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Abstract—Despite the considerable amount of research work on the ap-
plication of Gabor filters in pattern classification, their design and selection
have been mostly done on a trial and error basis. Existing techniques are
either only suitable for a small number of filters or less problem-oriented.
A systematic and general evolutionary Gabor filter optimization (EGFO)
approach that yields a more optimal, problem-specific, set of filters is pro-
posed in this study. The EGFO approach unifies filter design with filter se-
lection by integrating Genetic Algorithms (GAs) with an incremental clus-
tering approach. Specifically, filter design is performed using GAs, a global
optimization approach that encodes the parameters of the Gabor filters in
a chromosome and uses genetic operators to optimize them. Filter selec-
tion is performed by grouping together filters having similar characteris-
tics (i.e., similar parameters) using incremental clustering in the parameter
space. Each group of filters is represented by a single filter whose parame-
ters correspond to the average parameters of the filters in the group. This
step eliminates redundant filters, leading to a compact, optimized set of fil-
ters. The average filters are evaluated using an application-oriented fitness
criterion based on Support Vector Machines (SVMs). To demonstrate the
effectiveness of the proposed framework, we have considered the challeng-
ing problem of vehicle detection from gray-scale images. Our experimental
results illustrate that the set of Gabor filters, specifically optimized for the
problem of vehicle detection, yield better performance than using tradi-
tional filter banks.

I. I NTRODUCTION

Motivated by biological findings on the similarity of 2-D Ga-

bor filters and receptive fields of neurons in the visual cortex

[1], there has been increased interest in deploying Gabor filters

in various computer vision applications. An important prop-

erty of Gabor filters that has contributed to this is that they have

optimal joint localization both in the spatial and frequency do-

mains [1]. Gabor filters have been successfully applied to var-

ious image analysis applications including edge detection [2],

image coding[1], texture analysis [3][4][5], handwritten number

recognition [6], face recognition [7], vehicle detection [8], and

image retrieval [9]. Despite the considerable amount of research

work on the application of Gabor filters to computer vision prob-

lems, their design is mostly performed on a trial and error ba-

sis. A filter design method is needed for selecting filter param-

eters to maximize the discriminating power of the filters. Previ-

ous efforts in designing Gabor filters follow two directions: the

“Filter-design approach” and the “Filter-bank approach” [10],

[3].

In the “filter-design approach” the filter parameters are chosen

by considering the data available, that is, the parameters are ap-

propriate for the problem at hand only. In one of the pioneering

studies on the design of Gabor filters conducted by Bovik et al.

[11], the peak detection technique was used. In this approach,

the center frequency of each filter corresponds to a peak of the

power spectrum of the input image. Slightly different from [11],

Okombi-Diba et al. [12] implemented a multi-iteration peak de-

tection method for a texture segmentation problem. Dunn et

al. [13] investigated an exhaustive search to find the center fre-

quency. The search was guided by a “filter-quality measure-

ment” (i.e., Rician statistical model) that was determined by the

sample mean and sample variance of the values of an averaged

windowed Fourier transform. This work was based on a bi-

partite (two-texture) image segmentation problem and required

heuristics to find a proper bandwidth. The “filter-quality mea-

surement” was the image-segmentation error and the filter with

the lowest error was selected. Due to the exhaustive search, this

method is quite time-consuming. A more computationally effi-

cient method was described in [10], [3], using a segmentation-

error criterion similar to [13]. The efficiency was gained using a

method to calculate the filter output power for all Gabor filters at

certain center frequencies simultaneously. It is worth mention-

ing that this method does not increase the efficiency of designing

a single filter.

In the “filter-bank approach” the filter parameters are chosen

in a data independent way. Then, a subset of filters is selected

for a particular application. Turner [14] used32 filters(4 fre-

quencies× 4 orientations× 2 phase pairs) in a texture discrim-

ination problem. Based on the observation that a constant band-

width on the logarithmic scale assures the width of the filters to

be inversely proportional to their radial frequencies, Jain et al.

