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Genetic Object Recognition Using Combinations of
Views

George BebisMember, IEEESushil Louis, Yaakov Varol, and Angelo Yfantis

Abstract—We investigate the application of genetic algorithms REFERENCE VIEWS
(GAs) for recognizing real two-dimensional (2-D) or three-dimen-
sional (3-D) objects from 2-D intensity images, assuming that the &y7) &y

x,y’) a

viewpoint is arbitrary. Our approach is model-based (i.e., we as- i

sume a predefined set of models), while our recognition strategy
lies on the recently proposed theory of algebraic functions of views.
According to this theory, the variety of 2-D views depicting an ob-
ject can be expressed as a combination of a small number of 2-D
views of the object. This implies a simple and powerful strategy for
object recognition: novel 2-D views of an object (2-D or 3-D) can
be recognized by simply matching them to combinations of known
2-D views of the object. In other words, objects in a scene are recog-
nized by “predicting” their appearance through the combination of
known views of the objects. This is an important idea, which is also

supported by psychophysical findings indicating that the human NEW VIEW
visual system works in a similar way. The main difficulty in imple-
menting this idea is determining the parameters of the combination )

matches among the views (“image space”) or the space of parame-
ters (“transformation space”). In general, both of these spaces are
very large, making the search very time consuming. In this paper,
we propose using GAs to search these spaces efficiently. To im-
prove the efficiency of genetic search in the transformation space,
we use singular value decomposition and interval arithmetic to re- Fig. 1. New views can be obtained by combining three reference views.

strict genetic search in the most feasible regions of the transforma-

tion space. The effectiveness of the GA approaches is shown on a . o .

set of increasingly complex real scenes where exact and near-exac€ffects, scene clutter, changes in shape (e.g, onrigid objects),

of views. This problem can be solved either in the space of feature i

matches are found reliably and quickly. and, most importantly, viewpoint changes. As a result, different
Index Terms—Algebraic functions of views, genetic algorithms, Views of the same object can give rise to widely different
object recognition. images. Accommodating variations due to viewpoint changes
is a central problem in the design of any object recognition
system.
|. INTRODUCTION

Typical strategies for coping with the variable appearance of
HE PROBLEM of object recognition is fundamental inobjects due to viewpoint changes include the use of invariants
computer vision. Although a variety of approaches hay8], explicit models [4], and multiple views [5]. According to

been proposed to tackle the recognition problem during the l&is¢ first strategy, invariant properties (i.e., properties that re-

two decades [1], [2], building computer vision systems capahieain unchanged as viewing conditions change) are employed
of recognizing relevant objects in their environment witlduring recognition. The problem with this approach is that there
accuracy and robustness has been a difficult and challengargno general case invariants for three-dimensional (3-D) ob-
task. Object recognition is difficult because the appearancejetts [6]. The second strategy employs explicit 3-D models.
an object can have a large range of variation due to photomeiuring recognition, a model of the image formation process is
applied to the 3-D model objects in order to predict the objects’
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Fig. 2. (a) Known view of a planar object (b)-(d) new views of the same object obtained using (5) and (6)aXisecorresponds to the coordinates of the
contour and the axis to they coordinates.

SCENE TABLE |

COMPUTED VALUE INTERVALS FOR THE2-D OBJECT

Ranges of values

al range a2 range " a3 range
original [-2.953, 2.953] [-2.89, 2.89] [-1.662, 2.662]
preconditioned | [-0.408, 0.408] [-0.391, 0.391] {0.0, 1.0]

ognized by simply matching them to combinations of a small
number of stored views (reference views) of the object. This
MATCH1 (4 points match) MATCH2 (2 points match)  ragyt is also supported by psychophysical findings indicating
that the human visual system works in a similar way [14], [15].

* * ¢ * Employing AFoVs for recognition has several advantages.
® ® « @ First, it is more practical than methods requiring explicit 3-D

models. In fact, a sparse set of 2-D views is required to repre-

e O ® sent a 3-D object, however, the scheme is as powerful as using

. ® . ¢ e O o © 3-D models. Second, it is more efficient since it stores and ma-
. v e e . . e e nipulates 2-D views only. In contrast to multiview approaches,

