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Abstract. Early identification of abnormalities in plants is an impor-
tant task for ensuring proper growth and achieving high yields from
crops. Precision agriculture can significantly benefit from modern com-
puter vision tools to make farming strategies addressing these issues effi-
cient and effective. As farming lands are typically quite large, farmers
have to manually check vast areas to determine the status of the plants
and apply proper treatments. In this work, we consider the problem of
automatically identifying abnormal regions in maize plants from images
captured by a UAV. Using deep learning techniques, we have developed
a methodology which can detect different levels of abnormality (i.e., low,
medium, high or no abnormality) in maize plants independently of their
growth stage. The primary goal is to identify anomalies at the earliest
possible stage in order to maximize the effectiveness of potential treat-
ments. At the same time, the proposed system can provide valuable infor-
mation to human annotators for ground truth data collection by helping
them to focus their attention on a much smaller set of images only. We
have experimented with two different but complimentary approaches, the
first considering abnormality detection as a classification problem and
the second considering it as a regression problem. Both approaches can
be generalized to different types of abnormalities and do not make any
assumption about the abnormality occurring at an early plant growth
stage which might be easier to detect due to the plants being smaller
and easier to separate. As a case study, we have considered a publicly
available data set which exhibits mostly Nitrogen deficiency in maize
plants of various growth stages. We are reporting promising preliminary
results with an 88.89% detection accuracy of low abnormality and 100%
detection accuracy of no abnormality.
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1 Introduction

The negative impact of climate change and it’s repercussions related to the
agricultural sector and the environment is increasing at an alarming rate. Addi-
tionally, with the increased demand of food because of the ever-increasing pop-
ulation, the agricultural sector faces huge problems in the future. With the help
of artificial intelligence and different methodological approaches, these prob-
lems may be handled to some extend. Automation of different agricultural
tasks reduces human effort, increases food production and mitigates the adverse
effects on the environment to some extend. Since most of the agricultural farms
encompass a vast amount of land and produce, using sophisticated technolog-
ical approaches has a significant impact in providing ease to human efforts
and the environment. Machine learning and its applications have aided in vari-
ous research and practical problems. Many times, machine learning approaches
have surpassed human performance. Examples include face recognition, ques-
tion answering, medical image analysis, speech recognition and others [1–4]. It’s
application in the field of precision agriculture is also noteworthy [5,6].

In order to ensure food security and economic stability for the U.S., produc-
tion of corn plays a vital role. The U.S. is one of the major corn producers in
the world. According to the data collected from the United States Department
of Agriculture (USDA) in 2022, corn farmers of the U.S. produced about 13.7
billion bushels of corn at 79.2 million acres of land [7]. Apart from using this
commodity as a food source, it is also used as a bio-fuel and other industrial
applications. Proper inspection for any abnormalities in the plant leaves and
subsequent treatment have a huge impact on the yield of maize plants. In the
initial phase of an abnormality, the leaves of the plants usually turn from healthy
green to different shades of yellow. There are various reasons for this like a dis-
ease or nutrient deficiency. There are also cases where the leaves turn yellow due
to changes of weather, lack of water or other reasons. In general, manual assess-
ment of the plants and their leaves is required from an expert who traverses the
whole area where the plants are cultivated. This is a tedious process which needs
to be done multiple times during the lifetime of the plants.

There have been several attempts to automate these processes, however, a
general approach irrespective of the growth stage of the plants or type of abnor-
mality is still under investigation. Past challenges include low resolution images,
inefficient data collection approach, and problem-depended methodology based
on specific deficiencies, viruses, insects [8–10]. Lack of a large set of properly
labelled data is also another major limitation which prevents researchers from
training effective deep learning models.

