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Abstract

Detecting regions of interest in video sequences is the
most important task in many high level video processing
applications. In this paper a robust technique based on re-
cursive learning of video background and foreground mod-
els is presented. The proposed modeling technique achieves
a fast convergence speed and an adaptive, accurate back-
ground/foreground model. Our contributions can be de-
scribed along four directions. First, a recursive learning
scheme is developed to build the models based on colors
of the pixels. Our second contribution is to generate back-
ground and foreground models to enforce the temporal con-
sistency of detected foregrounds. Third, we exploit depen-
dencies between pixel colors to insure that the model is not
restricted to using only independent features. Finally, an
adaptive pixel-wise criterion is proposed that incorporates
different spatial situations in the scene. We also enforce
spatial consistency of the pixels to rule out the effect of er-
roneously labeled foreground regions.

1. Introduction

In visual surveillance systems, stationary cameras are
typically used. However, due to camera shake, or inher-
ent changes in the background itself, the background of the
video may not be completely stationary. In these types of
backgrounds, referred to as quasi-stationary backgrounds,
a single background frame is not useful to detect moving
regions. Plesset al. [6] evaluated different models for dy-
namic backgrounds.

In [9], a single 3-dimensional Gaussian model for each
pixel in the scene is built, where the mean and covariance of
the model were learned in each frame. A Mixture of Gaus-
sians modeling technique was proposed in [8] to address the
multi-modality of the underlying background. The conver-
gence speed of mixture models can be improved by sacri-

ficing memory as proposed in [4]. However the problem of
specifying the number of Gaussians as well as the adapta-
tion in later stages still exists.

In [1], El Gammalet al. proposed a non-parametric ker-
nel density estimation for pixel-wise background modeling
without making any assumption on its probability distribu-
tion. Therefore, this method can easily deal with multi-
modality in background pixel distributions without deter-
mining the number of modes in the background. In order
to adapt the model a sliding window is used in [5]. How-
ever the model convergence is critical in situations where
the illumination suddenly changes. In order to update the
background for scene changes Kimet al. in [2] proposed a
layered modeling technique. This technique needs an addi-
tional model calledcache and assumes that the background
modeling is performed over a long period. It should be used
as a post-processing stage after the background is modeled.

In this paper we propose an adaptive learning technique
in a recursive formulation to generate and maintain the
background and foreground models. There are four major
contributions presented in our proposed method. (i) The
recursive formulation of the model accumulates sufficient
evidence for background/foreground models through time.
(ii) Dependencies between the pixel features are exploited
in our implementation, resulting in more accurate models.
(iii) We build up a model for both background and fore-
ground pixels. In the classification, these models are com-
pared and the pixels are classified as foreground or back-
ground based on the winner model to achieve temporal co-
herency of the modeling. (iv) In the proposed method in-
stead of a global threshold for all the pixels in the scene
an independent threshold is trained over time to effectively
perform the classification.

The rest of this paper is organized as follows: in Sec-
tion 2 we present the building block of the proposed back-
ground modeling technique and we explain how the model
incorporates the dependencies between features. In Section
3, classification by using a threshold map as well as en-
forcing the spatial consistency of the neighboring models
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Figure 1. Our proposed recursive learning al-
gorithm.

are discussed. In Section 4 the experimental results of the
proposed method are presented and the performance of this
method is compared with existing techniques. Finally the
conclusion of this paper is drawn in Section 5.

2. Adaptive Background Learning

In this section we describe the proposed recursive learn-
ing scheme. The formulation is discussed in one dimen-
sion as the extension to higher dimensions is straightfor-
ward. Then we discuss how dependencies of pixel fea-
tures in higher dimensions can be captured. The proposed
method, in pseudo-code, is shown in Figure 1.%&'& ()*+,-./) 012)3

Let 4��� be the the intensity value of a pixel at time�.
The non-parametric estimation of the background model
that accurately follows its multi-modal distribution can be
reformulated in terms of recursive filtering:
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where�	 ��� is the model at time� and is updated by the
local kernel� 54	 7�	�����6 with bandwidth�, and�	 and�	 are the learning rate and forgetting rate schedules, re-
spectively. In currently existing methods, both parametric
and non-parametric, the learning rates are selected to be
constant and have small values. This makes the conver-
gence of the pixel model to be slow and keeps its history
in the recent temporal window of size8 
 �#�. The win-
dow size in non-parametric models is critical as we need
to cover all the possible fluctuations of the background
model. In such cases larger windows are needed resulting
in more memory requirements and computational power to

achieve real-time modeling. Another issue in existing non-
parametric techniques is that window size is fixed and the
same for all pixels in the scene.

