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Abstract. Detecting regions of interest in video sequences is one of
the most important tasks in many high level video processing appli-
cations. In this paper a novel approach based on support vector data
description is presented, which detects foreground regions in videos with
quasi-stationary backgrounds. The main contribution of this paper is the
novelty detection approach which automatically segments video frames
into background/foreground regions. By using support vector data de-
scription for each pixel, the decision boundary for the background class is
modeled without the need to statistically model its probability density
function. The proposed method is able to achieve very accurate fore-
ground region detection rates even in very low contrast video sequences,
and in the presence of quasi-stationary backgrounds. As opposed to many
statistical background modeling approaches, the only critical parameter
that needs to be adjusted in our method is the number of background
training frames.

1 Introduction

In most visual surveillance systems, stationary cameras are typically used. How-
ever, because of inherent changes in the background itself, such as fluctuations
in monitors and fluorescent lights, waving flags and trees, water surfaces, etc.
the background of the video may not be completely stationary. In these types
of backgrounds, referred to as quasi-stationary, a single background frame is
not useful to detect moving regions. Pless et al. [1] evaluated different models
for dynamic backgrounds. Typically, background models are defined indepen-
dently on each pixel and depending on the complexity of the problem, use the
expected pixel features (i.e. colors) [2] or consistent motion [3]. Also they may
use pixel-wise information [4] or regional models of the features [5].

In [4] a single 3-D Gaussian model for each pixel in the scene is built, where
the mean and covariance of the model were learned in each frame. Kalman Filter-
ing [6] is also used to update the model. These background models were unable
to represent multi-modal situations. A mixture of Gaussians modeling technique



was proposed in [7] and [8] to address the multi-modality of the underlying back-
ground. There are several shortcomings for the mixture learning methods. First,
the number of Gaussians needs to be specified. Second, this method does not
explicitly handle spatial dependencies. Also, even with the use of incremental-
EM, the parameter estimation and its convergence is noticeably slow where the
Gaussians adapt to a new cluster. The convergence speed can be improved by
sacrificing memory as proposed in [9], limiting its applications where mixture
modeling is pixel-based and over long temporal windows. A recursive filter for-
mulation is proposed by Lee in [10]. However, the problem of specifying the
number of Gaussians as well as the adaptation in later stages still exists. Also
this model does not account for the situations where the number of Gaussians
changes due to occlusion or uncovered parts of the background.

In [2], El Gammal et al. proposed a non-parametric kernel density estima-
tion method (KDE) for pixel-wise background modeling without making any
assumption on its probability distribution. Therefore, this method can easily
deal with multi-modality in background pixel distributions without determining
the number of modes in the background. However, there are several issues to be
addressed using non-parametric kernel density estimation. First, these methods
are memory and time consuming. For each pixel in each frame the system has to
compute the average of all the kernels centered at each training feature vector.
Second, the size of the temporal window used as the background buffer needs to
be specified. Too small a window increases the estimation speed, while it does
not incorporate enough history for the pixel, resulting in a less accurate model.
Also the adaptation will be problematic by using small window sizes. Increasing
the window size improves the accuracy of the model but with the cost of more
memory requirements and slower convergence. Finally, the non-parametric KDE
methods are pixel-wise techniques and do not use the spatial correlation of the
pixel features. In order to adapt the model a sliding window is used in [11]. How-
ever the model convergence is problematic in situations where the illumination
suddenly changes.

In order to update the background for scene changes such as moved objects,
parked vehicles or opened/closed doors, Kim et al. in [12] proposed a layered
modeling technique. This technique needs an additional model called cache and
assumes that the background modeling is performed over a long period. It should
be used as a post-processing stage after the background is modeled.

In methods that explicitly model the background density estimation, fore-
ground detection is performed by comparing the estimated probabilities of each
pixel with a global threshold [2], or local thresholds [13]. Also there are several
parameters that need to be estimated from the data to achieve an accurate den-
sity estimation for background. In [11] a binary classification technique is used
to detect foreground regions by a maximum likelihood method. Since in these
techniques the probability density function of the background is estimated, the
model accuracy is bounded to the accuracy of the estimated probability.

In this paper a novel approach is proposed to label pixels in video sequences
into foreground and background classes using support vector data description



[14]. As opposed to parametric and non-parametric density estimation tech-
niques, in this method the model is not the probability function of the back-
ground or foreground. It can be considered as analytical description of the deci-
sion boundary between background and foreground classes. This modeling tech-
nique addresses several issues in the traditional density estimation approaches.