however, novel views are compared to “predicted” views (i.e.,
(b) © combinations of reference views) rather than to the reference
Fig. 3. (a) Two different hypothetical matches of two-point correspondenci¥tews themselves. Since the predicted views can be very dif-
between the model and the scene. ifigtch1 produces more matches (goodferent from the reference views, recognition does not depend on
match), while (cMatch2fails to produce more matches (bad match). the similarity between novel and reference views, as itis the case
with multiview approaches. Finally, it is more general since the
appearance of an object's shape due to viewpoint changaisove theoretical results hold true for various projection models
According to this theory, the variety of two-dimensional (2-Dand transformations (see Section I1), giving rise to a “family” of
views depicting an object (2- or 3-D) can be expressed asrethods.
combination of a small number of 2-D views of the object [7], Given a novel view of an object, recognition based on AFoVs
[8], in the case of 2-D objects, for viewpoint. In this case, thimplies “predicting” the novel view by combining together
combination scheme is equivalent to an affine transformati&nown views of the object. The main difficulty in implementing
of the image coordinates from the known view. Various resultkis idea is choosing the parameters of the combination scheme.
exist for 3-D objects. Under the assumption of orthographis discussed in [7], the parameters of the combination can
projection and 3-D rigid transformations, e.g., three views abe recovered either by: 1) identifying a set of features from
enough to represent any view from the same aspect [7]. Théise novel view that approximately match a set of features
results suggest a simple but powerful framework for objefiiom the known views [image space (IS)] or 2) searching the
recognition: novel views of an object (2-D or 3-D) can be respace of parameters [transformation space (TS)] explicitly. In
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Fig. 4. One of the 3-D objects and the reference views used in our experiments. (a) First reference view. (b) Second reference view. (c) Inteoestpeints
first reference view (lines connecting the corners have been added to enable visualization purposes only). (d) Interest points from the secevitrefgines
connecting the corners have been added to enable visualization purposes onlypxitieorresponds to thecoordinates of the contour and thexxis to they
coordinates.

the IS, one has to compute the transformation that aligns 12¢]—-[29]. There have also been several attempts to apply GAs
model with the scene by solving a system of linear equations.object recognition [30], [31]. In [30], GAs were used to solve
The main problem with this approach is that the numbdéhe object recognition problem, formulated as a graph matching
of model-scene feature matches grows exponentially as iveblem. The results reported in [30] were encouraging, but
number of scene features increases. Searching the TS aveidse based on artificial objects only. Extending this approach
the feature matching step. However, this can be very tini@ 3-D object recognition is not easy since it requires that the
consuming due to the large number of possible transformatioBsD representation of the objects is available. Our approach,
on the other hand, relies on 2-D representations only. In [31],
In this paper, we propose using genetic algorithms (GAppint patterns were matched using GA-IS, assuming similarity
for searching these spaces efficiently [16]-[18]. Our goal is teansformations (i.e., camera perpendicular to the image plane).
find if an instance of a given model appears in a scene or ndhat work has similarities with our GA-IS approach, however,
Two different approaches are considered: genetic algorithmiimoes not generalize efficiently to 3-D object recognition (i.e.,
the image space (GA-1S) and genetic algorithm in the transfarwould require either 3-D models or a very large number of
mation space (GA-TS). GAs are search procedures that havB views). Our approach, on the other hand, is based on a
been shown to perform well when the space to be searchegdsverful recognition framework which can handle both 2-D
very large [16], [17].To facilitate GA-TS, we employ singularand 3-D objects, i.e., AFoVs. Also, we used real objects in our
value decomposition (SVD) [19] and interval arithmetic (IAexperiments whereas the results reported in [31] are based on
[20], [21] to estimate the interval of values that the parameteagtificialdata only. In a different application, GAs were used
of the combination scheme can assume [22]-[24]. Thus, gendtic image registration [32]. The main idea in that work was
search is confined to only the most feasible regions of the TSapplying GA-TS to register a set of images. This approach has
GAs have been used to solve various problems in compusggmilarities with our GA-TS approach; however, the problem
vision. For example, they have been used for feature selectmmsidered here is different. Also, our search is more efficient
[25], target recognition [26], and face detection/verificatiosince the GA searches the most feasible regions of the TS.
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The remainder of this paper is organized as follows. Section Il TABLE I
presents an overview of the theory of AFoVs. A brief review of COMPUTED VALUE INTERVALS FOR THES-D OBJECT
GAs is provided in Section Ill. Section IV discusses the tw Ranges of values
solution spaces: the IS and the TS. The methodology usedal range a2 range a3 range a4 range

estimate the value intervals for the parameters of the combir [-0.4193, 0.4193] | [-0.3623, 0.3623] | [-0.4292,0.4292] | [01]
tion scheme is described in Section V. This section also presents
the genetic search approaches. Specifically, we present the en-
coding mechanism, the selection scheme, genetic operators,
fitness function used. Section VI includes our experimental rb——— 4
sults and finally, our conclusions are given in Section VII. <5 bits—

Scene pt 2 | Scene pt 3

<=—6 bits—

Fig. 5. Chromosome contains the binary encoded points to be matched
Il. BACKGROUND ONALGEBRAIC FUNCTIONS OFVIEWS between the model and scene.