In order to speed up the modeling convergence, in the
proposed method we build a schedule for learning the back-
ground model at each pixel based on its history. At early
stages the learning occurs faster (���� 
 �

) and by time
it decreases and converges to the target rate (���� 9 ��).
The forgetting rate schedule is used to account for remov-
ing those values that have occurred long time ago and no
longer exist in the background. These schedules will make
the adaptive learning process converge faster, without com-
promising the stability and memory requirements of the sys-
tem. Also training these rates independently for each pixel
based on spatial changes in the scene makes the conver-
gence more effective for different situations. This learning
schedule is shown in equation (2).
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Function ���� is a monotonically increasing function,
used instead of�, to make the updating process adaptive
to different situations, such as sudden changes in the illu-
mination. Once the system detects a sudden change, the
function ���� resets to 1 and the learning rate jumps to its
original large value, improving the model recovery speed.
In the current implementation we assume that the forgetting
rate is a portion of the learning rate;���� 
 < � ����, where< = �

. This accounts for those foreground objects that are
covering some parts of the background and after some time,
which is small enough, uncover that part of the background.

For each pixel, all the intensities have the same proba-
bility of being foreground. However, as time passes, the
background model is updated, resulting in larger model val-
ues (��) at some intensities in which the likelihood of hav-
ing a foreground decreases. Also because the foreground
models tend to be consistent in time and their correspond-
ing objects are considered to have smooth movements, once
a pixel is detected as foreground, the likelihood of having
the same intensity value for that pixel in the next frame be-
comes higher. So the foreground models are updated with
larger rate at those intensity values:��	 
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To extend the modeling in higher dimensions and using
color and spatial information, we can consider each pixel as
a 5 dimensional feature vector inHI, asJ �KLMLNL4LO�.
The kernel� in this space is a multivariate kernel��. In
this case, instead of using a diagonal matrix��, we use
a full multivariate kernel. The kernel bandwidth matrix�



is a symmetric positive definiteP Q P matrix. Once each
pixel is labeled as background, having accumulated enough
evidence, its features are used to update the bandwidth ma-
trix. Let’s assume that we haveR pixels,S�LSTL � � � LSU ,
labeled as background. We build aV Q R � �

matrixW 
 XSY � SY�Z[\ 
 ]L � � � LR 7SY 
 5̂ � L_�`�6a b of suc-
cessive deviations. The bandwidth matrix is a updated by:
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3. Foreground/Background Classification

For each pixel, considering that current time is�, we have
a function�� ��� for the background model and�� ��� for the
foreground. The domain of these functions isHU , whereR is the dimensionality of the pixel feature vector. For
simplicity, assume the one dimensional case again, where�l ��� is the background/foreground model whose domain
is 5mL ]nn6, because intensity values are gray scale and take
values between 0 to 255. From equation (3), each model
ranges between 0 to 1 and its value shows the amount of
evidence accumulated in the updating process; i.e. the esti-
mated probability. For each new intensity value,o, we have
the evidence of each model as�p� ��� and�p� ���. The classi-

fication uses a MAP criterion, ! qrs�	�rt �	� � �u
to label the

pixel as foreground if this criterion is satisfied.
Because not all the pixels in the scene follow the same