[4] chose the filter parameters such that the radial frequencies

were one octave apart. To reduce the computational burden, a

greedy filter selection method was employed using a selection



criterion based on the error between the original image and the

one reconstructed by adding together a subset of the filtered im-

ages. To reduce the redundancy in the Gabor feature represen-

tation, Manjunath et al. [9] proposed a design method to ensure

that the half-peak magnitude support of the filter responses in

the frequency domain touch each other. For fast image brows-

ing, they implemented an “adaptive filter selection algorithm”,

where spectrum difference information was used to select filters

with better performance. In the context of handwritten num-

ber recognition, Hamamoto et al. [6] optimized the filters by

checking the error rate for all possible combinations of filter pa-

rameters and then choosing those minimizing the error rates.

Although good performance has been reported in the litera-

ture, certain limitations still exist. “Filter-design approaches”,

for example, divide the design process into two stages: pre-filter

and post-filter. Several pre-filter design approaches have been

investigated, however, an explicit methodology for selecting an

appropriate post-filter step for a given pre-filter step has not been

suggested. Moreover the selection of the bandwidth parame-

ter is done mostly heuristically. The design stage in the “filter-

bank approach” is mostly problem-independent. Different pat-

tern classification problems, however, might require selecting

an optimum set of features and, consequently, an optimum set

of Gabor filters. We would not expect, for example, that a set of

Gabor filters optimized for a vehicle classification application

(compact car v.s. truck) would work well in a vehicle detection

application (vehicle v.s. non-vehicle), since more detailed in-

formation is required in the former case than in the later. Many

researchers have realized that this is a serious problem and have

suggested filter selection schemes to deal with it, however, fil-

ters are selected from an original small pool of filters that might

not be suitable for the problem at hand (e.g., Hamamoto et al.

[6] performed filter selection using a pool of 100 predefined fil-

ters). The main issue here is that we are not certain whether or

not the optimum set of filters are included in the predefined pool

of filters.

A systematic and general evolutionary filter optimization ap-

proach that yields a more optimal, problem-specific, set of filters

is proposed in this paper. We believe that filter design and selec-

tion are not two independent problems and should not be treated

separately. In this study, GAs have been integrated with an in-

cremental clustering algorithm in the parameter space to enable

Gabor filter optimization. GAs allow searching the space of fil-

ter parameters efficiently while clustering removes filters having

a high degree of redundancy. The final set of filters is both com-

pact and optimized. To customize the filters for a given problem,

an application-oriented fitness criterion is used based on Support

Vector Machines (SVMs).

The EGFO approach is suitable for optimizing any number

of filters for a given application. It encapsulates the main char-

acteristics of both of the previous two approaches. The search

space of our method is much larger than that of the filter-bank

approaches, providing a higher likelihood of getting close to the

optimal solution as in the case of filter design approaches. More-

over, we represent filter optimization as a closed-loop learning

problem. The search for an optimal solution is guided by the

performance of a SVM classifier on features extracted from the

responses of the Gabor filters.

The rest of the paper is organized as follows: In Section II,

we define the Gabor filter optimization problem. Section III

presents our evolutionary Gabor filter optimization approach in

detail. The statistical Gabor filter feature extraction method and

the learning engine used in our experiments are described in

Section IV. The proposed framework is tested in Section VI

on the challenging problem of vehicle detection. The analysis

of our experimental results is given in Section VII. Finally, Sec-

tion VIII summarizes the main results of the paper and presents

possible directions for future work.

II. PROBLEM STATEMENT

We begin with a brief review of Gabor filters. One can re-

fer to Daugman’s seminal paper [1] for more details. The gen-

eral functional of the two-dimensional Gabor filter family can

be represented as a Gaussian function modulated by a complex

sinusoidal signal. Specifically, a two dimensional Gabor filter

g(x, y) can be formulated as:

g(x, y) =
1

2πσxσy
exp[−1

2
(
x̃2

σ2
x

+
ỹ2

σ2
y

)] exp[2πjWx̃] (1)

{
x̃ = x cos θ + ysinθ

ỹ = −x sin θ + ycosθ
(2)

whereσx andσy are the scaling parameters of the filter and

determine the effective size of the neighborhood of a pixel in

which the weighted summation takes place.θ(θ ∈ [0, π)) speci-

fies the orientation of the Gabor filters.W is the radial frequency

of the sinusoid. A filter will respond stronger to a bar or an edge

with a normal parallel to the orientationθ of the sinusoid.

