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Abstract. Zernike Moments are useful tools in pattern recognition and
image analysis due to their orthogonality and rotation invariance prop-
erty. However, direct computation of these moments is very expensive,
limiting their use especially at high orders. There has been some ef-
forts to reduce the computational cost by employing quantized polar
coordinate systems, which also reduces the accuracy of the moments.
In this paper, we propose an efficient algorithm to accurately calculate
Zernike moments at high orders. To preserve accuracy, we do not use
any form of coordinate transformation and employ arbitrary precision
arithmetic. The computational complexity is reduced by detecting the
common terms in Zernike moments with different order and repetition.
Experimental results show that our method is more accurate than the
other methods and it has comparable computational complexity espe-
cially in case of using large images and high order moments.

1 Introduction

Moment functions of image intensity values are used to capture global features
of the image in pattern recognition and image analysis [1]. Among many mo-
ment based descriptors, Zernike moments have minimal redundancy (due to
the orthogonality of basis functions [2]), rotation invariance and robustness to
noise; therefore they are used in a wide range of applications on image analy-
sis, reconstruction and recognition [3]. However, there are also some technical
difficulties in the calculation of Zernike moments due to the very high compu-
tational complexity and lack of numerical precision. It is usually not possible to
calculate them accurately in reasonable time when the desired moment order is
high and/or the images to be processed are large.

Little attention has been paid to the efficient and accurate calculation of
Zernike moments [4–6]. Mukundan et al. [4] proposed a recursive algorithm for
computing the Zernike and Legendre moments in polar coordinates. Belkasim et
al [5] introduced another recursive algorithm using radial and angular expansions
of Zernike orthonormal polynomials. Finally in a more recent study, Gu et al. [6]
employed the square to circular transformation of Mukundan et al. [4] and more
efficient recursive relations to develop an even faster algorithm but its accuracy
is still limited to that of [4] because of approximate coordinate transformation.
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In this paper, we propose an algorithm to reduce computation cost of Zernike
moments without sacrificing accuracy. To preserve accuracy we do not use any
form of coordinate transformations and employ an arbitrary precision arithmetic
library [7]. The computational complexity is reduced by computing the common
terms in Zernike moments with different order and repetition only once.

In the next section, we briefly summarize the definition of Zernike moments.
Then in section 3, we present our method. In section 4, the accuracy and compu-
tational complexity of our method is compared against other algorithms. Section
5 concludes the study.

2 Zernike Moments

Zernike moments are based on a set of complex polynomials that form a complete
orthogonal set over the interior of the unit circle [8]. Zernike moments are defined
to be the projection of the image function on these orthogonal basis functions.
The basis functions Vn,m(x, y) are given by

Vn,m(x, y) = Vn,m(ρ, θ) = Rn,m(ρ)ejmθ (1)

where n is a non-negative integer, m is non-zero integer subject to the con-
straints n − |m| is even and |m| < n, ρ is the length of the vector from origin
to (x, y) , θ is the angle between vector ρ and the x -axis in a counter clock-
wise direction and Rn,m(ρ) is the Zernike radial polynomial. The Zernike radial
polynomials,Rn,m(ρ), are defined as:

Rn,m(ρ) =
n∑

k=|m|,n−k=even
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n−k

2 n+k
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ρk =
n∑

k=|m|,n−k=even

βn,m,kρk (2)

Note that Rn,m(ρ) = Rn,−m(ρ). The basis functions in equation 1 are or-
thogonal thus satisfy

n + 1
π

∫∫

x2+y2≤1

Vn,m(x, y)V ∗
p,q(x, y) = δn,pδm,q (3)

where

δa,b =
{

1 a = b
0 otherwise

(4)

The Zernike moment of order n with repetition m for a digital image function
f(x, y) is given by [9]

Zn,m =
n + 1

π

∑ ∑

x2+y2≤1

f(x, y)V ∗
n,m(x, y) (5)

where V ∗
n,m(x, y) is the complex conjugate of Vn,m(x, y). To compute the Zernike

moments of a given image, the image center of mass is taken to be the origin. The
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function f(x, y) can then be reconstructed by the following truncated expansion
[9]:

f̃(x, y) =
N∑

n=0

Cn,0

2
Rn,0(ρ) +

N∑
n=1

∑
m>0

(Cn,mcosmθ + Sn,msinmθ)Rn,m(ρ) (6)

where N is the maximum order of Zernike moments we want to use, Cn,m and
Sn,m denote the real and imaginary parts of Zn,m respectively.