Using powerful sensors, Unmanned Aerial Vehicles (UAVs) are capable of
taking high resolution images from a large area of a maize field leading to an
efficient data collection approach for abnormality inspection purposes but also
for collecting large amounts of data for training deep learning models [11]. The
goal of this research work is to develop a system which can identify and quantify
the level of abnormality from images irrespective of the abnormality type or
level (i.e., low, medium, high or none). There are two main benefits behind the
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proposed system. First, it can provide useful information to farmers in terms
of potential plant abnormalities and their quantification. Second, it can provide
valuable assistance to human annotators for ground truth collection by focusing
their attention on a subset of images instead of examining all the images captured
in a UAV data collection flight. The main contributions of this research work
can be summarized as follows:

– A methodology which can be used to identify and quantify abnormalities in
maize plants. The proposed methodology can be extended to different types
of plants.

– A customized EfficientNet-B0 is used as a baseline model in this study. Com-
parison with other models are shown, demonstrating the superiority of the
baseline model.

– The labelled images with annotations which have been created for this
research work are released of the benefit for the research community1.

The rest of the paper is organized as follows: Sect. 2 provides a review of
related works. Details about the data set and how it was prepared is mentioned
in Sect. 3. The proposed methodology, and the baseline deep learning architec-
ture can be found in Sect. 4. Section 5 presents the experiments performed and
discusses our results. Finally, Sect. 6 provides our conclusions and directions for
future research.

2 Background

Identifying nutrient deficiencies and abnormalities is a major concern in preci-
sion agriculture research. There are some interesting research works that have
been performed in the past. Chore and Thankachan [12] attempted to identify
Potassium, Nitrogen, Copper, Zinc and Phosphorus deficiencies from the leaves
of orange, cotton, apple, banana, mango, litchi, henna, gooseberry, and okra
plants. The plant leaves were manually collected from the fields using a multi-
frequency visible light leaf scanning approach. Using multi-frequency analysis
coupled with image processing, 16 features were used to train a deep learning
model. The proposed approach involved a four step lengthy process, however,
the results reported were quite high. The collected data was not made publicly
available.

Rahadiyan et al. [13] performed similar work on Chilli plants. In particular,
they extracted texture and color based feature and used a Multi-Layer Percep-
tron model to identify seven classes namely healthy, Phosphor, Magnesium, Sul-
fur, Calcium, Magnesium-Sulfur, and Multi-deficiency. However, the size of the
total dataset was only 817. Moreover, the dataset included only images of indi-
vidual plant leaves which were picked and placed on a white background rather
than the whole plant in the field. Using the combination of RGB, Greyscale and
LBP features the authors were able to achieve only 79.67% of accuracy.

1 https://github.com/aminul-huq/Abnormality-Corn-ISVC-23.

https://github.com/aminul-huq/Abnormality-Corn-ISVC-23
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To figure out the stress caused to plants by drought, Tejasri et al. [14] used
a UAV to capture aerial RGB images of maize plants and utilized an ensemble
model based on U-Net and U-Net++ where ResNet34 was used as the back-
bone of the model. The UAV device captured images of the whole maize field
from where the authors extracted 150 samples of healthy and stressed crops.
The authors created a segmentation mask using Otsu’s method and a naive
thresholding approach. They were able to improve overall performance by stack-
ing and averaging the performance of U-Net and U-Net++ models. The final
mIoU score of the ensemble model was 0.7163. As the segmentation mask or the
ground truth was based on the Otsu’s and naive thresholding method it can be
assumed that the ground truth was not fine tuned enough to capture all the
details in the images. A polygon based method may improve the ground truth
collection process and the segmentation models performance. Using image pro-
cessing techniques for detecting Nitrogen deficiency in rice plant leaves, Yuan
et al. [15] experimented with various color based features like normalized RGB,
HSV, and Dark Green Color Index. Their objective was to establish a correlation
between these features and the amount of chlorophyll present in the rice plant
leaves with the help of a SPAD-502 meter. The SPAD-502 meter is a hand held
device which can be used to get an accurate measure of leaf chlorophyll concen-
tration. One of the setbacks of this method is that, the authors used only three
positions to collect data for the SPAD-502 meter. If they had considered more
number of positions then the measurement would have been more accurate.

