
A Machine Learning Approach to Horizon Line
Detection Using Local Features

Touqeer Ahmad1, George Bebis1, Emma Regentova2, and Ara Nefian3

1 Department of Computer Science and Engineering, University of Nevada, Reno
sh.touqeerahmad@gmail.com,bebis@cse.unr.edu

2 Department of Electrical and Computer Engineering, University of Nevada, Las
Vegas

Emma.Regentova@unlv.edu
3 Carnegie Mellon University and NASA Ames Research

ara.nefian@nasa.gov

Abstract. Planetary rover localization is a challenging problem since
no conventional methods such as GPS, structural landmarks etc. are
available. Horizon line is a promising visual cue which can be exploited
for estimating the rover’s position and orientation during planetary mis-
sions. By matching the horizon line detected in 2D images captured by
the rover with virtually generated horizon lines from 3D terrain models
(e.g., Digital Elevation Maps(DEMs)), the localization problem can be
solved in principle. In this paper, we propose a machine learning ap-
proach for horizon line detection using edge images and local features
(i.e., SIFT). Given an image, first we apply Canny edge detection using
various parameters and keep only those edges which survive over a wide
range of thresholds. We refer to these edges as Maximally Stable Ex-
tremal Edges (MSEEs). Using ground truth information, we then train
an Support Vector Machine (SVM) classifier to classify MSEE pixels into
two categories: horizon and non-horizon. Each MSSE pixel is described
using SIFT features which becomes input to the SVM classifier. Given
a novel image, we use the same procedure to extract MSSEs; then, we
classify each MSEE pixel as horizon or non-horizon using the SVM clas-
sifier. MSEE pixels classified as horizon are then provided to a Dynamic
Programming shortest path finding algorithm which returns a consistent
horizon line. In general, Dynamic Programming returns different solu-
tions (i.e., due to gaps) when searching for the optimum horizon line in
a left-to-right or right-to-left fashion. We use the actual output of the
SVM classifier to resolve ambiguities in places where the left-to-right
and right-to-left solutions are different. The final solution, is typically a
combination of edge segments from the left-to-right or right-to-left so-
lutions. Moreover, we use the SVM classifier to fill in small gaps in the
horizon line; this is in contrast to the traditional dynamic programming
approach which relies on mere interpolation. We report promising exper-
imental results using a set of real images.



2 Touqeer Ahmad, George Bebis, Emma Regentova, and Ara Nefian

1 Introduction

A key function of a mobile robot system is its ability to localize itself accurately
[1]. This problem is more challenging in space missions due to lack of conventional
localization methods (e.g., landmarks, maps, GPS etc.). Here, we investigate the
problem of robot localization using the horizon line as a visual cue which can be
found often in images captured by the rover’s camera. Rover localization based
on the horizon line consists of two main steps. First, the horizon line needs to be
detected. Second, changes in the location and orientation of the rover need to be
estimated. This can be done by matching the actual horizon line with a virtually
generated horizon line from 3D terrain models such as DEMs. Our focus in this
paper is on horizon line detection from rover 2D images.

Horizon line detection has many important applications such as ship detec-
tion, flight control and port security [2]. Recently, Baatz et al. [8] have demon-
strated the idea of using the horizon line for visual geo-localization of images in
mountainous terrain. In their approach, they match the horizon line extracted
from RGB images with the horizon lines extracted from DEMs of a predefined
large scale region.

Kim et al. [7] have proposed a Multistage Edge Filtering technique to find
the horizon line in cluttered backgrounds for UAV navigation. First, they model
the clutter first and then, using an iterative approach, they filter out the edges
belonging to the clutter. The horizon line is then discriminated from the remain-
ing candidates using length and continuity constraints. Fefilatyev et al. [2] have
proposed a machine learning approach to find the horizon line by segmenting the
sky and non-sky regions assuming that the horizon line is straight. Various color
and texture features (e.g., mean intensity value of three color channels, entropy,
smoothness, uniformity, third moment etc.) were used to train several classifiers.
Although their approach has shown promising results, their underlying assump-
tion that the horizon line straight is not general enough and is being violated
often. McGee et al. [10] have presented a sky segmentation technique based on
color where a linear separation between the sky and non-sky regions is found
using SVMs. The main drawback of their approach is again the assumption that
the horizon line is straight.