The Fourier transform of the Gabor function in Eq. 1 is given

by:

G(u, v) = exp[−1
2
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(u−W )2

σ2
u

+
v2

σ2
v

)] (3)

whereσu = 1
2πσx, σv = 1

2πσy. The Fourier domain represen-

tation in Eq. 3 specifies the amount by which the filter modifies

each frequency component of the input image.

Gabor filter optimization corresponds to selecting the proper

values for each of the four parameters in the parameter set



(a) (b)

(c) (d)

Fig. 1. The Gabor filter with different parameterΦ = {θ, W, σx, σy}
in frequency domain(the Fourier transform of the Gabor functions with
different parameters) . (a)Φa = {0o, 0.0961, 0.0204, 0.01219}, (b)
Φb = {0o, 0.3129, 0.06, 0.359}, (c) Φb = {90o, 0.3129, 0.06, 0.359},
(d) Φc = {90o, 0.3921, 0.0503, 0.3066}

Φ = {θ, W, σx, σy}. Gabor filters act as local bandpass filters.

Fig. 1 shows four Gabor filters with different parameter settings

in frequency domain. The light areas of the power spectrum

indicate frequencies and wave orientations. It is obvious from

Fig.1 that different parameter settings will lead to quite differ-

ent filter responses, an important issue in pattern classification

problems. Each filter is fully determined by choosing the four

parameters inΦ. Therefore, choosing a filter for a particular ap-

plication involves optimizing these four parameters. Assuming

thatN filters are needed in an application,4N parameters need

to be optimized. Solving this high dimensional multivariate op-

timization problem is very difficult in general. In contrast to

previous filter design methods, a global optimization approach

using GAs is investigated here to deal with this problem.

III. E VOLUTIONARY GABOR FILTER OPTIMIZATION

In this section, we describe the proposed evolutionary Gabor

filter optimization approach.

A. A brief review of GAs

GAs are a class of optimization procedures inspired by the

natural selection mechanisms[15]. GAs operate iteratively on a

population of structures, each of which represents a candidate

solution to the problem, encoded as a string of symbols (chro-

mosome). A randomly generated set of such strings forms the

initial population from which the GA starts its search. Three ba-

sic genetic operators guide this search: selection, crossover and

mutation.

B. Encoding and decoding

Using a binary encoding scheme, each Gabor filter is repre-

sented byM bits that encode its four parameters. To designN

filters, we use a chromosome of lengthMN bits. Each of the

four parameters inΦ is encoded usingn = M/4 bits as illus-

trated in Fig. 2.

Fig. 2. Encoding scheme

It is worth mentioning that:

• The encoding scheme is quite flexible, and allows us to en-

code any number of filters by simply varying the length of the

chromosome;

• The numbers of bits associated with each parameter need not

to be the same, we can make the search for a particular param-

eter finer of coarser by simply adding or removing bits for this

parameter;

• If we need to fix certain parameter(s) using prior knowledge,

we can remove the parameter(s) from the chromosome. In this

case, the GA will optimize the remaining parameters;

Each of the parameters inΦ has its own constraints and

ranges. The encoding/deconding scheme was designed to en-

sure that the generated filters satisfy these requirements.

The orientation parameterθ should satisfy:θ ∈ [0, π). If Dθ

denotes the decimal number corresponding to the chunk of bits

associated withθ (see Fig.2) then the value ofθ is computed by

θ = Dθ ∗ π/2n. (4)

which always satisfies the range requirement.

W is the radial frequency of the Gabor filter, which is appli-

cation dependent. Using some prior knowledge, we can limit

the range ofW into [Wmin,Wmax]. Then the decoding formula

is given by

W = Wmin + (Wmax −Wmin) ∗DW /2n (5)



whereDW is the decimal number corresponding to the chunk of

bits associated withW . In this study, we have usedWmin = 0
andWmax = 0.5.