To assist human annotators quickly identify Nitrogen deficiencies in maize
plants, Zermas et al. [11] proposed a solution based on Support Vector
Machines(SVMs). Three different SVMs were used: the first one was used to
separate green pixels from the rest (i.e., yellow and soil colored ones). The sec-
ond one performed another classification to separate yellow pixels from the rest;
finally, the third SVM determined whether a particular pixel was yellow due to
Nitrogen deficiency. The proposed approach was shown to be much faster than
human annotators in creating image data sets for Nitrogen deficiency classifica-
tion. Additionally, the authors presented an approach which utilized the dataset
to build a model which determined whether there was Nitrogen deficiency in the
images.

Unfortunately, most of past published research work does not address the
issue of early identification of abnormalities. Moreover, apart from a few exam-
ples, most of them focus on examining individual leaves or plants, instead of
considering a larger area of plants. Data collection is also manual using hand-
held instruments which limits generality and large scale deployment of the pro-
posed approaches. Many previous methodologies are also abnormality-depended
which limits their effectiveness to different types of abnormalities. Our goal is to
develop a general-purpose abnormality detection system which leverages modern
technologies for data collection and can detect different types of abnormalities
as early as possible from a large area of plants of various growth stages.
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Fig. 1. Illustration of abnormalities in large scale images for (a) V8 and (b) V12 growth
stages.

3 Dataset

We have experimented with a publicly available data set which contains images
of maize plants of various growth stages exhibiting mostly Nitrogen deficiency
but also abnormalities due to other types of nutrient deficiency and dryness [11].
The data set contains high resolution RGB images captured by a UAV at two
different locations. For the purpose of this study, we used images from the V8
and V12 growth stages from the Becker field. Here, V stands for vegetative stage
and the number associated with it represent how many leaves are present in the
plant. It should be noted that although the labels of the data set indicate that
the plants come from the V8 and V12 growth stages, there are several images in
each category which contain maize plants from different growth stages. Moreover,
although nutrient deficiencies typically start at an early growth stage, this is not
always the case as we have confirmed from the images provided in the data
set. The image resolution for V8 and V12 images are 4000 × 6000 × 3 and
6000 × 4000 × 3 respectively. With the help of an annotation tool named Label
Studio [16], 44 images from the V8 stage and 46 images from the V12 stage were
annotated using a bounding box to specify areas of abnormality (ground truth).
Any yellow leaves on the ground were excluded from ground truth labeling.

Figure 1 shows two representative annotated images from the V8 and V12
growth stages. For training purposes, we selected 36 images from V8 and 36
images from V12 (we refer to this as set A); the rest, 8 images from V8 and
10 images from V12, were selected for testing purposes (we refer to this as set
B). Based on the annotations, three separate data sets were created, one for
training and two for testing. The training set was created by randomly cropping
250 × 250 × 3 sub-images from set A as we wanted to build a general purpose
abnormality detector which can perform well on any part of the field. To evaluate
the performance of the abnormality detector (i.e., EfficientNet-B0), the first
test data set was created in the same way (i.e., randomly cropped sub-images)
using set B. To evaluate abnormality quantification, the second test data set
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Fig. 2. Illustration of normal (a) & (b) and abnormal (c) & (d) samples.

was created from set B again but now using a non-overlapping sliding window
approach to make sure that the whole image is covered.

A particular sub-image was labelled as abnormal if it completely contained at
least one bounding box. A total of 4966 randomly selected abnormal sub-images
and 4966 randomly selected normal sub-images were extracted for training. Nor-
mal samples did not include any part of a bounding box. For validation purposes,
10% of the training data was used. The first test set was built by selecting a
total of 1211 abnormal and 1211 normal randomly cropped sub-images. Figure 2
shows some representative normal and abnormal sub-images. Since the UAV
captures a big portion of the field which might contain 100–120 maize plants,
it was determined that this area might be too big to be labeled as abnormal
or normal. Therefore, each large scale test image was partitioned in 4 quarters,
yielding 72 quarter scale images, each containing an average of 25–30 maize
plants. The second test set was created from the quarter scale images using a
sliding-window approach yielding a total of 6912 sub-images; each sub-image in
this case was labelled as abnormal if it contained any part of a bounding box
and normal otherwise.