The horizon detection method of Ettinger et al. [11] suffers from the same
assumption too. They model the sky and non-sky regions using Gaussian dis-
tributions and use Bayesian estimation to find the optimum boundary which
separates the two distributions. In [12], Croon et al. have addressed this issue
by training a classifier (e.g., shallow decision trees, J48 Implementation of C4.5
algorithm) using color and texture features. Their choice of decision trees is
motivated by the computational efficiency achieved at run time to perform sky
segmentation for static obstacle avoidance by Micro Air Vehicles (MAVs). They
have extended the features used in [2] by introducing new features such as cor-
nerness, grayness, and Fisher discriminant features. In comparison to [2], they
used an extended database to train their classifier and a large number of features;
hence their approach is more robust and capable of finding non-linear horizon
lines. Todorovic et al. [13] extended their previous work [11] by eliminating the



Lecture Notes in Computer Science 3

assumptions about the horizon line being linear and the sky/non-sky regions fol-
lowing a Gaussian distribution. In particular, they built prior statistical models
for sky and non-sky regions using color and texture features. They argue about
the importance of both color (Hue and Intensity) and texture features (Complex
Wavelet Transform) due to the enormous variation in sky and ground appear-
ances. A Hiddern Markov Tree model was trained using these features, yielding
a robust horizon line detection algorithm.

Lie at al. [9] have presented a dynamic programming approach to find the
horizon line using edges. They formulate the problem of horizon line detection
as a multistage graph problem where each column of the edge image behaves as
one stage of the graph. Their goal is to find a consistent shortest path extending
from the left-most column of the image to the right-most column. The Sobel
edge detector was used in their approach. The gaps due to edge detection are
filled with dummy nodes using a fanout strategy based on interpolation. A gap
tolerance of up to 30 pixels is allowed and a cost is associated with each dummy
node based on the size of the gap.

In our approach, we employ Maximally Stable Extremal Edges (MSEE), that
is, edges that survive a wide range of thresholds and are considered to be more
stable. Our experimental results show that using MSEE eliminates non-horizon
edges, reduces computational requirements, and preserves the accuracy of hori-
zon line detection. To further eliminate non-horizon MSEEs, we use an SVM
classifier which is trained using SIFT features computed at MSEE pixels. MSEEs
pixels classified as horizon are post-processed using Dynamic Programming [9].
In the original approach [9], only one shortest path is found which extends from
left-to-right. However, this is not always optimal due to the presence of gaps in
the horizon line. Here, we compute the shortest path in both directions and cal-
culate a compound score, based on SVM actual outputs, to resolve ambiguous
segments (i.e., segments where the left-to-right and right-to-left paths do not
overlap).

The rest of the paper is organized as follows: In section 2 and 3 we describe the
main components of the proposed approach. Section 4 describes our experiments
and results. The paper is concluded in section 5.

2 Horizon Line Learning

In this section, we describe the steps for learning to detect the horizon line in
grayscale images.

2.1 Maximally Stable Extremal Edges (MSEEs)

The idea of extracting MSEEs was inspired from the idea of extracting Max-
imally Stable Extremal Regions (MSER) [14]. Given a gray scale image, we
compute the edge image using the Canny edge detector with sigma (σ) param-
eter being fixed to a chosen value while varying the low and high thresholds.
This results in the generation of N binary images assuming N combinations of



4 Touqeer Ahmad, George Bebis, Emma Regentova, and Ara Nefian

parameter values, call them I1 to IN . An edge at pixel location (x, y) is consid-
ered stable if it is detected as an edge pixel for k consecutive threshold values.
The image comprised of these stable edges is referred to as Maximally Stable
Extremal Edge Image and denoted as E. Mathematically,

E(x, y) =

{
1, if

∑N
i=1 I(x, y)i > k.

0, otherwise.
(1)

In our experiments, we varied the high threshold of the Canny edge detector,
Th, between 0.05 and 0.95 with a step of 0.05; the lower threshold T l was set
0.4 × Th. It was found through experimentation that σ = 2 and k = 3 were op-
timal choices. Although computing the MSEEs consumes extra time, we do save
time later, when classifying edge pixels using SMV and extracting the horizon
line using dynamic programming.

The computation of MSEE Image reduces the number of edges considerably
while not damaging important edges (i.e., horizon edges). Figure 1 below shows a
sample gray scale image, the output of the Canny edge detector and the MSEEs.
As it can be observed, the number of edges has remarkably been reduced in
MSEE while maintains the edges belonging to the horizon line.