AFoVs were firstintroduced by Uliman and Basri [7]. In par-
ticular, it was shown that if we let an object undergo 3-D rigid
transformations, (i.e., rotations and translations in space), anc al a2 a3 b1 b2 b3
we assume that the images of an object are obtained by ortho
graphic projection followed by a uniform scaling, then any novel
view of the object can be expressed as a linear combination=gf 6. chromosome contains the binary encoded parameters.
three other views of the same object. Specifically, consider three
reference views of the same objéaégt, V> and V3, which have ) )
been obtained by applying different rigid transformations, eadfould be noted that (3) and (4) can be rewritten usingythe
view represented by a set of “interest” points (e.g., corners afgPrdinates of the second reference view instead. _
junctions). Take now three poingé = («/,4/), o’ = (=, 4"), Although it was not explicitly dlspussed in [7], .algebralc
andp’” = (2/,4"), one from each view, which are in correfunctions, myolvmg one reference view, also exist in the case
spondence. IV is a novel view of the same object, obtaine@f Planar objects. This is because in the case of planar objects,
by applying a different rigid transformation, apd= (z, ) is scaled orth_ographlc pro!ectlon is equwale_:nt to a 2-D _afnne
a point that is in correspondence wiih p”, andp””, then the transformatlon_ [4]. Con5|der_ a reference \_/@W and a point
coordinates of/ can be expressed in terms of the coordinatds = (¢',¥'). Given a novel view” and a poinp = (z,y) that

-—7 bits—

of o/, ", andp” as the following: is in correspondence withl, the coordinates gf are related to
the coordinates gf’ as the following:
x =ai12’ + asx” + asx’ + ay (1)
y =b1y 4+ boy” + b3y + by (2) x =ayx’ + azy’ + a3 ()
. y =bra’ + bay’ + b3. (6)
where the parameters, b;,7 = 1,...,4 are the same for all

the points that are in correspondence across the four views. Tﬁi@_ 2(b)-(d) shows new views of the objectin Fig. 2(a), obtained
idea is illustrated in Fig. 1. The parametersandb; can be ysing (5) and (6).

recovered by solving a I_inear system of equations, given thatthe extension of AFoVs in the case of perspective projec-
we know at least four point correspondences across the viewgyn has been considered by several authors [8], [12]. In partic-

_ The above result can be simplified if we assume that the gy, it has been shown that three perspective views of an object
jectundergoes a 3-D linear transformation in space (i.e., leMQWgisfy a trilinear function. Moreover, Shashua [8] has shown
the orthonormality constraint associated with the rotation mgs5t g simpler and more practical pair of algebraic functions
trix). In this case, the AFoVs are simpler and involve only tWeyist when the reference views have been obtained under scaled
reference views. Specifically, consider two reference Vigws orthographic projection (one perspective and two orthographic
andV; of the same object which have been obtained by applyifgks satisfy a bilinear function). More results exist that sup-

d/ifferent linear transformations and two points = (',4/), port the validity of the theory of AFoVs under various projec-

p” = («”,y"), one from each view, which are in correspongon models, transformations, and object types (paraperspective
dence. Then, given a novel vieW of the same object, ob- yrgjection [10], rigid or nonrigid objects [9], and objects with
tained by applying another linear transformation, and a poigfyooth or nonsmooth surfaces [13]).

p = (z,y), which is in correspondence with points andp”, | this paper, we have used (5) and (6) for 2-D recognition and
the coordmgtes gf can be expressed as a linear comb|nat|o(@) and (4) for 3-D recognition. In general, (3) and (4) will not
of the coordinates of’ andp” as the following: give satisfactory results when perspective distortions are large
, , Y to be neglected. This is the case when the objects are close to
T =% +azy +asr +ay (3)  the camera. When the distance of an object from the camera is
y =bra’ + boy/ + bzx” + by (4) large compared to its depth, however, it is well known that per-

spective projection can be approximated by scaled orthographic
where the parametets, b;, j = 1,...,4 are the same for all projection [4], [39]. In this case, (3) and (4) will give good re-
the points that are in correspondence across the three viewsults as is also verified by our experimental results.
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Fig. 7. Some of the test scenes used in our 2-D experiments. (a) First test scene. (b) Second test scene. (c) Interest points extracted framdbediréd)es
Interest points extracted from the second test scene. Note that we have intentionally left out the internal contour of the scene to make the paidéengiog.