4 Methodology

The proposed approach assumes that high resolution maize images have been
collected by a UAV. The goal is to analyze each image collected to determine
whether the plants exhibit low, medium, high or no abnormality. Our system
does not currently perform any abnormality localization but we plan to include
this feature in future versions of the system.

Two approaches have been considered to quantify the level of abnormality in
a test image. In the first approach, we consider all non-overlapping sliding win-
dows in the image where each sliding window is classified as normal or abnormal
using a deep learning classifier as discussed later. To quantify the level of abnor-
mality in the whole image, we take the ratio of abnormal sliding windows over
the total number of sliding windows; we refer to this ratio as the abnormal win-
dow probability and represents a coarse estimate of the amount of abnormality
present in an image. We have empirically divided the window probability in sev-
eral intervals as shown in Table 1 in order to quantify the amount of abnormality



Abnormality Identification in Maize Plants Using Deep Learning 589

Fig. 3. (a) A representative abnormal image (b) bounding boxes focusing on abnor-
mality (c) abnormal pixels using color segmentation.

as low, medium, high and no abnormality. In practice, these thresholds should
be set up with the help of an expert.

In the second approach, we consider all non-overlapping sliding windows
again in a test image and count all abnormal pixels in each sliding window based
on the bounding boxes which are inside the window. We then add the abnor-
mal pixels from all sliding windows and divide the sum by the total number
of pixels in the image. We refer to this ratio as the abnormal pixel probabil-
ity and represents a finer estimate of the amount of abnormality present in the
image. Typically, computing the abnormal pixel probability requires segment-
ing the area of abnormality within the bounding boxes. Here, we have used a
simple color segmentation scheme to roughly estimate the abnormal area within
each bounding box. This was performed using simple thresholding in the HSV
color space to extract yellow colored pixels inside any bounding boxes present in
the image. Figure 3 illustrates the color segmentation task for a representative
abnormal image.

Using a Pearson correlation we verified a high positive correlation between
the abnormal window and pixels probabilities. To quantify the amount of abnor-
mality present in an image, we chose the thresholds for the abnormal pixel prob-
ability based on the thresholds of the abnormal window probability such that the
number of test images in each category between the two approaches remains the
same. However, there is no guarantee that the same exactly images belong to the
same category for each method. This is because there are some borderline cases
where the image is considered of low abnormality using the window probability
but of medium abnormality using the pixel probability; this is also the case for
the medium and high abnormality categories. Apart from this, there might be
a bounding box in the computation of the window probability which falls into
multiple neighboring sliding windows; as a result, the window probability can be
overestimated. This is not the case when computing the abnormal pixel proba-
bility, however, the computation of the abnormal pixel probability suffers from
possible segmentation errors due to using a rather simple color segmentation
scheme. In the future, we plan to compute both probabilities more accurately.
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Table 1. Quantification of different abnormalities (probability x is scaled in the range
[0–100] for both methods)

Abnormal Window Probability Abnormal Pixel Probability No. of Images

None 0 0 7

Low 0 <x<5 0<x<0.0415 9

Medium 5<x<20 0.0415<x<0.80 19

High x>20 x>0.80 37

Table 1 shows the corresponding thresholds for the abnormal pixel probability
as well as the number of quarter scale test images in each category.

4.1 Custom EfficientNet-B0 Classifier

EfficientNet-B0 architecture is a light weight model which is capable of per-
forming classification tasks very well which is the main reason for choosing this
network in our study. Later versions of this network does perform slightly better
but those require more time to train as they have significantly larger parameters.
We have modified this model to better suit it in the context of our application.
Generally, it is considered that any classification deep neural network has two
parts. The first one is the feature extraction part which contains the convolu-
tional, maxpooling, normalization layers etc. The second part is the classification
layer which takes the features from the previous layers, performs average pooling,
and feeds the results to a few fully-connected (FC) layers. Here, we have removed
the classification part and have inserted in its place several convolutional, batch
normalization and self attention layers. The reason for including self-attention
layers is that abnormalities occupy only a small area in the image; therefore,
the model is expected to perform better if it focuses on a small region only.
Additionally, a skip connection was introduced to retain both information and
gradients that could potentially be lost during the training process. Following
the inclusions of these layers, three FC layers we used for performing classifica-
tion. Figure 4 provides a visual illustration of the customized model used in this
study.