2.2 Ground Truth Labeling

To train the SVM classifier, we manually label the horizon line pixels in the
training images using the MSEEs. Since some portion of the true horizon line
might not be detected as edges or the edge detector’s output might not match
the true horizon line perfectly, we fill these horizon locations manually and save
their pixel locations separately. Therefore, for each training image, there would
be part of the horizon line which is in perfect alignment with MSEEs as well
parts of the horizon line with no edge support or perfect alignment. In the figure
below, we show one of the training images with the true horizon line (ground
truth) superimposed on it. The portions of the horizon line for which there is
edge support are shown in ”red” while the ones without edge support are shown
in ”blue”.

2.3 Feature Extraction and Classifier Training

We train an SVM classifier using WEKA[5]. Specifically, to train the classifier
we use SIFT [4] descriptors computed at the MSEE pixel locations selected
for training. The horizon MSEE locations are chosen every fourth pixel on the
true horizon line; an equal number of non-horizon MSEE locations are chosen
randomly for each training image. Figure 2 shows the locations of horizon and
non-horizon MSEE pixels chosen for training for a given training image. Once
the MSEE locations have been chosen, SIFT descriptors of size 128 are extracted
from a window of size 16 × 16 around the chosen MSEE location. We use the
MATLAB implementation of SIFT available from vlfeat[3]. Figure 3 shows a
flowchart of the training phase of our algorithm.



Lecture Notes in Computer Science 5

Fig. 1. Effect of MSEE: Gray scale sample image (top), Output of Canny edge detector
(middle) and corresponding MSEEs (bottom).

3 Horizon Line Detection

3.1 Filtering MSEE Pixels

Given a novel image, we apply the SVM classifier to classify MSEE pixels into
horizon and non-horizon pixels. MSEE pixels classified as non-horizon are dis-
carded whereas MSEE pixels classified as horizon are post-processed using a
dynamic programming based shortest path algorithm. The SVM classifier can
be thought of as a mathematical binary function which returns 1 or -1 depending
upon the feature vector around the MSEE pixel being classified. We refer to the
binary image comprised of horizon classified edge locations as MSEE Positive
and denote it as E+. Each edge location (x, y) in E+ indicates that an MSEE is
present at that particular location which is classified as horizon. Mathematically,

E+(x, y) =

{
1, if E(x, y) = 1& Classifier[E(x, y)] = 1.

0, otherwise.
(2)



6 Touqeer Ahmad, George Bebis, Emma Regentova, and Ara Nefian

Fig. 2. Horizon line locations (ground truth) for a sample image. Red and blue segments
emphasize the presence or abscence of MSEE edge support.

Fig. 3. MSEE locations for a training. Red and blue pixels correspond to the horizon
and non-horizon MSEE locations.

3.2 Extracting Horizon Line Using Dynamic Programming

Lie et al. [9] have formulated the horizon line detection problem as a shortest
path problem using a multi-stage graph. Their approach is straight forward
and doesn’t involve any preprocessing of the edge image. The edge image is
directly fed to the dynamic programming algorithm which finds the shortest
path between nodes S and T where S and T are dummy nodes added to the
left of the leftmost column and the right of the rightmost column of the input
binary image. In our implementation, we use the MSEE Positive image since it
reduces the number of nodes per stage considerably by discarding non-horizon
edges without affecting horizon edges. In particular, we show that the use of
MSEE reduces the computational requirements of the dynamic programming
algorithm while achieving similar or better accuracy. In our implementation, we
use the same parameter values as in [9] (i.e., δ = 3 and tolerance of gap (tog)
= 30) where δ specifies the number of pixels to be searched in the next stage j
for the current node in stage i. So, if kth node in stage i is under consideration;
δ = 3 pixel locations i.e. k − 1, k and k + 1 are checked in the next stage j.

3.3 Resolving Ambiguousness Due to Edge Gaps

In their approach, Lie et al. [9] only find the horizon line by processing the edge
image in a left-to-right fashion. In our experiments, however, we have found
that the left-to-right path is not always optimal since it might include incorrect



Lecture Notes in Computer Science 7

Fig. 4. Flowchart diagram of the training phase of our approach

segments due to the presence of edge gaps. Here, we compute both the left-to-
right and right-to-left shortest path solutions. Then, we find all horizon segments
which are different in the two solutions (i.e., they do not overlap). To resolve these
ambiguous horizon segments, we compute classification scores at each location
based on the actual response of the classifier. The segment having the maximum
compound score (i.e., product of classification scores) is selected to be included
in the final solution.

