
Automatic Crater Detection Using Convex Grouping and 

Convolutional Neural Networks  

Ebrahim Emami1, George Bebis1, Ara Nefian2, and Terry Fong2 

1Department of Computer Science and Engineering,  
University of Nevada, Reno 

ebrahim@nevada.unr.edu, bebis@cse.unr.edu 
2Intelligent Robotics Group (IRG) 

NASA Ames Research Center 
ara.nefian@nasa.gov, terry.fong@nasa.gov 

Abstract. Craters are some the most important landmarks on the surface of 
many planets which can be used for autonomous safe landing and spacecraft 

and rover navigation. Manual detection of craters is laborious and impractical, 
and many approaches have been proposed in the field to automate this task. 
However, none of these methods have yet become a standard tool for crater de-
tection due to the challenging nature of this problem. In this paper, we propose 
a new crater detection algorithm (CDA) which employs a multi-scale candidate 
region detection step based on convexity cues and candidate region verification 
based on machine learning. Using an extensive dataset, our method has 
achieved a 92% detection rate with an 85% precision rate.  

1   Introduction 
Craters are topographic features on planetary surfaces that result from impacts with 

meteoroids. They are found on all hard-surface bodies in the solar system, but are 

most abundant on planets like the Moon or Mars where they can accumulate due to 

slow surface erosion rates [1]. Craters are important landmarks for autonomous 

spacecraft and rover navigation and control, which have become key technologies in 

deep space exploration [2]. Craters can be used for high-precision spacecraft landing 

missions, and accurate identification of potential hazards [3]. Crater surveys also 

contain important information about planetary surfaces; for example, crater counting 

can be used for establishing relative chronology of planetary surfaces. 

Currently, all crater databases have been gathered manually via visual inspection of 

images.  However, they are not comprehensive as they mostly contain large craters 
only. On the other hand, advances in gathering planetary data by space probes has 

resulted in high resolution images that can show smaller craters on planets like Mars, 

and Moon. Clearly, manual crater detection is not be appropriate for generating com-

prehensive catalogues of craters and this task can only be achieved by automating the 

process of crater surveying [4][1].  

There have been numerous efforts to develop CDAs using image processing and 

machine learning techniques. However, most of the previous approaches are not ca-

pable of achieving high performance in real world crater detection applications [1]. 

Variations in illumination and surface properties as well as variations in shape and 
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size make automatic crater detection a very challenging task. Specifically, crater di-

mensions in an image might differ by orders of magnitude. Crater shapes may also 

vary depending on their interior morphologies (central peaks, peak rings, central pits, 

and wall terraces), level of degradation, and degree of overlap with other craters [3] 

[4]. These challenges make it hard to design a robust and usable CDA which main-

tains high accuracy. 

In this paper, we propose a new CDA to better deal with these issues. The pro-

posed method consists of two main phases. In the first phase, candidate crater regions 
are extracted using convexity, an important perceptual organization cue. In the second 

phase, candidate regions are the classified as crater or non-crater regions using ma-

chine learning techniques. In contrast to other CDAs, the proposed method does not 

rely on strong assumptions about crater shape and properties. Instead of assuming 

strong circular or elliptical shapes or bright and shadow regions with specific shapes, 

sizes, and orientations, we only assume that crater regions have a nearly convex shape 

which is a much weaker assumption. Moreover, we allow crater boundaries to contain 

gaps which is often the case due to imperfect edge detection results. Using this multi-

scale scheme based on convexity, we are able to detect almost all craters while reject-

ing many non-crater regions. The candidate regions are then verified using a Convolu-

tional Neural Network (CNN). 

The rest of the paper is organized as follows: Section 2 discussed related work in 
crater detection. Section 3 presents the proposed approach in detail. Section 4 presents 

our experimental results and comparisons. Finally, Section 5 presents our conclusions 

and directions for future research. 