3 Proposed Algorithm

A way to improve the speed of Zernike moment calculation is to use a quantized
polar coordinate system. In [4] and [6], a square to a circle transformation is
utilized for this purpose. In [5], for a M ×M image the angles are quantized to
4M and radii are quantized to M levels. A side effect of quantization is that some
error is introduced especially in high order Zernike moments. In our method we
avoid using any quantization, therefore, it’s as accurate as the classical method.
We obtain speed-up by detecting common terms in Zernike moments.

By substituting equations 2 and 1 in 5 and re-organizing the terms the Zernike
moments can be calculated in the following form:

Zn,m =
n + 1

π

∑ ∑

x2+y2≤1

(
n∑

k=|m|
βn,m,kρk)e−jmθf(x, y)

=
n + 1

π

n∑

k=|m|
βn,m,k(

∑ ∑

x2+y2≤1

e−jmθρkf(x, y))

=
n + 1

π

n∑

k=|m|
βn,m,kχm,k (7)

The χm,k’s defined in the equation 7 become a common term in the compu-
tation of Zernike moments with the same repetition as shown in Figure 1 for the
case of repetition m=0. In general, to compute Zernike moments up to order N,
we need to compute χm,k for each repetition as demonstrated in Table 1. The
table shows all the χm,k to be computed for each repetition up to order 10. The
second row of the table corresponds to the χm,k shown in Figure 1. Once all the
entries in the table 1 are computed, Zernike moments with any order and rep-
etition can be calculated as a linear combination of χm,k as shown in equation
7. Also note that the coefficients βn,m,k does not depend on the image or the
coordinates; therefore, they are stored on a small lookup table to save further
computation.

Another important issue in high order Zernike moment computation is nu-
merical precision. Depending on the image size and the maximum order, double



4 Gholam Reza Amayeh, Ali Erol, George Bebis, and Mircea Nicolescu

Fig. 1. The common terms to compute Zernike moments up to 10 orders with zero
repetition.

Table 1. χm,k’s needed to compute Zernike moments up to 10 order and m repetition.

repetition m χm,k

0 χ0,0,χ0,2,χ0,4,χ0,6,χ0,8,χ0,10

1 χ1,1,χ1,3,χ1,5,χ1,7,χ1,9

2 χ2,2,χ2,4,χ2,6,χ2,8,χ2,10

3 χ3,3,χ3,5,χ3,7,χ3,9

4 χ4,4,χ4,6,χ4,8,χ4,10

5 χ5,5,χ5,7,χ5,9

6 χ6,6,χ6,8,χ6,10

7 χ7,7,χ7,9

8 χ8,8,χ8,10

9 χ9,9

10 χ10,10

precision arithmetic does not provide enough precision. This fact is demonstrated
in table 2, which shows the magnitude of the difference between Zernike mo-
ments computed using double precision and arbitrary precision arithmetic for a
300× 300 image up to order 50. It can be seen that the error becomes more and
more significant with increasing order and decreasing repetition. Figure 3 shows
the effect of this error on the orthogonality of basis functions. It can be clearly
seen that in Figure 2(a) ,which is obtained using the double precision, equation 3
is violated to a great extent while Figure 2(b) which is obtained using arbitrary
precision, the orthogonality is preserved.

To calculate the computational complexity of our algorithm, let the size of the
image be M ×M pixels, and maximum order of Zernike moments be N . At the
beginning we need M2N multiplication to compute ρkf(x, y) for k = 0, 1, ..., N
for once. Note that for k = 0 we don’t need any multiplication. In the next
step, we must compute χm,k =

∑
x

∑
y e−jmθρkf(x, y). The number of χm,k to

compute Zernike moments up to N(even) order is N
2 (N

2 + 1). As there is no
need for any multiplication for m = 0 and χm,k is a complex number, this step
requires M2N(N

2 + 1) multiplications and 2(M2 − 1)(N
2 + 1)2 additions. For
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Table 2. The difference between magnitude of Zernike moments computed by classical
method using double precision and Big Number class variables.