Figure 4 below shows the flowchart of the testing phase of our approach. The
dynamic programming component can be used to find a single solution )left-to-
right) based on the method of Lie et al. [9] or it can be use to find both solutions
(left-to-right and right-to-left) based on our approach. In the first case, the last
step in the flowchart would be skipped. In the second case, however, further
processing is required by using the classifier to calculate compound scores for
the segments in the two solutions that do not overlap.

4 Experiments and Results

4.1 Data Set

Our data set is comprised of 10 gray scale images which have considerable scene,
brightness and texture variations. The resolution of the images is 519 x 1388.



8 Touqeer Ahmad, George Bebis, Emma Regentova, and Ara Nefian

Fig. 5. Flow Diagram of the Testing Phase and Dynamic Programming of Our Ap-
proach

We divide the data set in two equal subsets of 5 images each; we refer to them
as set1 and set2. When using set1 for training, set2 is used for testing and vice
versa. During training, we choose horizon and non-horizon examples from each
image in the training set as mentioned in Section 2. During testing, we apply
the classifier at each MSEE location in the test set.

4.2 Effect of MSEE on Horizon and Non-horizon Edges

Using MSEEs reduces the number of edges considerably which helps both the
classification and dynamic programming steps. We have observed up to 92%
reduction of non-horizon edges without affecting horizon edges. For each gray
scale image in our data set, we apply the Canny edge detector implementation
with σ = 2; the high/low threshold values are chosen by Matlab automatically.
We compare the number of edges obtained using the above parameters with the
edges sustaining the variation of lower/higher threshold while keeping σ fixed
to 2. In our experiments, an edge is considered a MSEE if it survives over 3
different pairs of Th/T l (i.e., stable edge). We have found that edges belonging
to the horizon line are stable and that MSEE does not affect horizon edges while
it reduces non-horizon edges remarkably.

Table 1 shows the number of edges detected using the MATLAB parameter
(column2) versus MSEE (column3) for σ = 2. The percentage reduction in the
number of non-horizon and horizon edges is shown in columns 4 and 5 of the
table.



Lecture Notes in Computer Science 9

Table 1. % Reduction in number of Horizon and non-Horizon Edges due to MSEE

Image Number of Number of % Reduction % Reduction
Edges (MATLAB) Edges (MSEE) Non-Horizon Horizon

1 38969 27428 29.1658 0
2 46877 31030 33.8055 0
3 40092 13873 65.3971 0
4 36909 11963 67.5879 0
5 43297 3289 92.4036 0
6 59088 16265 59.9088 0
7 47323 20313 57.0758 0
8 43810 26635 39.2034 0
9 48418 17558 63.7366 0
10 42333 12200 71.1809 0

4.3 (DP + Canny) versus (DP + MSEE)

In this section, we demonstrate the impact using MSEEs instead of all edges
returned by the Canny edge detector. In this context, we compare the time and
accuracy applying the dynamic programming approach using all Canny edges
(i.e., DP + Canny) versus the MSEEs (i.e., DP + MSEE). To compare the
accuracy of each approach, we compute the percentage of horizon line edges
detected out of all (i.e., ground truth) horizon line edges. Since, ground truth
horizon line edges are of two types as mentioned earlier (i.e., segments with edge
support, shown in ”red”, and segments without edge support, shown in ”blue”;
see Figure 2) we distinguish between errors in these two types. Table 2 shows
the comparison between (DP + Canny) and (DP + MSEE). Columns 2 and 3
show the running time of each approach in MATLAB. The total error percentage
(%TErr) is the sum of the ”red” error percentage (%RErr) and the ”blue” error
percentage (%BErr).

As it is evident from our results, (DP+MSEE) generally takes longer time
than (DP+Canny). In terms of accuracy, (DP+MSEE) outperforms (DP+Canny)
for challenging images such as images 7 and 10. The reason that (DP+MSEE)
performs better is due to the fact that there are less non-horizon edges which
allows the dynamic programming approach to find the correct path with higher
probability. In the next section, we show that using the classifier to further re-
duce the number of non-horizon edges yields even higher accuracy.

4.4 (DP + MSEE+)

As described in Section 3, for each test image first the MSEEs are computed.
Then, the SIFT descriptors are calculated around each MSEE location and the
SVM classifier is applied to classify MSEE edges as horizon or non-horizon.
MSEE+ contains only those MSEEs which were classified as horizon. We ap-
ply the dynamic programming approach using the MSEEs+ and compute the
shortest paths both from left-to-right and right-to-left. This is in contrast to the



10 Touqeer Ahmad, George Bebis, Emma Regentova, and Ara Nefian

Table 2. Comparing (DP+Canny) and (DP+MSEE) in terms of time and accuracy.