σx, andσy are essentially the effective sizes of the Gaussian

functions and are within the range[σmin, σmax]. The upper

limit σmax is determined by the mask widthw [16]. A rela-

tion betweenσmax and the mask sizew can be obtained by im-

posing thatw subtends most of the energy of the Gaussian. An

adequate choice isσmax < w/5, which subtends 98.76% of the

energy of the Gaussian filter. The lower limit can be derived us-

ing theSampling Theorem. If the pixel width is taken as our unit

step, we cannot reconstruct completely a signal containing fre-

quencies higher than 0.5pixel−1 from its samples, which means

that any frequency component at|ω| > ωc = 2π(0.5) = π

is distorted. Theωc is determined by the pixelization, not by

the signal. To avoid aliasing, the best we can do is to keep

most of the energy of the Gaussian function within the interval

[−π, π]. Applying the “98.86% of the energy” criterion, we find

σmin > 0.796. To meet the range constraint ([σmin, σmax]), our

decoding scheme follows:

σx = σmin + (σmax − σmin) ∗Dσx/2n (6)

for σx and

σy = σmin + (σmax − σmin) ∗Dσy/2n (7)

for σy. Dσx and Dσy are again the decimal numbers corre-

sponding to the chunk of bits associated withσx andσy cor-

respondingly.

C. Filter Selection

During parameter optimization, some of the Gabor filters en-

coded in a chromosome might end up being very similar to

each other or even identical. These filters will result in simi-

lar/identical responses, therefore, introducing great redundancy

and increasing time requirements. To eliminate redundant fil-

ters, we perform filter selection, implemented through filter

clustering in the parameter space. An incremental clustering al-

gorithm [17] has been adopted in this paper for its simplicity. A

high level description of the clustering algorithm is given below:
1. Assign the first Gabor filter to a cluster.

2. Compute the distance of the next Gabor filter from the cen-

troid of each cluster.

3. Find the smallest distance.

4. If the distance is less than a threshold, assign the filter to

the corresponding cluster; otherwise, assign the filter to a new

cluster.

5. Repeat step 2-4 for each of the remaining filters.

6. Represent the filters in each cluster by a single filter whose

parameters correspond to the cluster’s centroid.

The optimized filters are evaluated using the fitness function

defined in Section III-E.

In our implementation, clustering is carried out in the pa-

rameter domain. Representing the parameters of a Gabor fil-

ter with{θn,Wn, σn
x , σn

y } and the centroids of the clusters with

{θi,W i, σi
x, σi

y} with i ∈ [1 N ], whereN is the number of

currently existing clusters, we assign the filter to the ith cluster

only if all of the following conditions are satisfied:

θi − 1
2
× Threθ ≤ θn ≤ θi +

1
2
× Threθ (8)

W i − 1
2
× ThreW ≤ Wn ≤ W i +

1
2
× ThreW (9)

σi
x −

1
2
× Threσ ≤ σn

x ≤ σi
x +

1
2
× Threσ (10)

σi
y −

1
2
× Threσ ≤ σn

y ≤ σi
y +

1
2
× Threσ (11)

Otherwise, the filter is assigned to a new cluster. The above

conditions are quite strict to make sure that filters falling in the

same cluster are very similar to each other. We can always re-

lax the criterion by increasing the predefined thresholds. The

following thresholds were used in our experiments:

Φ = {θ, W, σx, σy} areThreθ = π/K, ThreW = (Wmax−
Wmin)/K, and Threσx = Threσy = Threσ = (σmax −
σmin)/K. Depending on different applications and desired

trade-off between model compactness and accuracy,K can be

set to different values.

D. Selection, Mutation and Crossover

Mutation is a very low probability operator and just flips a

specific bit. It plays the role of restoring lost genetic material.

Our selection strategy was cross generational. Assuming a pop-

ulation of size N , the offspring double the size of the population

and we select the best N individuals from the combined parent-

offspring population. Uniform crossover is used here.

E. Fitness evaluation

Each individual’s fitness will determine whether or not it will

survive in subsequent generations. The fitness value used here

is the performance of a SVM classifier on a validation set us-

ing features extracted from the responses of the selected Gabor

filters. In this way, the Gabor filter optimization design is imple-

mented as a closed-loop learning scheme, which is more pow-

erful, more problem-specific, and less heuristic than in previous

approaches.



IV. FEATURE EXTRACTION AND CLASSIFICATION

Designing an optimal set of Gabor filters is the first step in

building a pattern classification algorithm. Then, we need to ex-

tract features using the responses of the selected filters and train

a classifier using those features. To demonstrate the proposed

filter design approach, redundant statistical Gabor features and

SVMs are utilized.