Ill. SOLUTION SPACES maximum number of possible alignments is of the order of
O(M*S*) , wherek is the minimum number of point matches

In general, object recognition approaches operate in onergfjuired. Usually, due to errors in the location of the scene
the following two solution spaces: the IS [39] or the TS [37]points, more thark point correspondences are required to
IS techniques begin by first extracting a collection of scene feéempute the corresponding transformation more accurately.
tures (e.g., points corresponding to curvature maxima or zero-The same arguments hold true using AFoVs for object recog-
crossing). Then, a correspondence between these features afitien. Specifically, given an unknown scene containing an in-
set of model features is hypothesized. The transformation th&ince of the model to be recognized, we need to match sets of
aligns the model with the scene is then determined by this hytene points to sets of points from known views of the model.
pothesis. In the case of similarity transformations, e.g., at legbm each match, the parameters of the views combination that
two point correspondences between the model and the scengagglict the appearance of the model in the scene can be com-
required. Fig. 3 illustrates a simple case. The open circles corpetted. The number of points that need to be matched depends
spond to model point features and the black circles correspasgl the the number of the parameters of the combination [i.e.,
to scene point featuredlatchland Match2are two different three-point matches are required if (5) and (6) are used and
hypothetical matches. Based on these hypothetical matches fate-point matches are required if (3) and (4) are used]. Our
compute a similarity transformation to align the model with thirst approach involves using GA-IS to find the point matches
scene. As can be seeMatchlis a good match since it alignsefficiently.
more model points with the scene (i.e., not just the hypothesizedalternatively, TS techniques deal with the space of possible
two-point correspondences). On the other haakch2is abad geometric transformations between the model and the scene.
match since no more model points, besides the ones hypotiiRe objective is to search the space of all possible transfor-
sized, have been aligned with the scene. mations in order to find a transformation which would bring a

Since there is usually n@ priori knowledge of which model large number of model points into alignment with the scene. In
features correspond to which scene features, recognition the case of similarity transformations, e.g., the TS is four-di-
be computationally too expensive, even for relatively simplaensional. Using AFoVs, the dimensionality of the TS is de-
scenes. Assuming/ model points and image points, the termined by the parameters of the view combination scheme
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Fig. 8. Best and worst solutions found by (a) and (d) GA-IS and (b) and (d) GA-TSdemelThex axis corresponds to the coordinates of the contour and
the y axis to they coordinates. (c) and (d) Performance plots for the best solutions (the horizontal axis corresponds to number of generations, while the vertical
one to the fitness).

[i.e., six parameters if (5) and (6) are used and eight parant&iven the point correspondences across the reference and new
ters if (3) and (4)are used]. Searching the TS is very expensitiews, the following system of equations should be satisfied:
computationally due to the large number of possible parameter , , y

; : ' 1 ooy 1 ar b 1 W
values. Our second approach involves using GA-TS to find the » Lo a b N
best transformation efficiently. T2t 2 b2 =" * (7)
. In general, the TS being much larger than the IS yvould oy vy 2l 1 a, bi N UN
imply that the GA-TS approach has more work to do. Without
somehow bounding the parameters of the combination scheiygere (z1,u1), (5, 13), - -, (&N YN and
it is difficult and time consuming for the GA to find good(z71,%1), (z3,%2),. .. (zy,¥x) are the coordinates of the
solutions. To facilitate GA-TS, it is important that we restricPoints in the reference viewd; and V2, respectively, and
genetic search to a smaller subspace of the TS. In the nekt:¥1) » (z2,42)...(zn,yn) are the coordinates of the
Section, we describe a method based on SVD [19] and IA [zg?mts in the new view/. Splitting the above system into two

for estimating the intervals of values that the parameters of (FidbSystems, we have

combination scheme can assume. J 8)
Pcy =Py )
IV. ESTIMATING THE PARAMETERS V ALUE INTERVALS where the columns of th& matrix are shown in (7, andc;

are vectors corresponding t9’s andb;’s (the parameters of
In this section, we consider the case of orthographic projeitie combination scheme), apd, p, are vectors corresponding
tion under the assumption of linear transformations. Howevéo, the z andy coordinates of the new view. To solve (8) and
the same methodology can be applied on all other cases. As §8; a least-squares approach, such as SVD [19], can be used.
cussed in Section I, two reference views and V>, must be Using SVD,P can be factorized aB = UpWpVE, where both
combined in order to obtain a new vieW [see (3) and (4)]. Up andVp are orthonormal matrices, whil@'p is a diagonal
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matrix whose elements’; are always nonnegative (the singulaas an interval of possible values. Given two interval variables
values ofP ).The solutions of the above two systems are= ¢t = [t1,¢2] andr = [r1,72], the sum and the product of these
P*tp, andc; = P*p,, whereP™ is the pseudoinverse df. two interval variables are defined as the following [20]:
Assuming thaf” has been factorized, its pseudoinversis=