2   Background 
There has been extensive research on crater detection over the past years. Kamarudin 

et al.  [5] have reviewed several methods on crater detection; they claim that the most 

accepted method of crater detection is based on edge detection and the Hough 

Transform, while there exist other techniques based on detection of a bright to dark 

shading pattern inside the crater due to lighting orientation. Salamuniccar and 

Loncaric  [6] have proposed a framework for evaluating crater detection algorithms, 
however, the evaluation is not from a machine vision point of view. We classify 

previous CDAs into two categories: unsupervised and supervised. 

Unsupervised methods mainly employ basic image processing and pattern recogni-

tion techniques such as thresholding [7], circle detection, and ellipse detection [7], 

[8]. Specifically, Troglio et al. [8] perform crater detection by extracting elliptical 

regions using watershed segmentation and the Generalized Hough transform. Smirnov 

[7] performs crater detection by detecting shadow regions; he assumes very specific 

geometric properties for craters and limits the geometry of shadow regions to three 

main shapes which are detected using thresholding, pixel clustering and circle fitting. 

In [9], Kim et al. propose a CDA based on edge detection and ellipse fitting followed 

by template matching to discriminate between crater and non-crater regions. 
Supervised methods use machine learning techniques to learn how to distinguish 

between crater and non-crater regions. These methods rely on a large number of la-

beled data for training. Meng et al. [10] perform candidate crater region selection 

using the Kanade–Lucas–Tomasi (KLT) detector, while MatLSSVM is employed for 



verifying the candidate crater regions. They claim that their method detects 88% of 

craters on their dataset which consists of 160 preprocessed image patches from 

Google Mars. In [11], Martins el al. use the popular Adaboost algorithm [12] for 

crater detection using 3216 Haar-like features. 

Wetzler et al. [13] have employed several supervised machine learning approaches 

for small size crater detection. According to their experiments, Support Vector Ma-

chines (SVMs) outperform Feed-Forward Neural Networks, AdaBoost (with feed-

forward neural networks as base learners) and Continuously Scalable Template Mod-
els (CSTM) for crater detection. The classifiers were trained on normalized size im-

age blocks and applied on test images using a sliding window approach. To detect 

different size craters, image pyramids were utilized. In a similar approach, Palafox et 

al. [14] evaluated the performance of SVMs and CNNs for the detection of craters and 

volcanic rootless cones. Although quantitative results were not presented in that work, 

CNNs were reported to perform better than SVMs in classifying randomly extracted 

patches from HiRISE images. 

In general, unsupervised approaches are fast and more appropriate for the detection 

of relatively large craters; however, their performance degrades when dealing with 

smaller craters or more challenging terrains. Therefore, these techniques cannot be 

used as a general purpose crater detection tool [10] [13]. Supervised methods, on the 

other hand, are more robust but usually slower and their performance depends on the 
quality and number of training data. 

It should be mentioned that although the majority of methods in the literature em-

ploy image data for crater detection, other types of data, such as Digital Elevation 

Map (DEM) data, have also been used for crater detection [15] [16]. Our interest in 

this study is on using image data for crater detection. 

3   Proposed Method 
In this paper, we propose a supervised CDA which consists of two main phases: (i) 

multi-scale candidate crater region detection, and (ii) candidate crater region verifica-

tion. In the first phase, we extract candidate crater regions by applying multi-scale 

edge detection and convex grouping. Candidate crater regions are then classified into 
crater and non-crater regions using machine learning techniques. A set of discrimina-

tive features that can accurately separate craters from non-craters should be chosen in 

this phase. For training, we use a representative set of crater and non-crater training 

examples. After verification, a post-processing step is applied to combine detections 

corresponding to the same crater regions. 

3.1 Candidate crater region extraction 

The primary goal in this step is to detect all true crater regions in order to avoid 

searching the whole image and speed-up the verification step. Our method is based on 
a perceptual organization approach which is a bottom up process that clusters image 

features into higher level organizations, each likely to come from a single object. 