A. Gabor Filter Features

Given an input imageI(x, y), Gabor feature extraction is per-

formed by convolvingI(x, y) with a set of Gabor filters:

r(x, y) =
∫ ∫

I(ξ, η)g(x− ξ, y − η)dξdη (12)

Although the raw responses of the Gabor filters could be used

directly as features, some kind of post-processing is usually ap-

plied (e.g., Gabor-energy features, thresholded Gabor features,

and moments based on Gabor features [18]). In this study, we

use moments derived from Gabor filter outputs on subwindows

defined on subimages extracted from the whole input image.

(a) (b) (c)

Fig. 3. (a) feature extraction patches; (b) Gabor filter bank with4 scales and6
orientations; (c) Gabor filter bank with3 scales and5 orientations;

First, each subimage is scaled to a fixed size of32 × 32.

Then, it is divided into 9 overlapping16×16 subwindows. Each

subimage consists of 168 × 8 patches as shown in Figure 3(a),

patches 1,2,5,and 6 comprise the first16× 16 subwindow, 2,3,6

and 7 the second, 5, 6, 9, and 10 the fourth, and so forth. The Ga-

bor filters are then applied on each subwindow separately. The

motivation for extracting -possibly redundant - Gabor features

from several overlapping subwindows is to compensate for the

error due to the subwindow extraction step (e.g. subimages con-

taining partially extracted objects or background information),

making feature extraction more robust.

The magnitudes of the Gabor filter responses are collected

from each subwindow and represented by three moments: the

meanµij , the standard deviationσij , and the skewnessκij

wherei corresponds to thei-th filter andj corresponds to the

j-th subwindow. Using moments implies that only the statis-

tical properties of a group of pixels is taken into consideration,

while position information is discarded. This is particularly use-

ful to compensate for errors in the extraction of the subimages.

Suppose we are usingN = 6 filters. Applying the filter bank on

each of the9 subwindows, yields a feature vector of size 162,

having the following form:

[µ11σ11κ11, µ12σ12κ12 · · ·µ69σ69κ69] (13)

B. SVM classifier

SVMsare primarily two-class classifiers that have been shown

to be an attractive and more systematic approach to learning lin-

ear or non-linear decision boundaries [19] [20]. Given a set of

points, which belong to either one of the two classes,SVMfinds

the hyperplane leaving the largest possible fraction of points of

the same class on the same side, while maximizing the distance

of either class from the hyperplane. This is equivalent to per-

forming structural risk minimization to achieve good general-

ization [19] [20]. Givenl examples from two classes

(x1, y1)(x2, y2)...(xl, yl), xi ∈ RN , yi ∈ {−1, +1} (14)

finding the optimal hyper-plane implies solving a constrained

optimization problem using quadratic programming. The opti-

mization criterion is the width of the margin between the classes.

The discriminating hyperplane is defined as:

f(x) =
l∑

i=1

yiaik(x, xi) + b (15)

wherek(x, xi) is a kernel function and the sign off(x) indicates

the membership ofx. Constructing the optimal hyperplane is

equivalent to finding all the nonzeroai. Any data pointxi cor-

responding to a nonzeroai is a support vector of the optimal

hyperplane.

Kernel functions, which satisfy the Mercer’s condition, can

be expressed as a dot product in some space [19]. By using dif-

ferent kernels,SVMsimplement a variety of learning machines

(e.g., a sigmoidal kernel corresponds to a two-layer sigmoidal

neural network while a Gaussian kernel corresponds to a radial

basis function (RBF) neural network). The Gaussian radial basis

kernel, which is used in this study, is given by

k(x, xi) = exp(−‖ x− xi ‖2
2δ2

) (16)

Our experiments with different kernels have shown that the

Gaussian kernel outperforms the others in the context of our ap-

plication.

V. V EHICLE DETECTION USING OPTIMIZEDGABOR FILTERS

In this section, we consider the problem of vehicle detec-

tion from gray-scale images. The first step in vehicle detec-

tion is usually hypothesizing the vehicle locations in an image.



Then, verification is applied to test the hypotheses. Both steps

are equally important and challenging. Approaches to generate

the hypothetical locations of vehicles in images include using

motion, symmetry, shadows, and vertical/horizontal edges. Our

emphasis here is on improving the performance of the verifica-

tion step by optimizing the Gabor filters.

A. Vehicle Data

The images used in our experiments were collected in Dear-

born, Michigan in two different sessions, one in the Summer

of 2001 and one in the Fall of 2001. To ensure a good vari-

ety of data in each session, the images were captured at dif-

ferent times of different days and on five different highways.