4.2 Abnormality Quantification Using Window Probability

To quantify the amount of abnormality in a test image using the window prob-
ability, each sliding window in the test image must be classified as normal or
abnormal. We have experimented with two different classifiers and their fusion:
the customized EfficientNet-B0 described earlier and a Support Vector Machine
(SVM) classifier [17,18]. The fusion model predicted an image as abnormal if
either one of the above classifiers predicted it as abnormal. We decided to fuse
a traditional machine learning model with a deep learning model since their
solutions would be rather different which typically benefits fusion schemes most.
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Both the customized EfficientNet-B0 model and the SVM model were trained on
the same training data and optimized using the validation data. During testing,
each model was evaluated using the randomly cropped test set. As the training
and test images were 250×250×3, Principal Component Analysis(PCA) followed
by Linear Discriminant Analysis (LDA) were performed in the case of SVM to
help it find more powerful features. For the deep learning model, various data
augmentation approaches (e.g., random vertical and horizontal flips) were per-
formed. After the classification of each sliding window as normal or abnormal,
the window probability was computed and the test image was assigned to an
abnormality category or to the normal category using the thresholds shown in
Table 1. Finally, the accuracy was calculated based on the original and predicted
labels. An illustration of the training and testing phases is shown in Fig. 5.

4.3 Abnormal Quantification Using Pixel Probability

In order to predict the abnormal pixel probability of a test image, a regression
model, namely Histogram-based Gradient Boosting Regression Tree, was applied
to each sliding window in the test image [19]. This is a faster version of the
Gradient Boosting Regression Tree [20]. The regression model was trained on the
randomly cropped abnormal samples only (i.e., it wasn’t trained on the whole
data set because of the zero inflation problem [21]). Since the dimension of each
sliding window is 250 × 250 × 3, which is rather big for the regression model,
PCA was used to reduce the dimension by preserving 99% of the variance in the
data, leading to 3394 features. The abnormal pixel probability for each small
scale test image was computed by summing up the predicted pixel probabilities
for all sliding windows. Each test image was then assigned to the appropriate
abnormal category using the thresholds shown in Table 1. Finally, the accuracy
was calculated based on the original and predicted labels.

5 Results and Discussion

In this section a short description about the parameters of the models and results
obtained from the experimentations are discussed.

Fig. 4. Proposed customized EfficientNet-B0.
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Fig. 5. Training and testing phases for predicting the abnormal window probability.

Table 2. Performance comparison of different models

Training Accuracy(%) Validation Accuracy(%) Test Accuracy(%)

ResNet152 93.75 94.06 92.36

DenseNet201 95.00 93.06 92.90

EfficientNet-B0 94.69 93.96 92.69

Customized EfficientNet-B0 99.97 93.26 93.15

5.1 Experimental Setup

The randomly cropped data sets described in Sect. 3 were used to train and
test the classification and regression models. EfficientNet-B0 was trained for 200
epochs using SGD optimizer with a learning rate of 0.0001. Additionally, one-
cyclic learning rate was used for updating the learning rate in each epoch [22].
In order to train the SVM model, we used an RBF kernel; the value of C was
set to 1. The regression model was trained for 750 iterations using the squared
loss, a max depth value of 7, and the L2 regularization value set to 3. Other
parameter values were experimented as well but for these values provided the
best results.

5.2 Abnormal vs Normal Classification

Table 2 compares the performance of the customized EfficientNet-B0 with the
original EfficientNet-B0 as well as with DenseNet-201 and ResNet-152 using
the randomly cropped data set. As it can be observed from the results, the
customized EfficientNet-B0 model outperformed all other models, including the
original EfficientNet-B0 model.

5.3 Results Based on Abnormal Window Probability

Table 3 shows the results obtained on the small scale test images. The rows of
the table show the performance achieved for the normal and abnormal categories
while the columns correspond to the SVM, Customized EfficientNet-B0 mdoels
and their fusion. As shown in the table, the model based on fusion out-performs
the other two models.