Many different cues have been proposed in the literature for extracting perceptually 

salient structures including continuity, parallelism, and proximity; here, we employ 

convexity [17]. It has been demonstrated that groups of edges forming convex poly-



gons rarely occur at random and are very likely to have resulted from the same con-

vex object. Our method consists of the following steps: (1) multi-scale edge detection, 

(2) extraction of convex groups, (3) combination of convex groups, and (4) expansion 

of candidate crater regions. 

Multi-scale edge detection 
The first step of our method is extracting crater edges using the Canny edge detec-

tor. However, using a single scale to extract crater edges would be insufficient since 

craters typically appear at different sizes in an image.  

 

 
(a) 

 
(b) 

 
(c) 
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Fig 1. Multi-scale Canny edge detection: (a) input image, (b) Canny edges at scale 3 using a 
threshold of 25 (c) Canny edges at scale 5 using a threshold of 25, and (d) Canny edges at scale 
9 using a threshold of 25. 

To deal with this issue, we perform edge detection at multiple scales by varying the 

scale parameter of the Canny edge detector. Figure 1 shows an example using three 

different scales. As it can be observed, larger craters are more prominent at higher 

scales while smaller craters are more prominent at lower scales. 

Extraction of convex groups 

Many methods for crater detection in the literature assume that craters have a cir-

cular or elliptical shape. By observing many craters in our data set, however, we have 

concluded that this is not always the case. Other methods assume that craters consist 
of a pair of dark and bright regions with specific (relative) sizes, orientations and 

distances from each other. However, this assumption can be violated depending on 

the position of the sun.  



In this paper, we make a weaker assumption about the shape of craters; specifically, 

we assume that the shape of craters is nearly convex and we use an efficient convex 

grouping algorithm [17] to extract candidate crater regions. This algorithm is simple, 

efficient, and robust to noise, occlusion (i.e., gaps), and clutter. Initially, the image is 

processed to find line segments by performing edge detection followed by line ap-

proximation. Here, we use the split-and-merge algorithm [18] which approximates 

curves with lines, such that the curve points are no more than a fixed threshold from 

the line segments. Figure 2 shows an example.  
 

 

Fig 2. Line fitting results on a sample edge image. The line segments are shown in green and 

their end points are shown in red.  

 

Each line segment is characterized by its length, orientation and direction (by distin-
guishing one endpoint as the first endpoint). One way to define convexity is by con-

sidering the sum of absolute values of the angles turned as we traverse the line seg-

ments of the group. In the case of convex groups, the sum should be 360 degrees. 

Alternatively, a group of line segments is convex if for each -directed- line segment of 

the group, all other line segments are on the same side as its normal (it points to the 

right of the line segment when we traverse it from the first endpoint to the second).  

 

Since the number of convex groups in an image can be very large, the algorithm con-

siders only finding the most salient convex groups. A group is considered to be sali-

ent, if the sum of gap lengths between line segments is smaller than some fixed pro-

portion of the sum of line lengths in the group. Let us assume that a convex group 𝑆𝑛  

contains line segments line segments (𝑙1 , 𝑙2…𝑙𝑛). We define 𝐿𝑖 to be the length of line 

segment 𝑙𝑖 and 𝐺𝑖 to be the length of the gap between 𝑙𝑖 and 𝑙𝑖+1, then the sum of line 

lengths L1,n and the sum of gap lengths G1,n are defined as follows: 

 

𝐿1,𝑛 = ∑ 𝐿𝑖
𝑛
𝑖=1     and    𝐺1,𝑛 = ∑ 𝐺𝑖 

𝑛
𝑖=1                          (1) 

 

Then, 𝑆𝑛  is called a salient convex group if:  

 
𝐿1,𝑛

𝐿1,𝑛 +  𝐺1,𝑛

> 𝑘                                                         (2) 

 



where k is a fixed threshold. Figure 3 shows an example. 