The training set contains subimages of rear vehicle views and

non-vehicles, which were extracted manually from the Fall 2001

data set. A total of 1051 vehicle and 1051 non-vehicle subim-

ages were extracted manually(see Figure 4). In [21], the subim-

ages were aligned by warping the bumpers to approximately the

same position. However we have not attempted to align the data

since alignment requires detecting certain features on the vehi-

cle accurately. Moreover, we believe that some variability in the

extraction of the subimages can actually improve performance.

Each subimage in the training and test sets was scaled to a size

of 32 × 32 and preprocessed to account for different lighting

conditions and contrast using the method suggested in [22].

To evaluate the performance of the proposed approach, the

error rates (ER) are recorded using a three-fold cross-validation

procedure. Specifically, we sample the training dataset ran-

domly three times (Set1, Set2andSet3) by keeping 280 of the

vehicle subimages and 280 of the non-vehicle subimages for

training. 300 subimages (150 vehicle subimages and 150 non-

vehicle subimages) are used for validation during the filter opti-

mization design. For testing, we used a fixed set of 231 vehicle

and non-vehicle subimages which were extracted from the Sum-

mer 2001 data set.

Fig. 4. Examples of vehicle and nonvehicle images used for training.

VI. EXPERIMENTAL RESULTS

For comparison purposes, we also report the detection error

rates using two different Gabor filter banks without optimiza-

tion: one with4 scales and6 orientations Fig.3(b), the other

with 3 scales and5 orientations Fig.3(c). These filter banks were

designed by following the method proposed in [9].

Fig. 5. 19 optimized Gabor filters for the vehicle detection problem withK = 3

Fig. 6. 15 Gabor filters for the vehicle detection problem withK = 2

A. Results

We have performed a number of experiments and compar-

isons to demonstrate the proposed Gabor filter optimization ap-

proach in the context of vehicle detection. First, a Gabor filter

bank with3 scales and5 orientations was tested using SVMs for

classification. Using the feature extraction method described in

Section IV-A, the size of each Gabor feature vector was405 in

this experiment. The average error rate was found to be 10.38%,

(see Table I). Then, we tested a Gabor filter bank with4 scales

and6 orientations which yielded features vectors of size648.

The error rate in this case was 9.09% which is slightly better

than before.

Second, we used the EGFO approach to customize a group of

filters, up to24, for the vehicle detection problem. We limited

the number of filters to24 to make the comparison with the tradi-

tional filter bank design methods fair. The GA parameters used

were as follows: population size:700, number of generations:

100, crossover rate:0.66 and mutation rate:0.03. In all the ex-

periments, the GA converged in less than 100 generations. Each

parameter inΦ = {θ, W, σx, σy} was encoded using4 bits. The

total length of the chromosome was384(4×4×24), which cor-

responds to a huge search space (i.e.,2384). The threshold factor

K for the clustering was set to3 in our experiments. The aver-



age error rate in this case was 6.36%, and the average number of

customized filters was19.3. The optimized19 filters generated

for dataSet3are shown in Fig.5. The individual results from the

three data sets are shown in Table I. Fig. 7(a) shows the average

detection error rates for all methods.

We also ran the filter optimization method without clustering

on the same data sets, using the same parameters. The average

error rate was 6.19%, slightly better than that yielded by the

method with clustering. Obviously, clustering has the advantage

of producing a more compact set of filters (i.e.,19 v.s.24).

To get an idea regarding the effectiveness of the clustering

subcomponent, we performed more experiments using different

threshold settings for the factork = 2. The average error rate

was 8.23%, and the average number of customized filter was

14.7. The15 filters generated for dataSet3are shown in Fig.6.

TABLE I

VEHICLE DETECTION ERROR RATES USING DIFFERENT FILTERS. THE

NUMBERS IN THE PARENTHESES INDICATE THE NUMBER OF OPTIMIZED

FILTERS

3× 5 4× 6 EGFO

Data Set1 10.82% 9.09% 6.93%(21)

Data Set2 11.69% 11.26% 7.79%(18)

Data Set3 8.66% 6.93% 4.33%(19)

Average 10.38% 9.09% 6.36%(19.3)

Fig. 7. Vehicle detection error rate.3 × 5: the Gabor filter bank with 3 scales
and 5 orientations;4 × 6: 4 scales and 6 orientations; NC: EGFO method
without clustering; K=3: EGFO method with K=3; and K=2: EGFO with
K=2.