Image Time(sec) Accuracy
(DP+Canny) (DP+MSEE)

(DP+Canny) (DP+MSEE) %TErr %RErr %BErr %TErr %RErr %BErr

1 28.27 37.70 72.50 56.09 16.41 46.17 29.76 16.41
2 39.49 40.37 8.39 2.99 5.40 8.39 2.99 5.40
3 14.35 41.89 3.04 1.45 1.59 3.04 1.45 1.59
4 21.07 29.23 0.87 0.22 0.65 0.87 0.22 0.65
5 30.76 29.01 0.07 0.07 0 0.07 0.07 0
6 26.16 37.68 35.83 22.21 13.62 35.83 22.21 13.62
7 21.78 22.96 64.74 57.51 7.22 37.79 30.56 7.22
8 15.74 40.11 11.63 11.41 0.22 10.48 10.26 0.22
9 35.30 39.28 27.41 24.14 3.26 26.47 23.20 3.26
10 35.31 43.87 59.06 52.97 6.09 51.16 45.07 6.09

approach of Lie et al. [9] where the shortest path is computed from left-to-right
using the Canny edges. Table 3 shows the horizon line detection errors in this
case. For clarity, we report errors both for the left-to-right and the right-to-left
solutions.

Table 3. Acquired Accuracy by Proposed Approach (DP + MSEE+ + Compound
Classifier Scoring)

Image left-to-right Path right-to-left Path Optimal Horizon Line
%TErr %RErr %BErr %TErr %RErr %BErr %TErr %RErr %BErr

1 23.27 8.17 15.10 16.05 0.9482 15.10 16.05 0.9482 15.10
2 5.62 0.22 5.40 5.62 0.15 5.47 5.62 0.15 5.47
3 2.97 1.52 1.45 2.83 1.38 1.45 2.83 1.38 1.45
4 1.82 1.17 0.66 1.90 1.24 0.66 1.82 1.17 0.66
5 0 0 0 0 0 0 0 0 0
6 31.61 18.13 13.47 15.95 2.48 13.47 15.22 1.75 13.47
7 15.17 7.95 7.23 13.66 6.65 7.01 10.91 3.68 7.22
8 5.17 4.95 0.22 4.81 4.59 0.22 4.81 4.59 0.22
9 4.21 1.96 2.25 4.13 1.88 2.25 4.13 1.88 2.25
10 13.41 7.46 5.94 7.75 1.81 5.94 7.75 1.81 5.94

Comparing Tables 2 and 3, it is evident that the proposed approach outper-
forms both (DP+Canny) and (DP+MSEE).

4.5 Dealing with Ambiguous Segments

Using the left-to-right and right-to-left solutions, we identify those segments
which do not overlap in the two solutions. To decide which of the two solutions
to use for these segments, we use the actual response of the classifier to compute a



Lecture Notes in Computer Science 11

compound score (i.e., product of classifier responses) for each of these segments.
The score is normalized by the length of the pixels (edges) in the segment.
Then, we choose the segment with the highest score. The last column of Table 3
shows the errors for the optimal solution where ambiguous segments are resolved
based on the segment with the highest compound score. Figure 6 shows the
optimal detected horizon lines imposed on the ground truth horizon lines for
few images of our data set. The ground truth is shown in red and blue whereas
deselected horizon is shown in green. Blue or red segments show the locations
when proposed method have missed the ground truth horizon and so green color
not hiding the red and blue.

As shown in Table 3, the total error percentage is lower for optimal horizon
line, particularly for more challenging images such as images 6 and 7. Figure
7 shows several examples of ambiguous segments for images 1, 6 and 10. The
ground truth is shown in red/blue and the solution found is shown in green.
When the solution found perfectly overlaps with the ground truth, the red/blue
colors are covered by green. It should be noted that segments belonging to right-
to-left solution tend to have higher compound scores for our dataset. Extending
the data set would surely produce more interesting cases.