 

 

Fig 3. Convex grouping results on a sample image using k=0.85. The detected convex groups 
are represented with their bounding boxes. 

Initially, the algorithm considers every line segment as defining a new convex group. 

Each group is then grown by adding more segments to it using backtracking. To avoid 

considering every possible case, several constraints are imposed based on distance 

(i.e., only segments within a certain distance are considered), convexity (i.e., only 

segments that preserve convexity are considered) and saliency (i.e., only segments 

that do not degrade saliency are considered). To facilitate efficient implementation of 

these constraints, information about the line segments is precomputed and pre-stored 

in appropriate data structures. To increase system’s robustness, several heuristics 

were used (e.g., the convexity criterion was relaxed to accept not perfectly convex 
groups). It should be mentioned that the salience criterion is rotation and scale inde-

pendent. Finding the m most salient groups in an image containing n segments has 

O(n2log(n) mn) complexity [17]. 

Combination of convex groups 

Since the same crater might be detected multiple times at different scales or even 

within the same scale (i.e., by using slightly different line segments each time), it is 

desirable to combine multiple detections to reduce verification cost but also to im-

prove the extraction of candidate crater regions. We apply the following two steps in 

order to combine multiple detections: (1) cluster convex groups based on the overlap 
of their bounding boxes and (2) represent each cluster by the average of bounding 

boxes. Specifically, two convex groups are clustered together if their intersection to 

union ratio is above a threshold:  
𝐴𝑟𝑒𝑎(𝑏1 ∩ 𝑏2)

𝐴𝑟𝑒𝑎(𝑏1 ∪ 𝑏2)
 > 𝑇                                                     (3) 

 

where b1 and b2 are their bounding boxes. A low threshold results in less candidate 

crater regions while a high threshold results in more accurate candidate crater regions.  



Expansion of candidate crater regions 

The convex groups resulting from the previous step might not be perfectly local-

ized around craters. This can affect verification performance especially since the 

training data comes from manually extracted craters which are typically well localized 

using a square window. To address this issue, candidate regions are expanded to be-

come square in size (i.e., by making the shorter side of tits bounding box equal to its 

longer side). In particular, each region is expanded in three different ways: (i) from its 

left side, (ii) from its right side, and (iii) both from its left and right sides; Figure 4 
shows an example. It should be mentioned that although this step increases the num-

ber of candidate crater regions, our experimental results show that expanding the 

candidate regions improves accuracy considerably. 

 

 
Fig 4. Expanding a candidate region (green box) in three different ways (red boxes). 

 

3.2   Candidate Crater Region Verification  
Once the candidate crater regions have been detected, they need to be verified in 

order to reject non-crater regions. We have opted for a machine learning approach 

since crater appearance might vary a lot. We have experimented with different fea-

tures and classifiers including raw pixels, Haar features, Histograms of Oriented Gra-

dient (HOG) features, SVMs, and CNNs. The best performance was obtained using 

raw features and CNNs which has been often the case in many classification applica-

tions. Next, we provide a brief overview CNNs.  

Classification using CNNs  
Deep learning systems have recently achieved state-of-the-art performance on 

many classification tasks. CNNs are among the most prominent deep learning tech-

niques [19]. CNNs are feedforward neural networks with a special architecture in-

spired from the human visual system. They consist of alternating convolution and 

sub-sampling/pooling layers and work directly on 2D data (maps). The convolution 

layers compose feature maps by convolving kernels over feature maps in layers below 

them while the sub-sampling layers, down-sample the feature maps by a constant 

factor. The activation of a single map j in convolution layer l is given by: 

𝑎𝑗
𝑙 = 𝑓 (𝑏𝑗

𝑙 + ∑ 𝑎𝑖
𝑙−1

𝑖∊ 𝑀𝑗
𝑙

∗ 𝑘𝑖𝑗
𝑙 )                                           (4) 

 



where f is a non-linear function (e.g., tanh), and b is a scalar bias. 𝑀𝑗
𝑙 is a vector of 

indices of feature maps in layer l-1 which feature map j in layer l should sum over, “ * 

” is the 2D convolution operator and k is the kernel used on feature map i in layer l-1. 