VII. D ISCUSSION

To get a better idea about the filter parameters chosen by the

EGFO approach, we computed a histogram for each of the pa-

rameters(Fig. 8), showing the average distribution of its values

over the three data sets. In each graph, thex-axis corresponds

to a parameter fromΦ = {θ, W, σx, σy}, and has been divided

into 10 bins to compute the histogram. They-axis corresponds

to the average number of Gabor filters whose parameters are

within a given interval. For example, Fig. 8.a shows the aver-

age distribution ofθ, where the width of each bin is18o, given

θ ∈ [0 180o). The bar associated with the first bin indicates

that there were4 filters (average number over the three training

data sets) in the optimized Gabor filter set, whose orientation pa-

rameter satisfies:θ ∈ [0 18o). The only difference for the rest

parameters is the bin size, for instance, the ith bin in Fig. 8(b)

corresponds to the interval[(i − 1) ∗ STEPW i ∗ STEPW ),
whereSTEPW = (Wmax −Wmin/10).

(a) (b)

(c) (d)

Fig. 8. Distributions of the Gabor filter parameters for vehicle Detection. (a)θ;
(b) W ; (c) σx ; (d) σy

Several interesting comments can be made based on the ex-

perimental results presented in Section VI, the filters shown in

Fig. 5, and the parameter distributions shown in Fig. 8:
• The Gabor filters customized using the proposed approach

yielded better results in vehicle detection. The most important

reason for this improvement is probably that the Gabor filters

were designed specifically for the pattern classification prob-

lems at hand (i.e., the proposed method is more application-

specific than existing filter design methods).

• The orientation parameters of the filters optimized by the GA

were tuned to appreciate the implicit information available in ve-

hicle data. Specifically, a Gabor filter is essentially a bar, edge,

or grating detector, and will respond most strongly if the filter’s

orientation is consistent with the orientation of specific features

in an image (i.e., bar, edge, etc.). We can see that horizontal,

45o, and135o structures appear more often in a rear view of a

vehicle image, which explains why most of the filter orientations



chosen were close to0o, 45o, and135o (see Fig. 8(a)).

• The radial frequency parameters (W ) of the filters found by

the GA approach were also tuned to encode the implicit infor-

mation present in vehicle images. Generally speaking, we have

more filters with lower radial frequencies than with higher radial

frequencies (see Fig. 8(b)). This is reasonable given that vehicle

images contain large structures (windows, bumper, etc.), requir-

ing filters with lower radial frequencies.

• The parametersσx, σy were also tuned to respond to the basic

structures of a vehicle. Fig. 8(c) and Fig. 8(d) show that theσy

parameter has bigger values than theσx parameter. Biggerσy

values implies a wider Gaussian mask in they direction. This

is consistent with the observation that horizontal structures in

vehicle images spread more widely than structures in vertical

direction.

• By setting the threshold factor to2, we ended up with14.7
filters on average. The error rate went up to 8.23% from 6.36%,

which is still better than using the traditional Gabor filter bank

with 3 sales and5 orientations. When we build a pattern clas-

sification system, among other factors, we need to find the best

balance point between model compactness and performance ac-

curacy. Under some scenarios, we prefer the best performance,

no matter what the cost might be. Under different situations,

we might favor speed over accuracy, as long as the accuracy

is within a satisfactory range. The EGFO approach provides a

good base for compromising between model compactness and

performance accuracy.

VIII. C ONCLUSION AND FUTURE WORK

A systematic evolutionary filter optimization method was pro-

posed in this paper. Specifically, Gabor filter parameters were

optimized using GAs, followed by further filter clustering in the

parameter domain to eliminate redundancy. The proposed ap-

proach provides a simple, general, and powerful framework for

optimizing the parameters of a family of filters such as Gabor fil-

ters or steerable filters [23]. We have tested the proposed method

on the challenging problem of vehicle detection. The filters cus-

tomized by our method yielded better performance than using

traditional filter banks. For future work, we plan to evaluate this

framework using different data sets, and different types of fil-

ters. We also plan to test different filter selection schemes by

encoding selection in the chromosome explicitly.
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