changes, the decision threshold� should be adaptive and in-
dependent for each pixel and has to be driven from the his-
tory of that pixel. Figure 2 explains this issue, where Figure
2(a) shows an arbitrary frame of a video sequence contain-
ing water surface. When pixel values do not change much,
fewer samples give enough evidence for the background (or
foreground) model, but those with more fluctuations need
more samples to gather the same amount of evidence. We
expect that for pixels with more inherent changes, the value� needs to be small in short term, while for those pixels
with less changes, larger values for� work well to label
them correctly as background or foreground. This can be
observed in Figure 2(b), where darker parts refer to smaller
values for� and brighter ones show larger values. As men-
tioned in Section 2 and Figure 1, we have two set of thresh-
olds,th and�. Thresholds���� , for each pixel�\Lv �, should
adapt to a value T, wherewrsxa ��	 �4�P4 � myzn. For
the competitive thresholds,��� , we use a measurement from
changes in the intensity at its pixel position,�\Lv �:

��� 
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(a) Arbitrary frame (b) Threshold map
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Figure 2. Adaptive classification criteria

The same argument is valid for the learning schedules.
Thus the derivative of function����, in equation (2) is in-
versely proportional to the variance of the model.

Temporal consistency of models is addressed in the
recursive foreground/background model learning, but we
have not explicitly incorporated their spatial consistency. In
our proposed method it is enforced on foreground and back-
ground regions as an intermediate process. The main idea is
to label those pixels in the neighborhood where the median
of their model values satisfy the MAP criterion. This explic-
itly addresses the coherence between neighboring pixels.

4. Experimental Results and Comparison

In this section, we present the results of the proposed
method on several difficult situations and compare its per-
formance with some existing techniques both quantitative
and qualitatively.

Convergence speed.Our first experiment compares the
convergence and recovery speed of our proposed scheduled
learning rates with the fixed learning rate and constant win-
dow size used in non-parametric density estimation. One
sample frame ofwater surface video is shown in Figure
2(a). Figure 3(a) shows the convergence speed of the pro-
posed method where the modeling error is plotted against
time. The modeling error is considered as normalized num-
ber of false positives. The solid curve shows the error of the
model using the proposed scheduled learning. The dashed
curve shows the effect of a constant, large learning rate,
which converges slower than our proposed method and fi-
nally the dotted curve shows the effect of a non-parametric
density estimation, with a constant small window size. Be-
cause the size of the window is small, the model can not
learn all the possible changes in the background and con-
verges to a higher error.

Recovery speed.Figures 3(b) and 3(c) show the com-
parison for the recovery speed of the model from an expired
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(a) Water surface
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(b) Lights turned off
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Figure 3. Convergence and recovery speed
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Figure 4. Water surface: Comparison of the
foreground masks detected by KDE (b), and
our method (c).

background to the new one. This happens in the situation
where in an indoor scene, lights go off (Figure 3(b)) or they
go on (Figure 3(c)). In Figure 3(b) there are three global
illumination changes at frames 23, 31 and 47, consequently
and it stabilizes after frame 47. As it can be seen in Figure
3(b), our proposed method recovers the background model
after each change. The constant, large learning rate recov-
ers much slower, shown by the dashed curve, and the non-
parametric density estimation technique, the dotted curve,
is not able to recover even in 150 frames. A similar situa-
tion, when lights are turned on, is shown in Figure 3(c). It
needs to be mentioned that the mixture learning algorithms
are even slower in convergenceand recovery. A typical mix-
ture learning technique proposed in [8], converges in more
than 1000 frames.

Irregular motion. By using thewater surface video
sequence, we compare the results of foreground region
detection using our proposed method with a typical non-

(a) (b)

Figure 5. Shopping mall: (a) First frame of
the scene. (b) The background model after
50 frames.

parametric kernel density estimation [1]. For this com-
parison the sliding window of size L=150 is used in KDE
method. The results of KDE method are shown in Figure
4(b) and the foreground masks detected by our proposed
technique are shown in Figure 4(c). Because in the water
surface the changes occur slowly and do not have any reg-
ular patterns, the model (even with a large window size), is
not able to learn all the changes, resulting in detection of
some waves on the water surface.

