorily in
the previous experiments and does not require any feature
extraction, we have not considered the GA-IS approach here.
The 3-D model used in the experiments is shown in Fig. 4. We
have used two views to model the aspect of the object shown
in Fig. 4 since we employ (3) and (4). Some of the test scenes
used in our experiments are shown in Fig. 11 (Scene5–Scene8).

The crossover probability, mutation probability, and scaling
factor were the same as before. The population size was set to
200 in all the following experiments. Approximately 150 gen-
erations were required for each scene. Each experiment was ran
ten times with different random seeds. Performance plots indi-
cate again that the GA very quickly predicts the appearance of
the model in the scene and then spends most of its time making
little progress.

Scene5was chosen to be exactly the same as one of our ref-
erence views. Fig. 12 shows the best and worst solutions found.
The GA-TS approach had no difficulty finding good solutions
in all runs. The object inScene6has undergone rotation around
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(a) (b)

(c) (d)

Fig. 14. (a) and (c) Best and (b) and (d) worst solutions forScene7. (c) and (d) Performance plots (the horizontal axis corresponds to number of generations,
while the vertical one to the fitness.

the axis. However, all of the features present in the reference
views are also present inScene6. Fig. 13 shows the best and
worst solutions found as well as the fitness and average fitness
graphs associated with them.Scene7is more interesting since
the camera has been moved higher and closer to the object. The
reason we moved the camera closer was to test the tolerance
of the (3) and (4) to perspective distortions (see Section II) and
the ability of GAs finding good solutions in such cases. Fig. 14
shows good results were obtained in all cases. Finally,Scene8
shows the model with part of it occluded by a stapler. Due to
the occlusion, the matches found are not as good as in the other
cases. However, they can serve as starting points to local opti-
mization techniques (see next section).

To demonstrate the efficiency of the proposed approach, we
compare the number of transformations tried by the GA-TS ap-
proach versus the total number of transformations. The number
of values used to represent’s range is 84 (see our discussion
in Section VI-B). For , we used 73 values, 86 values for,
and 101 values for . The values for , and were the
same (i.e., same interval solutions). Thus, the total number of
possible transformations is , which is
of the order of 2 . The last column of Table V shows the
number of transformations tried by the GA-TS approach. Ob-
viously, the GA searches a very small portion of the TS. Com-

TABLE V
SUMMARY OF RESULTS

paring the GA approach with our previous object recognition
approach [22], the solutions found by the two approaches are
of comparable quality (i.e., similar back-projection errors). Our
previous approach finds more accurate alignments since the pa-
rameters of the AFoVs are computed explicitly by considering
feature matches and solving a system of linear equations. How-
ever, there is not a significant difference in the quality of the
solutions found by the two approaches, at least for recognition
purposes. It should be emphasized, however, that the two ap-
proaches are fundamentally different and have different capa-
bilities. Our previous approach is an indexing-based approach,
which trades space for time. Briefly, indexing is a mechanism
that, when provided with a key value, allows rapid access to
some associated data. Thus, instead of searching the space of all
possible objects and their appearances and explicitly reject in-
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Fig. 15. (a) and (c) Best and (b) and (d) worst solutions forScene8. (c) and (d) Performance plots (the horizontal axis corresponds to number of generations,
while the vertical one to the fitness.

valid solutions through verification, indexing inverts the process
so that only the most feasible predictions are considered. The
idea is arranging the model appearances in an index space of-
fline. During recognition, feasible solutions are found by in-
dexing into this space.

Obviously, a major advantage of our previous approach is that
it can search for multiple models in a scene simultaneously. The
current implementation of our GA approach can search different
appearances of the same model only. Suppose we are given a
scene that contains more than one model, we would have to
run the GA algorithm over the scene once for each model in
order to recognize all the models. Extending the GA approach
to searching for multiple models would require a more powerful
encoding scheme (e.g., encoding the identity of the models in
the chromosome). A disadvantage of our previous approach is
that it is very memory consuming since it requires prestoring
a lot of information in the index table. The GA approach, on
the other hand, has very low memory requirements. In terms of
time requirements, the GA approach seems to be able to find a
rough alignment of the model with the scene very quickly (e.g.,
within 20 generations or so). We can, thus, claim that it is faster
than our previous approach. However, this is not a fair compar-
ison not only because we do account for the time required by
the GA to improve the alignment, but also because our previous

approach: 1) searches for multiple models in the scene , and 2)
operates in the IS (i.e., more time is required for feature extrac-
tion and solving for the parameters of the AFoVs). The GA ap-
proach searches a smaller space since it looks for a single model
in the scene. Moreover, it searches the TS explicitly, which im-
plies that it does not have to extract any features, establish cor-
respondences, or solve for the parameters of the AFoVs.

VII. CONCLUSION

In this paper, we considered using GAs to recognize real
2- or 3-D objects from 2-D intensity images. The recognition
strategy used was based on the theory of AFoVs. Two different
approaches were considered: GA-IS (i.e., feature matches
among the views) and GA-TS (i.e., parameters of the algebraic
functions). GA-TS was made more effective by searching
small parameter intervals obtained using SVD and IA. Our
experimental results demonstrate that GAs search these spaces
efficiently and find good solutions.

It should be mentioned that although there are many prob-
lems for which GAs can find a good solution in reasonable time,
there are also problems for which GAs are inappropriate. These
are mainly problems for which it is important to find the exact
global optimum. GAs do not perform well in these cases. In the
context of our application, our expectation was that GAs will be
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(a)

(b)

Fig. 16. Scene with self-occlusion. (a) Original scene. (b) Solution found
overlaid on the original scene. The GA was able to perform a rough alignment
of the model with the scene, which could be assumed to be used to initialize
a local optimization technique.

able to perform at least a rough alignment of the model with the
scene. The results obtained through our experiments show that
GAs can find almost exact matches when there is little occlusion
and near-exact matches when scenes contain occlusion (e.g., see
Figs. 15 and 16). Near-exact matches are useful in the sense that
can actually reduce the search space to a limited domain. Then,
a local optimization technique can be used for finding an exact
match. The preliminary stage of rough alignment may help pre-
venting such methods from reaching a local minimum instead
of the global one.

This work has two main limitations. First, we have only used
two reference views in the case of 3-D object recognition. This
is acceptable when different aspects of an object produce views
containing many common features. When complex objects are
considered (i.e., having very different aspects), more reference
views are required to represent each aspect. Second, we do not
search for multiple objects in the scene. If two or more objects
need to be recognized, we need to run the GA approach several
times, each time searching for a different object. For future re-
search, we plan to extend the proposed approach so it can handle
multiple aspects as well as multiple objects. This requires a more
useful encoding scheme which encodes information about the
identity of the object being searched as well as the views being
considered for predicting its appearance in the scene.
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