To better understand the fusion model (best model), a bar plot was cre-
ated for each abnormal category (see Fig. 6). The bar plot depicts a side by side
comparison between the original and predicted window probability values for
each image in each category. In the plots, the x-axis represents the ID numbers
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Table 3. Performance on sliding window test set for abnormal window probability

SVM(%) Customized EfficientNet-B0(%) Fusion Model(%)

None 100 100 100

Low 55.56 77.78 88.89

Medium 63.16 68.42 84.21

High 51.35 94.59 100

Fig. 6. Performance comparison between the original and predicted window probabil-
ities for (a) low (b) medium and (c) high abnormal categories.

of the individual test images and the y-axis represents the window probability
(scaled in the interval [1–100]). The model miss-classified 1 out of 9 test images
and 3 out of 19 images for low and medium abnormality category. For the low
abnormality category, the model was not able to correctly predict any abnormal
window for a particular test image. A detailed analysis revealed that the par-
ticular test image (i.e., #26) had only one abnormal sliding window out of 96
sliding windows. That particular window had a very small amount of abnormal
pixels. It appears that this window was too difficult for the model to be classified
correctly. In case of the medium abnormality category, it can be observed from
Fig. 6(b) that the test images miss-classified (i.e., images #8, #21 and #61) had
abnormal window probability values slightly over 5% which was the threshold
between the low and medium abnormality categories. For hard thresholds, like
in this study, the number of similar errors would increase with more categories.
Figure 7 shows several test images which have been labelled as normal by the
classifier but are in fact abnormal images as shown by the red bounding box. As
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Fig. 7. Sample images that are classified wrongly by the classifier.

it can be observed, occlusion, lighting, small region of interest are some of the
factors that hamper the performance of the model.

5.4 Results Based on Abnormal Pixel Probability

With the help of the regression model 100%, 66.67%, 100% and 89.19% accuracy
for the abnormal pixel probability was obtained for None, Low, Medium and High
category through the experimentations. As it can be observed, the regression
model performs very well for normal and medium abnormality category; however,
its performance is lower on the low and high abnormality categories. A bar plot
was created again to better understand the results obtained in this case (see
Fig. 8). As it can be observed, the regression model predicted a zero abnormal
pixel probability for two images in this category (i.e., images #21 and #26).

Fig. 8. Performance comparison between the original value and predicted value for (a)
low (b) medium and (c) high abnormal pixel probability.
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Image #26 is the same image mistaken by the window probability approach.
A detailed analysis on image #21 revealed that there were only two windows
which contained abnormalities and due to illumination and occlusion issues the
model was not able to provide any regression values. There were also four test
images which were not correctly categorized in the high abnormality category
(i.e., images #5,#7#38 and #62). These had predicted values which were very
close to the threshold while the original values were just above the threshold for
the high abnormality category. There are more factor that have contributed to
errors using abnormal pixel probability such as inaccurate estimation of these
probabilities in the training set and dried yellowish leaves on the ground.

6 Conclusions

Detection of abnormalities in maize plants in early stages is extremely crucial.
However, even in cases when the abnormality has progressed to some extend,
certain actions can still be taken in order to ensure proper growth and yields.
This research work focused on identifying abnormalities using UAV images to
detect whether a particular area contains low, medium, high or no abnormal-
ity which mitigates the aforementioned problem. Abnormal window probability
and abnormal pixel probability approaches were considered to quantify poten-
tial abnormalities in the field. We have reported promising preliminary results
using a publicly available data set. We plan to estimate the pixel probability
more accurately as well as fuse the window and pixel probabilities to improve
abnormality quantification. Since the original data was not collected by us we
could not recommend ideal UAV heights, camera view, optimal illumination con-
ditions etc. In the future, we plan to experiment with more data including data
from different growth stages, different locations, and exhibiting different types
of abnormalities. Finally, we plan to incorporate abnormality localization capa-
bilities to better assist human annotators to create larger data sets for training
deep learning models.
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