Initially non-empty scene. Figure 5,Shopping mall se-
quence, shows the performance of the proposed method in
situations where the first frames do not contain only the
background, but some foreground objects as well. In this
situations both traditional parametric and non-parametric
background modeling techniques fail. As it can be ob-
served in Figure 5(a), the video does not have a clear set
of background frames to be modeled by a parametric or
non-parametric technique using a constant sized temporal
window. Our proposed technique, starts with the first frame
and incorporates the information from new coming frames
to build its background and foreground models. The re-
sulting background model is visualized in Figure 5(b) after
about 50 frames. Our proposed method fades the objects
that existed in the first frame to achieve a clear background
model.

Hand-held camera. Figure 6,Room video sequence,
shows an experiment on a video taken with a hand-held
camera. The camera movement is quite noticeable, yet it is
not large enough to classify this video under categories con-
taining global motion. Because the movement of the camera
does not follow a specific pattern and is slow, it is very dif-
ficult to use a global motion filter to detect its background
and foreground regions. One arbitrary frame of such a video
is shown in Figure 6(a). Figures 6(b)-(f) show the result of
proposed background modeling on frames 2, 32, 61, 120
and 247, respectively. White pixels show those parts of the
background erroneously labeled as foreground. It can be
seen that the amount of misclassified background pixels de-
creases by time, showing that those pixels have gathered
enough evidence and have seen all the possible movement
of the camera. This is also quantitatively illustrated in Fig-
ure 6(g).
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Figure 6. Room sequence: Result of the pro-
posed method on modeling the background
of a video taken by a hand-held camera.

Table 1. Quantitative evaluation and compar-
ison. The sequences are Meeting Room,
Lobby, Campus, Side Walk, Water Surface
and Fountain, from left to right from [3].

Videos MR LB CAM SW WS FT Avg

Proposed 0.92 0.87 0.75 0.72 0.89 0.87 0.84
[3] 0.91 0.71 0.69 0.57 0.85 0.67 0.74
[8] 0.44 0.42 0.48 0.36 0.54 0.66 0.49

Quantitative evaluation.

The performance of our proposed method is evaluated
quantitatively on randomly selected samples from different
video sequences, taken from [3]. The similarity measure be-
tween two regions| and} is defined by,~ �|L}� 
 ������ .
This measure is monotonically increasing with the similar-
ity of the detected masks and the ground truth, with values
between 0 and 1. We calculated the average of similarity
measure of the foreground masks detected by our proposed
method, the Mixtures of Gaussians in [8] and [3]. By com-
paring the average of the similarity measure over different
video sequences in Table 1, we can see that the proposed
method outperforms techniques proposed in [8] and [3],
while there are no parameters to be heuristically selected in
our proposed method. This can also be observed by the fact
that the masks detected by the proposed method are more
consistent on different video sequences.

5. Conclusion and Future Work

As the main contribution of this paper, an adaptive learn-
ing scheme for background and foreground modeling is pre-
sented in a recursive formulation. The adaptive learning and
forgetting rates proposed here make the generated models
adapt to gradual and sudden changes. Unlike existing meth-
ods that use sliding fixed-size windows to build and adapt
the background model, our independent schedules for learn-
ing and forgetting rates on each pixel make the convergence
of the models fast without compromising their accuracy. As
our second contribution, the decision criterion for each pixel
is trained independently, based on the pixel model. Be-
cause these criteria are data driven, they are automatically
updated and add to the accuracy of the overall performance.
Third, two models are built separately for foreground and
background and the detection is performed by competitively
comparing these models to achieve temporal coherence. Fi-
nally, dependencies between pixel features are captured us-
ing multivariate models. Spatial consistency of models and
the extracted foreground regions are enforces using the spa-
tial coherency of pixel values. This ensures that extracted
foreground regions are enforced consistent and there is no
need for any post processing stages to refine the foreground
masks. The experimental results show that the system con-
verges reasonably fast to the underlying models and is able
to recover fast from each expired model.

One direction of future investigation is to use this work
in non-parametric tracking approaches. Also by optimiz-
ing the learning rate schedules we can improve the result of
foreground object detection.
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