Fig. 6. Optimal Detected Horizon Lines Superimposed on Ground Truth Horizon Lines

5 Conclusion

We have presented a machine learning based horizon line detection algorithm
using SIFT features. During training, we train an SVM classifier to classify
MSEE pixels into two classes: horizon and non-horizon. During testing, MSEEs
are detected and the SVM classifier is applied to identify those MSEEs that
belong to the horizon line. Then, a dynamic programming algorithm is applied
to find the horizon line. To deal with gaps, we apply the dynamic programming
algorithm both in a left-to-right and right-to-left fashion. Segments which are



12 Touqeer Ahmad, George Bebis, Emma Regentova, and Ara Nefian

Fig. 7. Ambiguous segments in Left-to-Right (top) and Right-to-Left (bottom) paths
computed for Images 1 (top 2 rows), 6 (middle 2 rows) and 10 (bottom 2 rows).
Highlighting the alignment between ground truths, detected horizons and mismatch
between left-to-right and right-to-left paths.

different in the two solutions are rectified by computing a compound score based
on the actual responses of the classifier. For future work, we plan to investigate
different local features such as WLD[15] and LBP[16] as well as single class
classifiers such as Support Vector Data Description (SVDD)[17].

Acknowledgement

This material is based upon work supported by NASA EPSCoR under Cooper-
ative Agreement No. NNX10AR89A.

References

1. Fabio Cozman and Carlos E. Guestrin: Automatic Mountain Detection and Pose
Estimation for Teleoperation of Lunar Rovers. ICRA. 1997.

2. Sergiy Fefilatyev , Volha Smarodzinava, Lawrence O. Hall and Dmitry B. Goldgof:
Horizon Detection Using Machine Learning Techniques. ICMLA., 17-21, 2006.

3. http://www.vlfeat.org/index.html
4. D. G. Lowe: Distinctive Image Features from Scale-Invariant Keypoints. Interna-

tional Journal of Computer Vision., 68(2):91 - 110, 2004.
5. http://www.cs.waikato.ac.nz/ml/weka/
6. Stepan Obdrzalek and Jiri Matas: Object Recognition Using Local Afne Frames

on Maximally Stable Extremal Regions Toward Category-Level Object Recognition
LNCS 4170, 83-104, 2006.



Lecture Notes in Computer Science 13

7. Byung-Ju Kim, Jong-Jin Shin, Hwa-Jin Nam and Jin-Soo Kim: Skyline Extraction
using a Multistage Edge Filtering World Academy of Science, Engineering and
Technology 55, 2011.

8. Georges Baatz, Olivier Saurer, Kevin Koser, and Marc Pollefeys: Large Scale Visual
Geo-Localization of Images in Mountainous Terrain ECCV, 2012.

9. Wen-Nung Lie, Tom C.-I. Lin , Ting-Chih Lin , and Keng-Shen Hung: A robust dy-
namic programming algorithm to extract skyline in images for navigation Pattern
Recognition Letters, 26:221 - 230, 2005.

10. Timothy G. McGee, Raja Sengupta, and Karl Hedrick: Obstacle Detection for
Small Autonomous Aircraft Using Sky Segmentation. In International Conference
on Robotics and Automation (ICRA’05), 2005.

11. Scott M. Ettinger, Michael C. Nechyba, Peter G. Ifju and Martin Waszak: Vision-
Guided Flight Stability and Control for Micro Air Vehicles In IEEE Int. Conf. on
Intelligent Robots and Systems, 2002.

12. G.C.H.E. de Croon, B.D.W. Remes, C. De Wagter, and R. Ruijsink: Sky Segmen-
tation Approach to Obstacle Avoidance. In IEEE Aerospace Conference, 2011.

13. Sinisa Todorovic, Michael C. Nechyba and Peter G. Ifju: Sky/Ground Modeling for
Autonomous MAV Flight In International Conference on Robotics and Automation
(ICRA’03), 2003.

14. J. Matas, O. Chum, M. Urban, and T. Pajdla: Robust wide baseline stereo from
maximally stable extremal regions In Proc. of British Machine Vision Conference,
pages 384-396, 2002.

15. Jie Chen, Shiguang Shan, Chu He, Guoying Zhao, Matti Pietikinen, Xilin Chen,
and Wen Gao WLD: A Robust Local Image Descriptor In IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2009.

16. T. Ojala, M. Pietikinen and D. Harwood: A Comparative Study of Texture Mea-
sures with Classification Based on Feature Distributions In Pattern Recognition,
vol. 29, no. 1, pages 51-59, 1996.

17. David M.J. Tax and Robert P.W. Duin : Support Vector Data Description. In
Machine Learning, vol. 54, no 1, pages 45 - 66, 2004.