. : JOInY thr=[ti4r,to+r 12
VpW;’UI?, WhereWIir is also a diagonal matrix with elements +*7 [t + ristz 4 (12)
1/wf if wk is greater than zero (or a very small threshold in t'r =[man(tiry, ture, tary, tare),
practice) and zero otherwise. The solutions of (8) and (9) are max(tiry, tir, tary, tara)]. (13)

given by the following [19]: Applying IA to (10) and (11), instead of the standard arithmetic,

k uPp we can compute interval solutions farande; by settingp,, =
€1 IZ <;U—pm>vzp (10) [0,1] andp, = [0, 1]. In interval notation, we solve the systems
o Pe, =p! (14)
2 =Z<w—ﬁ>” (1) Pe; =p; (15)
i=1 (%3

where the superscript denotes an interval vector. The solu-
wherew!” is theith column of matrixUp, v/ is theith column tionsc! andc’ should be understood to meah= [¢; : Pc; =
of matrix Vp, andk = 4. To determine the range of values folp,., p,epl] andcj = [c; : Pca = py, pyepl]. It should be men-
c¢; andeg, we assume first that the novel view has been scalédned that since the matrik and the intervals fop,,, p,, are all
such that ther andy coordinates belong within a specific in-the same, the interval solutions fgrandc} will be the same.We
terval. This can be done, e.g., by mapping the novel view to thave applied this methodology on the models used in our ex-
unit square. In this way, it andy image coordinates will be periments to estimate the parameter intervals. The first row of
mapped to the interval [0,1]. To determine the range of valu&able | shows the intervals computed for the object shown in
for ¢; andes, we need to consider all possible solutions of (8Fig. 2(a) [planar object assuming (5) and (6)]. It can be shown
and (9), assuming that. andp, belong to [0,1]. We are using that the width of the ranges depends on the condition of the ma-
IA [20] to solve this problem. In IA, each variable is representettix P and that the reference view(s) can be “preconditioned”
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TABLE Il
SUMMARY OF RESULTS(GA-IS APPROACH
Results
Scene Scene Points | Number of Matches | GA — IS, iches
Scenel 19 5,633,766 1800(0.0003)
Scene2 40 57,442,320 47,800(0.0008)
Scene3 45 82,500,660 133,250(0.0016)
TABLE IV
SUMMARY OF RESULTS(GA-TS APPROACH
Results
Scene GA =T8S, 0iches
Scenel | 8010 (0.000000018)
Scene2 | 8760(0.00000002)
Scene3 | 8620(0.00000002)

V. METHODOLOGY

In this section, we present the genetic search approaches.
Specifically, we present the encoding mechanism, the selection
scheme, genetic operators, and the fitness function used.

A. Image Space Encoding

A simple encoding scheme where the identity of the points
to be matched made up the alleles in the genotype gave good
results on all the scenes we tried in our experiments. The pa-
rameters are provided in the next section. Using (5) and (6),
three pairs of points are needed to compute the parameters of
the combination scheme. Thus, the chromosome contains the
binary encoded identities of the three pairs of points. The model
used in our experiments [see Fig. 2(a)] was represented by 19
points, corresponding to curvature extrema and zero crossings

to narrow the parameter intervals (see [22]-[24]). By precondB8]. This requiredlog 19] = 5 bits per point. The scenes used
tioning, we mean an appropriate transformation that maps tineour experiments had between 19 and 45 points (extracted in
reference views to new reference views, yielding a maltix the same way) and required either five or six bits per point. We
with good condition number. The second row of Table | showid not check for repeated points and used simple two-point
the tighter intervals obtained using this procedure. The modebssover and point mutation. A simple linear transformation
and reference views used in our 3-D experiments are shownaas used to map values from the actual range to the desired
Fig. 4. Table 1l shows the interval values obtained in this casae (e.g., from [31] using five bits to [18] assuming 19 interest

(after preconditioning).

model points). Fig. 5 illustrates the encoding scheme.
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B. Transformation Space Encoding

A simple binary encoding scheme was also used to repres
solutionsinthe TS. In the case of 2-D objects, each chromoso!
contains six fields, with each field corresponding to one of th
six parameters of (5) and (6). Fig. 6 illustrates the encodir
scheme. In the case of 3-D objects, each chromosome contze
eight fields with each field corresponding to one of the eigt
parameters of (3) and (4). Only the range (difference betwe
the maximum and minimum values) needs to be represented. (@) (b)
In the 2-D case, for example; assumes values in the interval
[—0.408,0.408] (see second row of Table I). Thus, its range i
r = 0.408 — (—0.408) = 0.816. Assuming that up to two
decimal points are important in the estimation of the paramete
82 possible values [0.816 x 100] + 1) should be encoded.
This means that seven bits are enough to enegterange. It
only needs to represent values from zero to 81. As a result
is possible for the GA to find solutions that are not within the
desired range (i.e., [0, 81]). To deal with this problem, a simp
transformation is used to map values from [0, 127] to [0, 81]. © (d)