For a single feature map j in sub-sampling layer l: 

𝑎𝑗
𝑙 = 𝑑𝑜𝑤𝑛(𝑎𝑗

𝑙−1, 𝑁𝑙)                                           (5) 

where down means down-sampling by a factor N.  

 

To discriminate between C classes, a fully connected output layer with C neurons 

is added. The output layer takes as input the concatenated feature maps of the layer 

below it, denoted by the feature vector fv: 

 

𝑜 = 𝑓(𝑏𝑜 + 𝑊𝑜𝑓𝑣)                                          (6) 

where 𝑏𝑜 is a bias vector and 𝑊𝑜 is a weight matrix which can be determined us-

ing the back-propagation learning algorithm [19]. 

Combination of verified regions 

As mentioned in Section 3.1 we combine candidate crater regions by thresholding 

the ratio of their area of overlap over the union of their areas. Using a fairly high 

threshold in that step but also adding extra regions by expanding the candidate regions 

allow us to improve verification performance, however, we might end up with verify-

ing the same crater multiple times. To eliminate multiple detections, we apply the 

same methodology described in Section 3.1 to the verified regions, however, using a 
lower threshold this time.  

4. Experimental Results and Comparisons 
 

4.1 Data Set 

Our data set consists of 448 images, each having a size of 600×400, obtained from 

the Lunar Reconnaissance Orbiter (LRO) [21]. Craters with a size between 20x20 and 

200x200 have been partially labeled by NASA scientists in this dataset. We have used 

428 for training and 20 images for testing. A total of 1830 craters (i.e., ground truth) 

exist in the training images. To increase the variability of crater appearance in the 

training set, we generate more training samples by randomly shifting the original 

ones. Specifically, we generate 3 samples for each ground truth crater by slightly 

changing its position and size. The new samples are still well localized and have more 

90% overlap with the ground truth. Combining these samples with the original ground 

truth craters make up our training set of 7320 samples. All training samples are then 

normalized to size 24×24.  

It should be mentioned that the original partially labeled images are not suitable for 
testing and fully labeled images are needed for this purpose. Therefore, we have man-

ually labeled all craters larger than 20x20 in the 20 test images. We use 7320 non-

crater training examples which are chosen randomly; to reduce the number of false 

positives, we use bootstrapping [20] to augment the non-crater training samples.  



4.2 Performance evaluation measures 

Standard recall and precision rates are used to evaluate the performance of our 

CDA. These measures are defined as follows:  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,                 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 =  

𝑇𝑃

𝑇𝑃+𝐹𝑃
                                     (7) 

 

where TP, FN, and FP are the number of true positives, false negatives, and false 

positives respectively. A verified region is a TP if it has more than 40% overlap with 

a ground truth crater; otherwise, it is a false positive. The overlap between a candidate 

region and a ground truth crater is calculated using Equation 3. It should be men-

tioned that our algorithm is designed to detect craters bigger than 20x20, but it is 

common that smaller craters are also detected. These craters are not considered as true 

or false detections in our performance evaluation.  

4.3 Performance analysis of candidate crater region detection  

To evaluate the performance of the proposed candidate region detection method 

discussed in Section 3.1, we have applied it on all 448 images which include 2480 

labeled craters.  

Table 1. Statistical performance analysis of the proposed candidate crater region detection. 