First, the model accuracy is not bounded to the accuracy of the estimated
probability density functions. Second, the memory requirements of the proposed
technique are less than those of non-parametric techniques. In non-parametric
density estimation methods, pixel feature vectors for all background training
frames need to be stored to regenerate the probability of pixels in new frames.
It can be problematic for large frames sizes and temporal windows. In our tech-
nique, in order to classify new pixels, they are compared only with the support
vectors, which in practice are much fewer than the actual number of frames in
the temporal window. Third, because support vector data description explicitly
models the decision boundary of the known class, it can be used for novelty
detection and single class-classification without a need to threshold any values.
This results in less parameter tuning and automatic classification. Finally, the
performance of the classifier in terms of false positive and false negatives can be
controlled from within the framework. The proposed method is a novel approach
that explicitly addresses the one-class classification problem, since in foreground
region detection we do not have samples of foreground regions in the training
steps of the system. This issue, has not been addressed in any of the traditional
techniques.

The rest of this paper is organized as follows. In Section 2 a brief review of the
support vector data description is presented. In Section 3, the proposed method
for foreground region detection is discussed. Section 4 shows experimental results
of our method on synthetic and real-world data, and the performance of classifier
is compared with the existing techniques. Finally, conclusions of the proposed
method are drawn in Section 5 and future extensions to this work are discussed.

2 Support vector data description

Data domain description concerns the characteristics of a data set [14]. The
boundary of the dataset can be used to detect novel data or outliers. A normal
data description gives a closed boundary around the data. The simplest boundary
can be represented by a hyper-sphere. The volume of this hyper-sphere with
center a and radius R should be minimized while containing all the training
samples xi. To allow the possibility of outliers in the training set, slack variables
εi ≥ 0 are introduced. The error function to be minimized is defined as:

F (R, a) = R2 + C
∑

i

εi (1)

subject to the constraints:

‖xi − a‖2 ≤ R2 + εi ∀i (2)



In equation (1), C is a trade-off between simplicity of the system and its error.
We call this parameter confidence parameter. After incorporating the constraints
(2) into the error function (1) by Lagrange multipliers we have:

L (R, a, αi, γi, εi) = R2 +C
∑

i

εi−
∑

i

αi

[
R2 + εi −

(‖xi − a‖2)]−
∑

i

γiεi (3)

L should be maximized with respect to Lagrange multipliers αi ≥ 0 and γi ≥ 0
and minimized with respect to R, a and εi. Lagrange multipliers γi can be
removed if the constraint 0 ≤ αi ≤ C is imposed. After solving the optimization
problem we have:

L =
∑

i

αi(xi · xi)−
∑

i,j

αiαj(xi · xj) ∀αi : 0 ≤ αi ≤ C (4)

When a new sample satisfies the inequality in (2), then its corresponding La-
grange multipliers are αi ≥ 0, otherwise they are zero. Therefore we have:

‖xi − a‖2 < R2 → αi = 0, γi = 0
‖xi − a‖2 = R2 → 0 < αi < C, γi = 0
‖xi − a‖2 > R2 → αi = C, γi > 0 (5)

From the above, we can see that only samples with non-zero αi are needed in
the description of the data set, therefore they are called support vectors of the
description. To test a new sample y, its distance to the center of the hyper-sphere
is calculated and tested against R.

In order to have a flexible data description as opposed to the simple hyper-
sphere discussed above a kernel function K(xi, xj) = Φ(xi) ·Φ(xj) is introduced.
This maps the data into a higher dimensional space, where it is described by the
simple hyper-sphere boundary.

3 The proposed method

The methodology described in section 2 is used in our technique to build a de-
scriptive boundary for each pixel in the background training frames to generate
its model for the background. Then these boundaries are used to classify their
corresponding pixels in new frames as background and novel (foreground) pix-
els. There are several advantages in using the Support Vector Data Description
(SVDD) method in detecting foreground regions:

– The proposed method, as opposed to existing statistical modeling methods,
explicitly addresses the single-class classification problem. Existing statistical
approaches try to estimate the probability of a pixel being background, and
then use a threshold for the probability to classify it into background or
foreground regions. The disadvantage of these approaches is in the fact that
it is impossible to have an estimate of the foreground probabilities, since
there are no foreground samples in the training frames.