Order , repetition 0 2 4 6 8 10 ... 40 42 44 46 48 50

42 7.28e-4 6.60e-4 1.91e-4 2.72e-4 1.72e-4 6.54e-6 ... 1.17e-17 3.82e-17

44 3.50e-3 5.57e-3 1.11e-3 1.18e-3 1.05e-4 1.49e-4 ... 1.52e-15 1.30e-17 1.04e-17

46 3.97e-1 6.48e-3 5.25e-3 2.04e-3 2.57e-3 1.07e-3 ... 2.12e-14 1.48e-15 9.06e-17 2.60e-18

48 1.86e0 6.91e-2 4.39e-2 2.83e-2 1.66e-2 3.50e-3 ... 5.23e-14 5.92e-14 3.11e-16 1.20e-16 3.47e-18

50 1.38e1 1.81e0 1.06e-1 9.39e-2 6.92e-2 7.12e-2 ... 7.52e-12 2.67e-13 1.60e-14 8.60e-16 4.65e-17 2.17e-18

Fig. 2. Dot product of basis function with n = 43, m = 7 and other basis functions up
to order 50 using (a) double precision and (b) arbitrary precision arithmetic.

large N and M the number of multiplications and additions to compute Zn,m

according equation 7 is negligible.

4 Experimental Results

We compare the accuracy of the existing algorithms [4, 6, 5] and our algorithm
based on the fidelity of reconstruction. The test image that we used in our
experiments is shown in Figure 3. This is a 64× 64 image and Zernike moments
up to order 40 are utilized for reconstruction. Figures 4(a), 4(b) and 4(c) show
the results of Mukundan’s [4], Gu’s [6] and our method respectively. It can be
seen that the former two algorithms give poor reconstructions mainly because
of the square to circle transformation. The effect of the transformation is clearly
visible in the reconstructed images.

The reconstruction result of Belkasim’s [5] method using Zernike moments
up to order 60 is shown in Figure 5(a). We used arbitrary precision arithmetic in
the implementation of Belkasim’s method as well. Our method’s output is shown
in Figure 5(b). It is possible to see that the Belkasim’s method introduces some
distortions at the edges. Our method’s output is smoother in general. To make
the difference more clear we computed reconstruction errors at different orders
for the two algorithms. The error is computed using:
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Fig. 3. Original gray level image.

Fig. 4. The reconstructed images using the moment of order up to 40 by (a) Mukun-
dan’s method, (b) Gu’s method and (c) our method.

εr =

∑
x

∑
y |f̃(x, y)− f(x, y)|2∑

x

∑
y f(x, y)2

(8)

where f(x, y) is original image function and f̃(x, y) is the reconstructed image.
Table 3 shows the results of error computation. We would expect the error to
decrease with the increasing order and our method (See column 1) behaves as
expected; however, the behaivour of Belkasim’s method is quite different, which
shows that the quantization of polar coordinates has its effect at mainly higher
order moments.

Table 3. Reconstruction error of Figure 3 by our method and Belkasim’s method.

Order Our method Belkasim’s method

35 0.0647 0.0648

40 0.0621 0.0628

45 0.0596 0.063

50 0.0370 0.0557

55 0.0203 0.0645

60 0.0133 0.0665

High order Zernike moments are used when there is a need to capture the
details of the image. Figure 6 demonstrates this behavior using a 300×300 binary
logo shown at the top left corner of the figure. Other images show reconstruction
results using different orders. The reconstructed images up to order 20 only
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Fig. 5. The reconstructed images using the moment of order up to 60 by (a) Belkasim’s
method and (b) our method.

Fig. 6. Original image and reconstructions using different orders of Zernike moments.

contains a rough silhouette of the wolf. In reconstructions up to order 50, it is
possible to see the head of wolf. At order 50, the head of the wolf is clearly visible
but letters in the logo are still blurred. At order 70 it becomes possible to see
the letters clearly.

Table 4 shows the number of multiplication and addition needed in our
method and the others for M ×M image using moments up to order N . It is
clear that our method is not the fastest method; however, it is not extremely slow
either. In terms number of multiplications our method stands close to Belkasim’s
method for large images (M À 1) and high order moments (N À 1).

5 Conclusion

We designed and implemented an accurate and efficient algorithm for high order
Zernike moment calculation. We were able to compute very high order Zernike
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Table 4. The comparison of the computational complexity of different methods.

Number of Addition Number of Multiplication

Mukundan’s method N2M2

2
+ 1

8
NM3 2N2 + N2M2 + 1

4
MN3

Belkasim’s method N(M + 2)(M − 1) N2M2

2
+ 2MN

Gu’s method 3
8
N2M + 2NM2 + 1

12
N3M + 1

4
N2M2 N2M

2
+ 2M2N

Our method 2(N
2

+ 1)2(M2 − 1) N2M2

2
+ 2M2N

moments with reasonable computational complexity while preserving accuracy.
According to the definition of Zernike moments for a digital image (See Equation
5) our computation is exact. The computational efficiency is provided by detec-
tion of common terms in Zernike moments. In our experimental results we also
pointed out that polar coordinate quantization and double precision arithmetic
are important sources of error in high order Zernike moment calculation.
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