Assuming that¥’ is a binary encoded solution Correspondlngig. 11. Some of the test scenes used in our 3-D experiments. (a) First

to a1, a;’s actual value is obtained as the following: test scene is the same as the first reference view. (b) Second test scene was
89 obtained by transaltion and 3-D rotation around ghexis. (c) Third test view
a; = MIN(al) + (T)*Decilnal(W) was obtained by moving the camera higher and closer to the object (i.e., to
7 introduce more perspective distortions). (d) Fourth test view demonstrates
some degree of occlusion.

where MIN(a;) = —0.408 and Decimal(W) is the decimal
representation of¥. The decoding of the other parameters is
performed in a similar way. The constgf2/27) isusedtomap  To evaluate fitness of individuals in the case of the GA-TS ap-

values from [0, 127] to [0, 81]. proach, we follow exactly the same procedure except that we do
not have to solve for the parameters of the combination scheme.
C. Fitness Evaluation This is because the parameters are directly encoded in the chro-

We evaluate fitness of individuals by computing the back-pr§?0some and all that is required is to decode it by following the
jection error BE) between the model and scene. Specificallprocedure outlined in the previous section.
to evaluate the goodness of the match specified by an individual
in the case of the GA-IS approach, we first compute the parame- VI. EXPERIMENTS AND RESULTS

ters of the combination scheme which maps the model points to ) )
their corresponding scene points. This requires solving a systenfV/e have performed a number of experiments using both 2-

of six equations with six unknowns in the case of (5) and (6) afdd 3-D objects. In the case of 2-D object recognition, we used
a system of eight equations with eight unknowns in the casetBg set of equations given by (5) and (6), while in the case of
(3) and (4). After the parameters have been computed, we ppeD object recognition, we used the set of equations given by
dict the appearance of the model in the scene and we compakand (4). A number of increasingly complex recognition tasks
it with its actual appearance (i.e., back-project the model orit@re used to demonstrate the proposed approaches. Our selec-
the scene). This is the standard verification step used in objtion strategy was cross generational. Assuming a population of
recognition [4], [5], [23], [39]. Finally, we compute the errorsizelN, the offspring double the size of the population and we se-
BE between the back-projected model and the scene. To cdeet the bestV individuals from the combined parent-offspring
pute BE, for every model point, we find the closest scene poiqtopulation for further processing [39]. This kind of selection
and then compute the distanéebetween these two points. Thedoes well with small populations and leads to quick convergence
overall back-projection error is given by (sometimes prematurely). We also linearly scale fitnesses to im-

M pose a constant selection pressure [17].

BE =) d;*
i=1

wherel is the number of model points. Since we need to max- The scenes we used in our experiments are shown in Figs. 7
imize fitness but minimize the error, our fitness functionis  and 8. All GA parameters were identical except for the popula-
Fitness — Max — BE ti<_)_n sizeand number_ of generat_ipns. We used a crossover proba-
bility of 0.95, a mutation probability of 0.05, and a scaling factor
where the constaritlax is used to change the minimizationof 1.2. The population sizes were set to 100, 200, and 500 for
problem to a maximization on&lax was set to 10000 in all scenesScenelScene2andScene3respectively. The number
of our experiments. of generations needed in the case of the GA-TS approach were

A. 2-D Object Recognition Experiments
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Fig. 12. (a) and (d) Best and (b) and (d) worst solutionsSoene5(c) and (d) Performance plots (the horizontal axis corresponds to number of generations,
while the vertical one to the fitness).

twice as many than in the case of the GA-IS approach. In paress corresponding to the best solution (solid line) and average
ticular, less than 30 generations were required by the GA-IS dipress (dashed line) corresponding to that solution. As it can
proach forScenelnd less than 50 fdBceneandScene3 be observed, the GA-IS approach found this solution within the
In the case of the GA-TS approach, approximately 100 gefirst ten generations or so. In the case of GA-TS approach, al-
erations were required for each scene. This can be justified fapst exact mappings (i.e., very small back-projection error, but
the fact that the TS is larger than the IS. It should be mentionett zero) were found in all cases. Fig. 8(b) shows the best and
however, that although the GA-TS approach required more geworst solutions. Fig. 8(d) shows the best and average fitnesses
erations to converge, this does not mean that it is necessafilythe best solution found by the GA-TS approach. Comparing
slower than the GA-IS approach. The reason is that the GA-Ti® performance curves in both cases, the convergence of the
approach does not have to solve for the parameters of the c@d#-TS approach is slower.
bination (i.e., they are directly encoded in the chromosome), aResults forScenezand Scene3re shown in Figs. 9 and 10.
time-consuming step. For each scene, we ran each approachiiembest and worst solutions found by the two approaches in the
times with different random seeds. Performance plots indicatase ofSceneare comparable. In the caseSdene3the GA-1S
that the GA very quickly predicts roughly the correct appeaapproach found the correct solution in all ten trials, while the
ance of the model in the scene and then spends most of its ti®&-TS approach missed the correct solution once. This case is
making little progress. actually shown in Fig. 10(b). It should be mentioned, however,
Scenelvas chosento be the same as the reference view. Exthett Scene3s considerably more difficult thaBcenezsince
mappings (i.e., zero back-projection error) were found using tadarge part of the boundary of the object to be recognized is
GA-IS approach in nine out of ten trials. Fig. 8(a) shows thmissing (the boundary was removed intentionally to make the
best and worst solutions found (the solid lines represents hhblem harder). More experiments have shown that finding
scene and the dashed lines correspond to the best and worstts®wrong solution can be alleviated by increasing the popu-
lutions). In the case of the best solution, the GA has predicted th&on size and the number of generations. Performance plots in
model appearance exactly, thus, the model and the scene ovikdth cases illustrate similar results (GA-1S converges faster than
each other and present a single outline. Fig. 8(c), shows the®A-TS).
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Fig. 13. (a) and (c) Best and (b) and (d) worst solutionsSoene6(c) and (d) Performance plots (the horizontal axis corresponds to number of generations,
while the vertical one to the fitness.