1. Initialization

1.1. Confidence parameter: C
1.2. Number of training samples: Trn_No

1.3. Kernel bandwidth σ
2. For each training frame

2.1. For each pixel xij

2.1.1. OC(i,j)← Train(xij[1 :Trn_No])
3. For new frames

3.1. For each pixel xij

3.1.1. Desc(i,j)← Test(xij[Current Frame],OC(i,j))
3.1.2. Label pixel as foreground or background

based on Desc(i,j).

Fig. 1. The proposed algorithm.

– The proposed method has less memory requirements compared to non-
parametric density estimation techniques, where all the training samples
for the background need to be stored in order to estimate the probability of
each pixel in new frames. The proposed technique only requires a very small
portion of the training samples, support vectors, to classify new pixels.

– The accuracy of our method is not limited to the accuracy of the estimated
probability density functions for each pixel. Also the fact that there is no
need to assume any parametric form for the underlying probability density
of pixels gives the proposed method superiority over the parametric density
estimation techniques, i.e. mixture of Gaussians.

– The efficiency of our method can be explicitly measured in terms of false
reject rates. The proposed method considers a goal for false positive rates,
and generates the description of data by fixing the false positive tolerance of
the system. This helps in building a robust and accurate background model.

Figure 1 shows the proposed algorithm in pseudo-code format1. The only
critical parameter is the number of training frames (Trn_No) that needs to be
initialized. The support vector data description confidence parameter C is the
target false reject rate of the system. This is not a critical parameter and accounts
for the system tolerance. Finally the Gaussian kernel bandwidth, σ does not have
a particular effect on the detection rate as long as it is not set to be less than
one, since features used in our method are normalized pixel chrominance values.
For all of our experiments we set C = 0.1 and σ = 5.

In the first step of the algorithm, for each pixel in the scene a single class
classifier is trained by using its values in the background training frames. This
classifier consists of the description boundary and support vectors, as well as a
threshold used to describe the data. In the next step, each pixel in the new frames
is classified as background or foreground using its value and its corresponding

1 The proposed method is implemented in MATLAB 6.5, using Data Description tool-
box [15].



classifier from the training stage. Details of training of each classifier and testing
for new data samples are provided in section 2.

Feature vectors xij used in the current implementation are xij = [cr, cg],
where cr and cg are the red and green chrominance values for pixel (i, j). Since
there is no assumption on the dependency between features, any feature value
such as vertical and horizontal motion vectors, pixel intensity, etc. can be used.

4 Experimental results

In this section, the experimental results of the proposed method are presented
on both synthetic and real data. The experiments are conducted to compare the
results of support vector data description in classification problems with those
of traditional methods, such as mixture of Gaussians (MoG), Kernel Density
Estimation (KDE) and k-nearest neighbors (KNN).

4.1 Synthetic data sets

In this section we use a synthetic data set, which represents randomly distributed
training samples with an unknown distribution function (banana data set). Fig-
ure 2 shows a comparison between different classifiers. This experiment is per-
formed on 150 training samples using support vector data description (SVDD),
mixture of Gaussians (MoG), kernel density estimation (KDE) and k-nearest
neighbors (KNN).

Parameters of these classifiers are manually determined to give a good per-
formance. For all classifiers the confidence parameter is set to be 0.1. In MoG, we
used 3 Gaussians. Gaussian kernel bandwidth in the KDE classifier is considered
σ = 1, for the KNN we used 5 nearest neighbors, and for the SVDD classifier
the Gaussian kernel bandwidth is chosen to be 5.

Figure 2(a) shows the decision boundaries of different classifiers on 150 train-
ing samples from banana dataset. As it can be seen from Figure 2(b), SVDD
generalizes better than the other three classifiers and classifies the test data more
accurately. In this Figure the test data is composed of 150 samples drawn from
the same probability distribution function as the training data, thus should be
classified as the known class.

Table 1. Comparison of False Reject Rate and Recall Rate for different classifiers.