Total Number of ground truth craters 2480 

Number of detected ground truth craters  2464 (99.4%) 

Average number of detections per ground truth crater 18.22 (std : 12.27) 

Average overlap between true detections and the 

coresponding ground truth crater 

52.70  (std: 11.70) 

Average overlap between the best candidate crater regions 

and the corresponding ground truth crater 

75.70 (std: 10.69) 

Average number of candidate crater regions per image 7889 (std: 1675) 

 

For edge detection, we used the Canny edge detector at scales 3, 5, 7, and 9. A low 

threshold of 25 was used to keep most of the detected edges (the high threshold was 

twice the low threshold). Convex grouping was then applied using a gap tolerance 

parameter k = 0.51. As it can be inferred from our parameter selection, our main goal 

is detecting all true craters. To combine the detected convex groups, we used a 70% 

overlap threshold. While this threshold allows for combining many convex groups, it 

still allows multiple detections of the same crater region which lead to better verifica-
tion performance as discussed in Section 3.1.  

Table 1 shows the performance of our candidate crater region detection step along 

with some useful statistics; as it can be seen, we can detect almost all ground truth 

craters (99.4%). On average, 18 candidate crater regions are detected for each ground 

truth crater. The detected regions corresponding to a ground truth crater have more 

than 50% average overlap with it which is higher than our desired 40% overlap. More 

interestingly, the best candidate regions (i.e., the regions with highest overlap) have 

more 75% average overlap with their ground truth craters.   



4.4 Performance analysis of candidate crater region verification  

The performance of the complete crater detection algorithm has been evaluated on 

the 20 test images. There is a total of 251 ground truth craters in these images which 

were all detected in the candidate crater region detection step.  These regions along 

with other detections were passed to the verification step. We have performed several 

different experiments using the CNN and SVM classifiers.  The CNN classifier is 

trained using raw pixel intensities since it extracts its own features. The SVM classifi-

ers was trained using raw pixel intensities, Haar features, and HOG features. Table 2 

shows our experimental results without using bootstrapping. 

Table 2. Experimental results using different clssifiers and features witout bootstrapping. 

Type of classifier Recall (%) Precision (%) 

SVM using raw pixel intensities 84 24.11 

SVM using Haar features 82.21 27.9 

SVM using HoG features 93.67 27.31 

CNNs using raw pixel intensities 94.46 58.9 

 

As it can be observed from Table 2, the CNN classifier outperforms the SVM clas-

sifier both in terms of recall and precision. However, both classifiers have low preci-

sion which is mostly due to the lack of challenging non-crater samples in the training 

set. We have tried to improve the quality of the training set using bootstrapping. Table 

3 shows our verification results for the CNN classifier using bootstrapping. By per-
forming two iterations of bootstrapping, we have added around 3000 false positive 

samples to the training set. This has increased the precision of the CNN classifier 

from 58.29% to 85.66% while its recall rate has slightly dropped from 94.46% to 

92.09%. Figure 5 shows the verified crater regions for a sample test image. 

Table 3. CNN classifier`s performance improvement on test set using bootstapping  

Bootstrapping round Number of samples 

added to the data set 

Recall Precision 

#0 --- 94.46 58.29 

#1 1920 91.30 74.51 

#2 1140 92.09 85.66 
. 

 
Fig. 5 Verified regions (blue boxes) for a sample test image. 



 

It should be mentioned that most of the false detections are regions which look 

very similar to eroded craters in our training set. Since it is not clear whether these 

regions are true craters, we have considered them as false positives. Many of the false 

negatives are also craters which have very low contrast, lack of edges, and overlap 

with other surface features. Since these properties are not abundant in our training set, 

they could not be learnt effectively.  

Conclusions 

In this paper, we proposed CDA based on perceptual organization and machine 

learning. Using a multi-scale candidate crater region detection method, we were able 

to include almost all ground truth crater regions in our candidate list. Using a CNN 
classifier, we were able to verify 92% of ground truth craters with an 85% precision 

rate. The proposed approach can be enhanced in several ways. First of all, using a 

more informative training set with more diverse crater and non-crater samples would 

improve performance. Second, combining the responses of several classifiers trained 

on different features is also expected to improve verification performance. Finally, 

fusing crater detection results from images and DEMs is expected to improve overall 

performance. 
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