Table Ill provides a summary of our results in the case ofumber of matches the GA-TS approach searched through. The
the GA-IS approach. The first column specifies the scene. Thembers in the parentheses have the same meaning as before.
second and third columns describe the size of the test problems.

The columns list (in order) the number of scene points and tRe 3-D Object Recognition Experiments
size of search space. The last column indicates GA-IS’s effortinin this section, we report experiments using 3-D objects.
terms of the number of matches explored and the correspond@igce the GA-TS approach performed very satisfactorily in
fraction in the searched space. In our experiments, the numbes previous experiments and does not require any feature
of model pointsM is 19; thus, the number of possible tripletextraction, we have not considered the GA-IS approach here.

M3 is The 3-D model used in the experiments is shown in Fig. 4. We
19 have used two views to model the aspect of the object shown
M3 = < 3 ) = 969. in Fig. 4 since we employ (3) and (4). Some of the test scenes

used in our experiments are shown in Fig. $t€ne5Scened

The order of points matters in computing the total number The crossover probability, mutation probability, and scaling
of possible matches between model and scene points andastor were the same as before. The population size was set to
thus, given by3!M3S3, where Ss is the number of possible 200 in all the following experiments. Approximately 150 gen-
scene triplets. Table IV presents similar results for the caseeartions were required for each scene. Each experiment was ran
the GA-TS approach. The number of values we need to cden times with different random seeds. Performance plots indi-
sider in order to represent;’'s range is 82 (see our discus-cate again that the GA very quickly predicts the appearance of
sion in Section VI-B). In the case a@f,, we need to consider the model in the scene and then spends most of its time making
79 values, while in the case af, we need to consider 101little progress.
values. The values fob;, b, and b3 are the same (same in- Scenefwas chosen to be exactly the same as one of our ref-
terval solutions — see our discussion in Section V). The totafence views. Fig. 12 shows the best and worst solutions found.
number of possible transformations is, th822 x 79> x 101> = The GA-TS approach had no difficulty finding good solutions
428 079 701 284. The second column of Table IV indicates thén all runs. The object ilscenethas undergone rotation around
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Fig. 14. (a) and (c) Best and (b) and (d) worst solutionsSoene7(c) and (d) Performance plots (the horizontal axis corresponds to number of generations,
while the vertical one to the fitness.

they axis. However, all of the features present in the reference TABLE V
views are also present Bcene6Fig. 13 shows the best and SUMMARY OF RESULTS
worst solutions found as well as the fithess and average fitness Results
graphs associated with thef@ceneds more interesting since Scene | GAyansormations
the camera has been moved higher and closer to the object. The Scenel 19,600
reason we moved the camera closer was to test the tolerance Scene2 37,600

. . . . Scene3 25,600
of the (3) and (4) to perspective distortions (see Section Il) and Sconcd 37000