Method SVDD MoG KDE KNN

FRR 0.1067 0.1400 0.1667 0.1333

RR 0.8933 0.8600 0.8333 0.8667

Here we need to define the False Reject Rate (FRR) and Recall Rate (RR)
for a quantitative evaluation. By definition, FRR is the percentage of missed



(a) (b)

Fig. 2. Comparison between different classifiers on a synthetic data set: (a)- Decision
boundaries of different classifiers after training. (b)- Data points (blue dots) outside
decision boundaries are false rejects.

targets, and RR is the percentage of correct prediction (True Positive rate).
These quantities are given by:

FRR =
#Missed targets

#Samples
RR = #Correct predictions

#Samples (6)

Table 1 shows a quantitative comparison between different classifiers. In this
table, FRR and RR of classifiers are compared after training them on 150 data
points drawn from an arbitrary probability function and tested on the same
number of samples drawn from the same distribution. As it can be seen from
the above example, the FRR for SVDD classifier is less than that of the other
three, while its RR is higher. This proves the superiority of this classifier in case
of single class classification over the other three techniques.

Table 2. Need for manual optimization and number of parameters.

Method SVDD MoG KDE KNN

No. of parameters 1 4 2 2

Need manual selection No Yes Yes Yes

Table 2 compares the number of parameters that each classifier has and
the need for manually selecting these parameters for a single class classification
problem. As it can be seen, the only method that automatically determines data
description is the SVDD technique. In all of the other classification techniques
there is at least one parameter that needs to be manually chosen to give a good
performance.

Table 3 shows memory requirements for each classifier. As it can be seen from
the table, SVDD requires much less memory than the KNN and KDE methods,
since in SVDD we do not need to store all the training data. Only the MoG



Table 3. Comparison of memory requirements for different classifiers.

Method SVDD MoG KDE KNN

Memory needs (bytes) 1064 384 4824 4840

(a) Water surface (b) MoG (c) KDE (d) SVDD

Fig. 3. Water surface video: comparison of methods in presence of irregular motion.

method needs less memory than the SVDD technique, but in MoG methods we
need to manually determine the number of Gaussians to be used which is not
practical when we are training one classifier per pixel in real video sequences.

4.2 Real videos

In this section, foreground detection results of our method on real video se-
quences are shown and compared with the traditional statistical modeling tech-
niques.

Comparison in the presence of irregular motion. By using the water
surface video sequence, we compare the results of foreground region detection
using our proposed method with a typical KDE [13] and MoG [7]. For this com-
parison the sliding window of size L=150 is used in the KDE method. The results
of MoG are shown in Figure 3(b), the KDE method results are shown in Figure
3(c) and the foreground masks detected by the proposed technique are shown
in Figure 3(d). As it can be seen, the proposed method gives better detection
since it generates a more accurate descriptive boundary on the training data,
and does not need a threshold to classify pixels as background or foreground.

Comparison in case of low contrast videos. Figure 4 shows the result
of foreground detection using the proposed method in the hand shake video se-
quence and compares this result with that of the KDE method. As it can be seen
from Figure 4(b) and 4(c), the proposed method achieves better detection rates
compared to the KDE technique. Notice that in the KDE technique presented
in the figure, the system tries to find the best parameters for the classifier in
order to achieve its best performance.



(a) Hand shake sequence (b) KDE (c) SVDD

Fig. 4. Hand shake video: comparison of methods in case of low contrast videos.

(a) Water (b) Fountain (c) Lobby (d) Water surface

Fig. 5. Foreground detection results.

Detection results in difficult scenarios. Figure 5 shows results of the
proposed foreground detection algorithm in very difficult situations. In Figure
5(a) and 5(b) the irregular motion of water in the background make it difficult
to detect true foreground regions. In Figure 5(c) there are flickers in the lighting.
Our system accurately detects the foreground regions in all of these situations.
Also the car in Figure 5(d) is detected accurately by our method despite the
presence of waving tree branches and the rain in the background.

5 Conclusions and future work

In this paper a novel approach is proposed to label pixels in video sequences into
foreground and background classes using support vector data description. The
contributions of our method can be described along the following directions:

– The model accuracy is not bounded to the accuracy of the estimated prob-
ability density functions.

– The memory requirement of the proposed technique is less than that of non-
parametric techniques.

– Because support vector data description explicitly models the decision bound-
ary of the known class, it is suitable for novelty detection without the need
to use thresholds. This results in less parameter tuning.



– The classifier performance in terms of false positive is controlled explicitly.

One direction of future investigation is to use this work in non-parametric
tracking approaches. Also we are investigating the effect of adaptive kernel band-
width parameters on the performance of the system.
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