the ability of GAs finding good solutions in such cases. Fig. 14
shows good results were obtained in all cases. Fingtigne8
shows the model with part of it occluded by a stapler. Due fsaring the GA approach with our previous object recognition
the occlusion, the matches found are not as good as in the othgproach [22], the solutions found by the two approaches are
cases. However, they can serve as starting points to local opficomparable quality (i.e., similar back-projection errors). Our
mization techniques (see next section). previous approach finds more accurate alignments since the pa-
To demonstrate the efficiency of the proposed approach, wameters of the AFoVs are computed explicitly by considering
compare the number of transformations tried by the GA-TS af@ature matches and solving a system of linear equations. How-
proach versus the total number of transformations. The numleser, there is not a significant difference in the quality of the
of values used to represeit’s range is 84 (see our discussiorsolutions found by the two approaches, at least for recognition
in Section VI-B). Foraz, we used 73 values, 86 values fay, purposes. It should be emphasized, however, that the two ap-
and 101 values fat,. The values foby, b, b3, andb, were the proaches are fundamentally different and have different capa-
same (i.e., same interval solutions). Thus, the total numberholities. Our previous approach is an indexing-based approach,
possible transformations &t x 732 x 862 x 1012, which is which trades space for time. Briefly, indexing is a mechanism
of the order of 2x 10*°. The last column of Table V shows thethat, when provided with a key value, allows rapid access to
number of transformations tried by the GA-TS approach. Obeme associated data. Thus, instead of searching the space of all
viously, the GA searches a very small portion of the TS. Compossible objects and their appearances and explicitly reject in-
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Fig. 15. (a) and (c) Best and (b) and (d) worst solutionsSoene8(c) and (d) Performance plots (the horizontal axis corresponds to number of generations,
while the vertical one to the fitness.

valid solutions through verification, indexing inverts the procesgpproach: 1) searches for multiple models in the scene , and 2)
so that only the most feasible predictions are considered. Ttygerates in the IS (i.e., more time is required for feature extrac-
idea is arranging the model appearances in an index spacetiofh and solving for the parameters of the AFoVs). The GA ap-
fline. During recognition, feasible solutions are found by inproach searches a smaller space since it looks for a single model
dexing into this space. in the scene. Moreover, it searches the TS explicitly, which im-
Obviously, a major advantage of our previous approach is thdies that it does not have to extract any features, establish cor-
it can search for multiple models in a scene simultaneously. Trespondences, or solve for the parameters of the AFoVs.
currentimplementation of our GA approach can search different
appearances of the same model only. Suppose we are given a VII. CONCLUSION

scene that conta!ns more than one model, we would have.tqn this paper, we considered using GAs to recognize real
run the GA alg9r|thm over the scene once for each model Nor3D objects from 2-D intensity images. The recognition
order to recognize all the models. Extending the GA approagh,ieqy used was based on the theory of AFoVs. Two different
to searching for multiple models would require a more powerf‘a\bproaches were considered: GA-IS (i.e., feature matches
encoding scheme (e.g., encoding the identity of the modelsjpong the views) and GA-TS (i.e., parameters of the algebraic
the chromosome). A disadvantage of our previous approachljﬁctions)_ GA-TS was made more effective by searching
that it is very memory consuming since it requires prestoringna|| parameter intervals obtained using SVD and IA. Our
a lot of information in the index table. The GA approach, oBxperimental results demonstrate that GAs search these spaces
the other hand, has very low memory requirements. In termsgficiently and find good solutions.

time requirements, the GA approach seems to be able to find a should be mentioned that although there are many prob-
rough alignment of the model with the scene very quickly (e.dems for which GAs can find a good solution in reasonable time,
within 20 generations or so). We can, thus, claim that it is fastgfere are also problems for which GAs are inappropriate. These
than our previous approach. However, this is not a fair compaire mainly problems for which it is important to find the exact
ison not only because we do account for the time required biobal optimum. GAs do not perform well in these cases. In the
the GA to improve the alignment, but also because our previocentext of our application, our expectation was that GAs will be
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Fig. 16. Scene with self-occlusion. (a) Original scene. (b) Solution found
overlaid on the original scene. The GA was able to perform a rough alignmeiL6]
of the model with the scene, which could be assumed to be used to initialize

a local optimization technique. [17]

able to perform at least a rough alignment of the model with thét®l
scene. The results obtained through our experiments show thab)
GAs can find almost exact matches when there is little occlusion
and near-exact matches when scenes contain occlusion (e.g.,
Figs. 15 and 16). Near-exact matches are useful in the sense tha
can actually reduce the search space to a limited domain. Then,
a local optimization technigue can be used for finding an exad?!
match. The preliminary stage of rough alignment may help pre-
venting such methods from reaching a local minimum instead3]
of the global one. 24]
This work has two main limitations. First, we have only used
two reference views in the case of 3-D object recognition. This
is acceptable when different aspects of an object produce viewad
containing many common features. When complex objects are
considered (i.e., having very different aspects), more referenges;
views are required to represent each aspect. Second, we do not
search for multiple objects in the scene. If two or more objects,,
need to be recognized, we need to run the GA approach several
times, each time searching for a different object. For future re-
search, we plan to extend the proposed approach so it can hanii@
multiple aspects as well as multiple objects. This requires a more
useful encoding scheme which encodes information about tHed]
identity of the object being searched as well as the views beingO]
considered for predicting its appearance in the scene.
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